BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sonenblum SE, Sprigle S, Caspall J, Lopez R. Validation of an accelerometer-based method to measure the use of manual wheelchairs. Med Eng Phys 2012;34:781-6. [PMID: 22698978 DOI: 10.1016/j.medengphy.2012.05.009] [Cited by in Crossref: 51] [Cited by in F6Publishing: 38] [Article Influence: 5.1] [Reference Citation Analysis]
Number Citing Articles
1 da Silva Bertolaccini G, Sandnes FE, Medola FO, Gjøvaag T. Effect of Manual Wheelchair Type on Mobility Performance, Cardiorespiratory Responses, and Perceived Exertion. Rehabil Res Pract 2022;2022:5554571. [PMID: 35726217 DOI: 10.1155/2022/5554571] [Reference Citation Analysis]
2 MacDuff H, Armstrong E, Ferguson-Pell M. Technologies Measuring Manual Wheelchair Propulsion Metrics: A Scoping Review. Assist Technol 2022. [PMID: 35576558 DOI: 10.1080/10400435.2022.2075488] [Reference Citation Analysis]
3 Foglyano KM, Lombardo LM, Schnellenberger JR, Triolo RJ. Sudden stop detection and automatic seating support with neural stimulation during manual wheelchair propulsion. J Spinal Cord Med 2022;45:204-13. [PMID: 32795162 DOI: 10.1080/10790268.2020.1800278] [Reference Citation Analysis]
4 Togni R, Kilchenmann A, Proffe A, Mullarkey J, Demkó L, Taylor WR, Zemp R. Turning in Circles: Understanding Manual Wheelchair Use Towards Developing User-Friendly Steering Systems. Front Bioeng Biotechnol 2022;10:831528. [DOI: 10.3389/fbioe.2022.831528] [Reference Citation Analysis]
5 Fu J, Zhang S, Wang H, Zhao YD, Qian G. A Novel Mobile Device-Based Approach to Quantitative Mobility Measurements for Power Wheelchair Users. Sensors (Basel) 2021;21:8275. [PMID: 34960371 DOI: 10.3390/s21248275] [Reference Citation Analysis]
6 Giesbrecht E, Faieta J, Best K, Routhier F, Miller WC, Laberge M. Impact of the TEAM Wheels eHealth manual wheelchair training program: Study protocol for a randomized controlled trial. PLoS One 2021;16:e0258509. [PMID: 34644350 DOI: 10.1371/journal.pone.0258509] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
7 Karinharju KS, Gomersall SR, Clanchy KM, Trost SG, Yeo LT, Tweedy SM. Validity of Two Wheelchair-Mounted Devices for Estimating Wheelchair Speed and Distance Traveled. Adapt Phys Activ Q 2021;38:435-51. [PMID: 33819912 DOI: 10.1123/apaq.2020-0122] [Reference Citation Analysis]
8 Youssef AA, Al-Subaie N, El-Sheimy N, Elhabiby M. Accelerometer-Based Wheel Odometer for Kinematics Determination. Sensors (Basel) 2021;21:1327. [PMID: 33668459 DOI: 10.3390/s21041327] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Bourassa J, Routhier F, Gagnon C, Rahn C, Hébert LJ, St-Gelais R, Rodrigue X, Brais B, Best KL. Wheelchair mobility, motor performance and participation of adult wheelchair users with ARSACS: a cross-sectional study. Disabil Rehabil Assist Technol 2020;:1-8. [PMID: 33307884 DOI: 10.1080/17483107.2020.1858195] [Reference Citation Analysis]
10 Kirby RL, Doucette SP. Relationships Between Wheelchair Services Received and Wheelchair User Outcomes in Less-Resourced Settings: A Cross-Sectional Survey in Kenya and the Philippines. Archives of Physical Medicine and Rehabilitation 2019;100:1648-1654.e9. [DOI: 10.1016/j.apmr.2019.02.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
11 Fortune E, Cloud-Biebl BA, Madansingh SI, Ngufor CG, Van Straaten MG, Goodwin BM, Murphree DH, Zhao KD, Morrow MM. Estimation of manual wheelchair-based activities in the free-living environment using a neural network model with inertial body-worn sensors. J Electromyogr Kinesiol 2019;:102337. [PMID: 31353200 DOI: 10.1016/j.jelekin.2019.07.007] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
12 Goodwin BM, Fortune E, Van Straaten MGP, Morrow MMB. Outcome Measures of Free-Living Activity in Spinal Cord Injury Rehabilitation. Curr Phys Med Rehabil Rep 2019;7:284-9. [PMID: 31406630 DOI: 10.1007/s40141-019-00228-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
