BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Meng W, Liu Q, Zhou Z, Ai Q, Sheng B, Xie S(. Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation. Mechatronics 2015;31:132-45. [DOI: 10.1016/j.mechatronics.2015.04.005] [Cited by in Crossref: 212] [Cited by in F6Publishing: 128] [Article Influence: 30.3] [Reference Citation Analysis]
Number Citing Articles
1 Yan Y, Chen Z, Huang C, Guo Q. Modelling and analysis of coupling dynamics of swinging a lower limb exoskeleton. Nonlinear Dyn. [DOI: 10.1007/s11071-022-07876-8] [Reference Citation Analysis]
2 Abdelbar M, Mohamed I, Abdellatif A, Hegaze MM. Towards the Mechatronic Development of a New Upper-Limb Exoskeleton (SAMA). Designs 2022;6:80. [DOI: 10.3390/designs6050080] [Reference Citation Analysis]
3 Sun N, Cao M, Chen Y, Chen Y, Wang J, Wang Q, Chen X, Liu T. Continuous Estimation of Human Knee Joint Angles by Fusing Kinematic and Myoelectric Signals. IEEE Trans Neural Syst Rehabil Eng 2022;30:2446-55. [PMID: 35994557 DOI: 10.1109/TNSRE.2022.3200485] [Reference Citation Analysis]
4 Sakurada T, Horiuchi A, Komeda T; Faculty of Science and Technology, Seikei University 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8633, Japan, Graduate school of Systems Engineering and Science, Shibaura Institute of Technology 307 Fukasaku, Minuma, Saitama, Saitama 330-8570, Japan. Sensorimotor Activities and Their Functional Connectivity Elicited by Robot-Assisted Passive Movements of Lower Limbs. JRM 2022;34:777-85. [DOI: 10.20965/jrm.2022.p0777] [Reference Citation Analysis]
5 Figueiredo J, Fernandes PN, Moreno JC, Santos CP. Feedback‐Error Learning for time‐effective gait trajectory tracking in wearable exoskeletons. The Anatomical Record. [DOI: 10.1002/ar.25031] [Reference Citation Analysis]
6 Rahmati SM, Karimi A. The Design and Control of a Footplate-Based Gait Robo-Assisted System for Lower Limb Actuator. Machines 2022;10:546. [DOI: 10.3390/machines10070546] [Reference Citation Analysis]
7 Changcheng C, Li Y, Chen C. Assistive Mobility Control of a Robotic Hip-Knee Exoskeleton for Gait Training. Sensors 2022;22:5045. [DOI: 10.3390/s22135045] [Reference Citation Analysis]
8 Vijayvargiya A, Singh B, Kumar R, Tavares JMRS. Human lower limb activity recognition techniques, databases, challenges and its applications using sEMG signal: an overview. Biomed Eng Lett . [DOI: 10.1007/s13534-022-00236-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Dan Y, Ge Y, Wang A, Li Z; School of Electric and Information Engineering, Zhongyuan University of Technology No. 41 Zhongyuan Road (M), Zhengzhou, Henan 450007, China. Human-Gait-Based Tracking Control for Lower Limb Exoskeleton Robot. JRM 2022;34:615-21. [DOI: 10.20965/jrm.2022.p0615] [Reference Citation Analysis]
10 Shi D, Wang L, Zhang Y, Zhang W, Xiao H, Ding X. Review of human—robot coordination control for rehabilitation based on motor function evaluation. Front Mech Eng 2022;17. [DOI: 10.1007/s11465-022-0684-4] [Reference Citation Analysis]
11 Hasan S, Dhingra AK. Biomechanical design and control of an eight DOF human lower extremity rehabilitation exoskeleton robot. Results in Control and Optimization 2022;7:100107. [DOI: 10.1016/j.rico.2022.100107] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Pană CF, Rădulescu VM, Pătrașcu-pană DM, Petcu (Besnea) FL, Reșceanu IC, Cismaru ȘI, Trășculescu A, Bîzdoacă N. The Impact of COVID on Lower-Limb Exoskeleton Robotic System Patents—A Review. Applied Sciences 2022;12:5393. [DOI: 10.3390/app12115393] [Reference Citation Analysis]
