BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gillette K, Gsell MAF, Prassl AJ, Karabelas E, Reiter U, Reiter G, Grandits T, Payer C, Štern D, Urschler M, Bayer JD, Augustin CM, Neic A, Pock T, Vigmond EJ, Plank G. A Framework for the generation of digital twins of cardiac electrophysiology from clinical 12-leads ECGs. Med Image Anal 2021;71:102080. [PMID: 33975097 DOI: 10.1016/j.media.2021.102080] [Cited by in Crossref: 30] [Cited by in F6Publishing: 34] [Article Influence: 15.0] [Reference Citation Analysis]
Number Citing Articles
1 Hernández-Romero I, Molero R, Fambuena-Santos C, Herrero-Martín C, Climent AM, Guillem MS. Electrocardiographic imaging in the atria. Med Biol Eng Comput 2023;61:879-96. [PMID: 36370321 DOI: 10.1007/s11517-022-02709-7] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Bucelli M, Zingaro A, Africa PC, Fumagalli I, Dede' L, Quarteroni A. A mathematical model that integrates cardiac electrophysiology, mechanics, and fluid dynamics: Application to the human left heart. Int J Numer Method Biomed Eng 2023;39:e3678. [PMID: 36579792 DOI: 10.1002/cnm.3678] [Reference Citation Analysis]
3 Sigawi T, Ilan Y. Using constrained-disorder principle-based systems to improve the performance of digital twins in biological systems (Preprint).. [DOI: 10.2196/preprints.46304] [Reference Citation Analysis]
4 Aluvalu R, Mudrakola S, V UM, Kaladevi A, Sandhya M, Bhat CR. The Novel Emergency Hospital Services for Patients using Digital Twins. Microprocessors and Microsystems 2023. [DOI: 10.1016/j.micpro.2023.104794] [Reference Citation Analysis]
5 Africa P, Salvador M, Gervasio P, Dede' L, Quarteroni A. A matrix–free high–order solver for the numerical solution of cardiac electrophysiology. Journal of Computational Physics 2023. [DOI: 10.1016/j.jcp.2023.111984] [Reference Citation Analysis]
6 Rinné S, Oertli A, Nagel C, Tomsits P, Jenewein T, Kääb S, Kauferstein S, Loewe A, Beckmann BM, Decher N. Functional Characterization of a Spectrum of Novel Romano-Ward Syndrome KCNQ1 Variants. Int J Mol Sci 2023;24. [PMID: 36674868 DOI: 10.3390/ijms24021350] [Reference Citation Analysis]
7 Narayan A, Liu Z, Bergquist JA, Charlebois C, Rampersad S, Rupp L, Brooks D, White D, Tate J, MacLeod RS. UncertainSCI: Uncertainty quantification for computational models in biomedicine and bioengineering. Comput Biol Med 2023;152:106407. [PMID: 36521358 DOI: 10.1016/j.compbiomed.2022.106407] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Viola J, Chen Y. Digital Twin Background. Digital-Twin-Enabled Smart Control Engineering 2023. [DOI: 10.1007/978-3-031-22140-8_1] [Reference Citation Analysis]
9 Winkler B, Nagel C, Farchmin N, Heidenreich S, Loewe A, Dössel O, Bär M. Global Sensitivity Analysis and Uncertainty Quantification for Simulated Atrial Electrocardiograms. Metrology 2022;3:1-28. [DOI: 10.3390/metrology3010001] [Reference Citation Analysis]
10 Baumgartner C. The world's first digital cell twin in cancer electrophysiology: a digital revolution in cancer research? J Exp Clin Cancer Res 2022;41:298. [PMID: 36221111 DOI: 10.1186/s13046-022-02507-x] [Reference Citation Analysis]
11 Galappaththige S, Gray RA, Costa CM, Niederer S, Pathmanathan P. Credibility assessment of patient-specific computational modeling using patient-specific cardiac modeling as an exemplar. PLoS Comput Biol 2022;18:e1010541. [PMID: 36215228 DOI: 10.1371/journal.pcbi.1010541] [Reference Citation Analysis]
12 Gillette K, Gsell MAF, Strocchi M, Grandits T, Neic A, Manninger M, Scherr D, Roney CH, Prassl AJ, Augustin CM, Vigmond EJ, Plank G. A personalized real-time virtual model of whole heart electrophysiology. Front Physiol 2022;13:907190. [DOI: 10.3389/fphys.2022.907190] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Bai J, Lu Y, Wang H, Zhao J. How synergy between mechanistic and statistical models is impacting research in atrial fibrillation. Front Physiol 2022;13:957604. [DOI: 10.3389/fphys.2022.957604] [Reference Citation Analysis]