13 Ohji S, Kimura Y, Otobe Y, Nishio N, Ito D, Taguchi R, Ogawa H, Yamada M. Measurement of self-propulsion distance of wheelchair using cycle computer excluding assistance distance by touch switch: A pilot study. J Spinal Cord Med 2021;44:262-6. [PMID: 30971190 DOI: 10.1080/10790268.2019.1601936] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
14 Murphy SL, Kratz AL, Zynda AJ. Measuring Physical Activity in Spinal Cord Injury Using Wrist-Worn Accelerometers. Am J Occup Ther 2019;73:7301205090p1-7301205090p10. [PMID: 30839264 DOI: 10.5014/ajot.2019.027748] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
15 Sadler Z, Scott J, Drost J, Chen S, Roccabianca S, Bush TR. Initial estimation of the in vivo material properties of the seated human buttocks and thighs. International Journal of Non-Linear Mechanics 2018;107:77-85. [DOI: 10.1016/j.ijnonlinmec.2018.09.007] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
16 Borisoff JF, Ripat J, Chan F. Seasonal Patterns of Community Participation and Mobility of Wheelchair Users Over an Entire Year. Archives of Physical Medicine and Rehabilitation 2018;99:1553-60. [DOI: 10.1016/j.apmr.2018.02.011] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 3.5] [Reference Citation Analysis]
17 Mccracken LA, Ma JK, Voss C, Chan FH, Martin Ginis KA, West CR. Wrist Accelerometry for Physical Activity Measurement in Individuals With Spinal Cord Injury—A Need for Individually Calibrated Cut-Points. Archives of Physical Medicine and Rehabilitation 2018;99:684-9. [DOI: 10.1016/j.apmr.2017.10.024] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
18 Fu J, Jones M, Liu T, Hao W, Yan Y, Qian G, Jan YK. A novel mobile-cloud system for capturing and analyzing wheelchair maneuvering data: A pilot study. Assist Technol 2016;28:105-14. [PMID: 26479684 DOI: 10.1080/10400435.2015.1095810] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
19 [DOI: 10.1109/globalsip.2017.8308686] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
20 Bazant ES, Himelfarb Hurwitz EJ, Onguti BN, Williams EK, Noon JH, Xavier CA, Garcia FDS, Gichangi A, Gabbow M, Musakhi P, Lee Kirby R. Wheelchair services and use outcomes: A cross-sectional survey in Kenya and the Philippines. Afr J Disabil 2017;6:318. [PMID: 29134178 DOI: 10.4102/ajod.v6i0.318] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
21 Stanfill CJ, Jensen JL. Effect of wheelchair design on wheeled mobility and propulsion efficiency in less-resourced settings. Afr J Disabil 2017;6:342. [PMID: 28936416 DOI: 10.4102/ajod.v6i0.342] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
22 Chan FHN, Eshraghi M, Alhazmi MA, Sawatzky BJ. The effect of caster types on global rolling resistance in manual wheelchairs on indoor and outdoor surfaces. Assist Technol 2018;30:176-82. [PMID: 28590160 DOI: 10.1080/10400435.2017.1307880] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
23 Ma C, Li W, Gravina R, Fortino G. Posture Detection Based on Smart Cushion for Wheelchair Users. Sensors (Basel) 2017;17:E719. [PMID: 28353684 DOI: 10.3390/s17040719] [Cited by in Crossref: 40] [Cited by in F6Publishing: 38] [Article Influence: 8.0] [Reference Citation Analysis]
24 Nightingale TE, Rouse PC, Thompson D, Bilzon JLJ. Measurement of Physical Activity and Energy Expenditure in Wheelchair Users: Methods, Considerations and Future Directions. Sports Med Open 2017;3:10. [PMID: 28251597 DOI: 10.1186/s40798-017-0077-0] [Cited by in Crossref: 21] [Cited by in F6Publishing: 28] [Article Influence: 4.2] [Reference Citation Analysis]
25 Routhier F, Lettre J, Miller WC, Borisoff JF, Keetch K, Mitchell IM, Research Team C. Data logger technologies for manual wheelchairs: A scoping review. Assist Technol 2018;30:51-8. [PMID: 27846371 DOI: 10.1080/10400435.2016.1242516] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