13 Lora-millan JS, Moreno JC, Rocon E. Coordination Between Partial Robotic Exoskeletons and Human Gait: A Comprehensive Review on Control Strategies. Front Bioeng Biotechnol 2022;10:842294. [DOI: 10.3389/fbioe.2022.842294] [Reference Citation Analysis]
14 Wu J, Liu Y, Zhao J, Zang X, Guan Y. Research on Theory and a Performance Analysis of an Innovative Rehabilitation Robot. Sensors 2022;22:3929. [DOI: 10.3390/s22103929] [Reference Citation Analysis]
15 Han Y, Liu C, Zhang B, Zhang N, Wang S, Han M, Ferreira JP, Liu T, Zhang X. Measurement, Evaluation, and Control of Active Intelligent Gait Training Systems—Analysis of the Current State of the Art. Electronics 2022;11:1633. [DOI: 10.3390/electronics11101633] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Mo L, Feng P, Shao Y, Shi D, Ju L, Zhang W, Ding X. Anti-Disturbance Sliding Mode Control of a Novel Variable Stiffness Actuator for the Rehabilitation of Neurologically Disabled Patients. Front Robot AI 2022;9:864684. [DOI: 10.3389/frobt.2022.864684] [Reference Citation Analysis]
17 Fuentes-alvarez R, Hernandez JH, Matehuala-moran I, Alfaro-ponce M, Lopez-gutierrez R, Salazar S, Lozano R. Assistive robotic exoskeleton using recurrent neural networks for decision taking for the robust trajectory tracking. Expert Systems with Applications 2022;193:116482. [DOI: 10.1016/j.eswa.2021.116482] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
18 Zhu Y, Wu Q, Chen B, Zhao Z. Design and Voluntary Control of Variable Stiffness Exoskeleton Based on sEMG Driven Model. IEEE Robot Autom Lett 2022;7:5787-94. [DOI: 10.1109/lra.2022.3160668] [Reference Citation Analysis]
19 Chrif F, van Hedel HJA, Vivian M, Nef T, Hunt KJ. Usability evaluation of an interactive leg press training robot for children with neuromuscular impairments. Technol Health Care 2022. [PMID: 35342069 DOI: 10.3233/THC-213629] [Reference Citation Analysis]
20 Guo Z, Ye J, Zhang S, Xu L, Chen G, Guan X, Li Y, Zhang Z. Effects of Individualized Gait Rehabilitation Robotics for Gait Training on Hemiplegic Patients: Before-After Study in the Same Person. Front Neurorobot 2022;15:817446. [DOI: 10.3389/fnbot.2021.817446] [Reference Citation Analysis]
21 Sunilkumar P, Mohan S, Mohanta JK, Wenger P, Rybak L. Design and motion control scheme of a new stationary trainer to perform lower limb rehabilitation therapies on hip and knee joints. International Journal of Advanced Robotic Systems 2022;19:172988142210751. [DOI: 10.1177/17298814221075184] [Reference Citation Analysis]
22 Chen Z, Guo Q, Yan Y, Shi Y. Model identification and adaptive control of lower limb exoskeleton based on neighborhood field optimization. Mechatronics 2022;81:102699. [DOI: 10.1016/j.mechatronics.2021.102699] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
23 Aole S, Elamvazuthi I, Waghmare L, Patre B, Bhaskarwar T, Meriaudeau F, Su S. Active Disturbance Rejection Control Based Sinusoidal Trajectory Tracking for an Upper Limb Robotic Rehabilitation Exoskeleton. Applied Sciences 2022;12:1287. [DOI: 10.3390/app12031287] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Dalla Gasperina S, Longatelli V, Braghin F, Pedrocchi A, Gandolla M. Development and Electromyographic Validation of a Compliant Human-Robot Interaction Controller for Cooperative and Personalized Neurorehabilitation. Front Neurorobot 2022;15:734130. [DOI: 10.3389/fnbot.2021.734130] [Reference Citation Analysis]
25 Al-rahmani N, Mohan DM, Awad MI, Wasti SA, Hussain I, Khalaf K. Lower-Limb Robotic Assistance Devices for Drop Foot: A Review. IEEE Access 2022;10:51964-94. [DOI: 10.1109/access.2022.3174686] [Reference Citation Analysis]