14 Coorey G, Figtree GA, Fletcher DF, Snelson VJ, Vernon ST, Winlaw D, Grieve SM, McEwan A, Yang JYH, Qian P, O'Brien K, Orchard J, Kim J, Patel S, Redfern J. The health digital twin to tackle cardiovascular disease-a review of an emerging interdisciplinary field. NPJ Digit Med 2022;5:126. [PMID: 36028526 DOI: 10.1038/s41746-022-00640-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Ruiz Herrera C, Grandits T, Plank G, Perdikaris P, Sahli Costabal F, Pezzuto S. Physics-informed neural networks to learn cardiac fiber orientation from multiple electroanatomical maps. Engineering with Computers 2022. [DOI: 10.1007/s00366-022-01709-3] [Reference Citation Analysis]
16 Moss R, Wülfers EM, Lewetag R, Hornyik T, Perez-feliz S, Strohbach T, Menza M, Krafft A, Odening KE, Seemann G. A computational model of rabbit geometry and ECG: Optimizing ventricular activation sequence and APD distribution. PLoS ONE 2022;17:e0270559. [DOI: 10.1371/journal.pone.0270559] [Reference Citation Analysis]
17 Sánchez J, Loewe A. A Review of Healthy and Fibrotic Myocardium Microstructure Modeling and Corresponding Intracardiac Electrograms. Front Physiol 2022;13:908069. [DOI: 10.3389/fphys.2022.908069] [Reference Citation Analysis]
18 Campos FO, Neic A, Mendonca Costa C, Whitaker J, O’neill M, Razavi R, Rinaldi CA, Scherr D, Niederer SA, Plank G, Bishop MJ. An automated near-real time computational method for induction and treatment of scar-related ventricular tachycardias. Medical Image Analysis 2022. [DOI: 10.1016/j.media.2022.102483] [Reference Citation Analysis]
19 Hussan JR, Trew ML, Hunter PJ. Simplifying the Process of Going From Cells to Tissues Using Statistical Mechanics. Front Physiol 2022;13:837027. [PMID: 35399281 DOI: 10.3389/fphys.2022.837027] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
20 Jung A, Gsell MAF, Augustin CM, Plank G. An Integrated Workflow for Building Digital Twins of Cardiac Electromechanics—A Multi-Fidelity Approach for Personalising Active Mechanics. Mathematics 2022;10:823. [DOI: 10.3390/math10050823] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
21 Azzolin L, Eichenlaub M, Nagel C, Nairn D, Sánchez J, Unger L, Dössel O, Jadidi A, Loewe A. AugmentA: Patient-specific Augmented Atrial model Generation Tool.. [DOI: 10.1101/2022.02.13.22270835] [Reference Citation Analysis]
22 Boonstra MJ, Roudijk RW, Brummel R, Kassenberg W, Blom LJ, Oostendorp TF, te Riele ASJM, van der Heijden JF, Asselbergs FW, Loh P, van Dam PM. Modeling the His-Purkinje Effect in Non-invasive Estimation of Endocardial and Epicardial Ventricular Activation. Ann Biomed Eng. [DOI: 10.1007/s10439-022-02905-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Moss R, Wülfers EM, Schuler S, Loewe A, Seemann G. A Fully-Coupled Electro-Mechanical Whole-Heart Computational Model: Influence of Cardiac Contraction on the ECG. Front Physiol 2021;12:778872. [PMID: 34975532 DOI: 10.3389/fphys.2021.778872] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
24 Loewe A, Martínez Díaz P, Nagel C, Sánchez J. Cardiac Digital Twin Modeling. Innovative Treatment Strategies for Clinical Electrophysiology 2022. [DOI: 10.1007/978-981-19-6649-1_7] [Reference Citation Analysis]
25 Song Y, Qin J. Metaverse and Personal Healthcare. Procedia Computer Science 2022;210:189-197. [DOI: 10.1016/j.procs.2022.10.136] [Reference Citation Analysis]
26 Pezzuto S, Perdikaris P, Costabal FS. Learning cardiac activation maps from 12-lead ECG with multi-fidelity Bayesian optimization on manifolds. IFAC-PapersOnLine 2022;55:175-180. [DOI: 10.1016/j.ifacol.2022.09.091] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
27 Wang H, Zhao P, Y. Alghalban H, Zhu Y, Chong Y. A dynamic statistical cardiac atlas with adjustable shape and motion features. Digit Med 2022;8:17. [DOI: 10.4103/digm.digm_1_22] [Reference Citation Analysis]
28 Grandits T, Pezzuto S, Plank G. Smoothness and continuity of cost functionals for ECG mismatch computation. IFAC-PapersOnLine 2022;55:181-186. [DOI: 10.1016/j.ifacol.2022.09.092] [Reference Citation Analysis]
29 Augustin CM, Gsell MAF, Karabelas E, Willemen E, Prinzen FW, Lumens J, Vigmond EJ, Plank G. A computationally efficient physiologically comprehensive 3D-0D closed-loop model of the heart and circulation. Comput Methods Appl Mech Eng 2021;386:114092. [PMID: 34630765 DOI: 10.1016/j.cma.2021.114092] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