26 Brogioli M, Popp WL, Schneider S, Albisser U, Brust AK, Frotzler A, Gassert R, Curt A, Starkey ML. Multi-Day Recordings of Wearable Sensors Are Valid and Sensitive Measures of Function and Independence in Human Spinal Cord Injury. J Neurotrauma 2017;34:1141-8. [PMID: 27533063 DOI: 10.1089/neu.2016.4583] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
27 Sonenblum SE, Sprigle S. Wheelchair use in ultra-lightweight wheelchair users. Disabil Rehabil Assist Technol 2017;12:396-401. [PMID: 27434257 DOI: 10.1080/17483107.2016.1178819] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
28 Sakakibara BM, Routhier F, Miller WC. Wheeled-mobility correlates of life-space and social participation in adult manual wheelchair users aged 50 and older. Disabil Rehabil Assist Technol 2017;12:592-8. [PMID: 27377171 DOI: 10.1080/17483107.2016.1198434] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
29 Fu J, Liu T, Jones M, Qian G, Jan YK. Characterization of wheelchair maneuvers based on noisy inertial sensor data: a preliminary study. Annu Int Conf IEEE Eng Med Biol Soc 2014;2014:1731-4. [PMID: 25570310 DOI: 10.1109/EMBC.2014.6943942] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
30 Hiremath SV, Intille SS, Kelleher A, Cooper RA, Ding D. Estimation of Energy Expenditure for Wheelchair Users Using a Physical Activity Monitoring System. Arch Phys Med Rehabil 2016;97:1146-1153.e1. [PMID: 26976800 DOI: 10.1016/j.apmr.2016.02.016] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
31 Popp WL, Brogioli M, Leuenberger K, Albisser U, Frotzler A, Curt A, Gassert R, Starkey ML. A novel algorithm for detecting active propulsion in wheelchair users following spinal cord injury. Medical Engineering & Physics 2016;38:267-74. [DOI: 10.1016/j.medengphy.2015.12.011] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 4.0] [Reference Citation Analysis]
32 van der Slikke R, Berger M, Bregman D, Lagerberg A, Veeger H. Opportunities for measuring wheelchair kinematics in match settings; reliability of a three inertial sensor configuration. Journal of Biomechanics 2015;48:3398-405. [DOI: 10.1016/j.jbiomech.2015.06.001] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 5.1] [Reference Citation Analysis]
33 Nooijen CF, de Groot JF, Stam HJ, van den Berg-Emons RJ, Bussmann HB; Fit for the Future Consortium. Validation of an activity monitor for children who are partly or completely wheelchair-dependent. J Neuroeng Rehabil 2015;12:11. [PMID: 25656614 DOI: 10.1186/s12984-015-0004-x] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 3.4] [Reference Citation Analysis]
34 Hiremath SV, Intille SS, Kelleher A, Cooper RA, Ding D. Detection of physical activities using a physical activity monitor system for wheelchair users. Med Eng Phys 2015;37:68-76. [PMID: 25465284 DOI: 10.1016/j.medengphy.2014.10.009] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 3.6] [Reference Citation Analysis]
35 Ojeda M, Ding D. Temporal parameters estimation for wheelchair propulsion using wearable sensors. Biomed Res Int 2014;2014:645284. [PMID: 25105133 DOI: 10.1155/2014/645284] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
36 Kiuchi K, Inayama T, Muraoka Y, Ikemoto S, Uemura O, Mizuno K. Preliminary study for the assessment of physical activity using a triaxial accelerometer with a gyro sensor on the upper limbs of subjects with paraplegia driving a wheelchair on a treadmill. Spinal Cord 2014;52:556-63. [PMID: 24819509 DOI: 10.1038/sc.2014.70] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
37 Hiremath SV, Ding D, Cooper RA. Development and evaluation of a gyroscope-based wheel rotation monitor for manual wheelchair users. J Spinal Cord Med 2013;36:347-56. [PMID: 23820150 DOI: 10.1179/2045772313Y.0000000113] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
38 Sonenblum SE, Sprigle S, Lopez RA. Manual wheelchair use: bouts of mobility in everyday life. Rehabil Res Pract 2012;2012:753165. [PMID: 22848837 DOI: 10.1155/2012/753165] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 3.5] [Reference Citation Analysis]