30 Mendonca Costa C, Gemmell P, Elliott MK, Whitaker J, Campos FO, Strocchi M, Neic A, Gillette K, Vigmond E, Plank G, Razavi R, O'Neill M, Rinaldi CA, Bishop MJ. Determining anatomical and electrophysiological detail requirements for computational ventricular models of porcine myocardial infarction. Comput Biol Med 2021;141:105061. [PMID: 34915331 DOI: 10.1016/j.compbiomed.2021.105061] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
31 Meister F, Passerini T, Audigier C, Lluch È, Mihalef V, Ashikaga H, Maier A, Halperin H, Mansi T. Extrapolation of Ventricular Activation Times From Sparse Electroanatomical Data Using Graph Convolutional Neural Networks. Front Physiol 2021;12:694869. [PMID: 34733172 DOI: 10.3389/fphys.2021.694869] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
32 Rupp LC, Bergquist JA, Zenger B, Gillette K, Narayan A, Tate JD, Plank G, Macleod RS. The Role of Myocardial Fiber Direction in Epicardial Activation Patterns via Uncertainty Quantification. 2021 Computing in Cardiology (CinC) 2021. [DOI: 10.23919/cinc53138.2021.9662950] [Reference Citation Analysis]
33 Barber F, Langfield P, Lozano M, Garcia-fernandez I, Duchateau J, Hocini M, Haissaguerre M, Vigmond E, Sebastian R. Personalization of ventricular cardiac conduction system models to reproduce patient electrocardiogram. 2021 Computing in Cardiology (CinC) 2021. [DOI: 10.23919/cinc53138.2021.9662650] [Reference Citation Analysis]
34 Gillette K, Gsell MA, Prassl AJ, Plank G. Influence of Electrode Placement on the Morphology of In Silico 12 Lead Electrocardiograms. 2021 Computing in Cardiology (CinC) 2021. [DOI: 10.23919/cinc53138.2021.9662705] [Reference Citation Analysis]
35 Sung E, Etoz S, Zhang Y, Trayanova NA. Whole-heart ventricular arrhythmia modeling moving forward: Mechanistic insights and translational applications. Biophysics Rev 2021;2:031304. [DOI: 10.1063/5.0058050] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
36 Kamel Boulos MN, Zhang P. Digital Twins: From Personalised Medicine to Precision Public Health. J Pers Med 2021;11:745. [PMID: 34442389 DOI: 10.3390/jpm11080745] [Cited by in Crossref: 25] [Cited by in F6Publishing: 31] [Article Influence: 12.5] [Reference Citation Analysis]
37 Dössel O, Luongo G, Nagel C, Loewe A. Computer Modeling of the Heart for ECG Interpretation—A Review. Hearts 2021;2:350-68. [DOI: 10.3390/hearts2030028] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
38 Monaci S, Gillette K, Puyol-Antón E, Rajani R, Plank G, King A, Bishop M. Automated Localization of Focal Ventricular Tachycardia From Simulated Implanted Device Electrograms: A Combined Physics-AI Approach. Front Physiol 2021;12:682446. [PMID: 34276403 DOI: 10.3389/fphys.2021.682446] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
39 Plank G, Loewe A, Neic A, Augustin C, Huang YL, Gsell MAF, Karabelas E, Nothstein M, Prassl AJ, Sánchez J, Seemann G, Vigmond EJ. The openCARP simulation environment for cardiac electrophysiology. Comput Methods Programs Biomed 2021;208:106223. [PMID: 34171774 DOI: 10.1016/j.cmpb.2021.106223] [Cited by in Crossref: 25] [Cited by in F6Publishing: 14] [Article Influence: 12.5] [Reference Citation Analysis]
40 Plank G, Loewe A, Neic A, Augustin C, Huang Y, Gsell MAF, Karabelas E, Nothstein M, Prassl AJ, Sánchez J, Seemann G, Vigmond EJ. The openCARP Simulation Environment for Cardiac Electrophysiology.. [DOI: 10.1101/2021.03.01.433036] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
41 Romero P, Lozano M, Martínez-Gil F, Serra D, Sebastián R, Lamata P, García-Fernández I. Clinically-Driven Virtual Patient Cohorts Generation: An Application to Aorta. Front Physiol 2021;12:713118. [PMID: 34539438 DOI: 10.3389/fphys.2021.713118] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
42 Good WW, Zenger B, Bergquist JA, Rupp LC, Gillette K, Angel N, Chou D, Plank G, MacLeod RS. Combining endocardial mapping and electrocardiographic imaging (ECGI) for improving PVC localization: A feasibility study. J Electrocardiol 2021;69S:51-4. [PMID: 34649726 DOI: 10.1016/j.jelectrocard.2021.08.013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]