26 Liu Q, Zuo J, Zhu C, Meng W, Ai Q, Xie SQ. Design and Hierarchical Force-Position Control of Redundant Pneumatic Muscles-Cable-Driven Ankle Rehabilitation Robot. IEEE Robot Autom Lett 2022;7:502-9. [DOI: 10.1109/lra.2021.3123747] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
27 Long Y, Peng Y. Extended State Observer-Based Nonlinear Terminal Sliding Mode Control With Feedforward Compensation for Lower Extremity Exoskeleton. IEEE Access 2022;10:8643-52. [DOI: 10.1109/access.2021.3049879] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
28 Wang T, Olivoni E, Spyrakos-papastavridis E, O'connor RJ, Dai JS. Novel Design of a Rotation Center Auto-Matched Ankle Rehabilitation Exoskeleton With Decoupled Control Capacity. Journal of Mechanical Design 2022;144:053301. [DOI: 10.1115/1.4052842] [Reference Citation Analysis]
29 Cao F, Docherty PD, Ni S, Chen X. Contact force and torque sensing for serial manipulator based on an adaptive Kalman filter with variable time period. Robotics and Computer-Integrated Manufacturing 2021;72:102210. [DOI: 10.1016/j.rcim.2021.102210] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Meda-gutiérrez JR, Zúñiga-avilés LA, Vilchis-gonzález AH, Ávila-vilchis JC. Knee Exoskeletons Design Approaches to Boost Strength Capability: A Review. Applied Sciences 2021;11:9990. [DOI: 10.3390/app11219990] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
31 Moafi SA, Najafi F. Fuzzy impedance-based control with fast terminal sliding mode force control loop for a series elastic actuator system. Transactions of the Institute of Measurement and Control 2022;44:905-15. [DOI: 10.1177/01423312211043661] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
32 Yu C, Ye J, Jia J, Zhao X, Chen Z, Chen J. Design, Synthesis, and Experiment of Foot-Driven Lower Limb Rehabilitation Mechanisms. Journal of Mechanisms and Robotics 2022;14:021001. [DOI: 10.1115/1.4051788] [Reference Citation Analysis]
33 Gandolla M, Dalla gasperina S, Longatelli V, Manti A, Aquilante L, D’angelo MG, Biffi E, Diella E, Molteni F, Rossini M, Gföhler M, Puchinger M, Bocciolone M, Braghin F, Pedrocchi A. An assistive upper-limb exoskeleton controlled by multi-modal interfaces for severely impaired patients: development and experimental assessment. Robotics and Autonomous Systems 2021;143:103822. [DOI: 10.1016/j.robot.2021.103822] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
34 Moreira L, Figueiredo J, Vilas-boas JP, Santos CP. Kinematics, Speed, and Anthropometry-Based Ankle Joint Torque Estimation: A Deep Learning Regression Approach. Machines 2021;9:154. [DOI: 10.3390/machines9080154] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
35 Bhardwaj S, Khan AA, Muzammil M. Lower limb rehabilitation robotics: The current understanding and technology. Work 2021;69:775-93. [PMID: 34180443 DOI: 10.3233/WOR-205012] [Reference Citation Analysis]
36 Wang X, Wang H, Hu X, Tian Y, Lin M, Yan H, Niu J, Sun L. Adaptive Direct Teaching Control with Variable Load of the Lower Limb Rehabilitation Robot (LLR-II). Machines 2021;9:142. [DOI: 10.3390/machines9080142] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
37 Lopes JM, Figueiredo J, Pinheiro C, Reis LP, Santos CP. Biomechanical Assessment of Adapting Trajectory and Human-Robot Interaction Stiffness in Impedance-Controlled Ankle Orthosis. J Intell Robot Syst 2021;102. [DOI: 10.1007/s10846-021-01423-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
38 Sharma R, Gaur P, Bhatt S, Joshi D. Optimal fuzzy logic-based control strategy for lower limb rehabilitation exoskeleton. Applied Soft Computing 2021;105:107226. [DOI: 10.1016/j.asoc.2021.107226] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
39 Sun Z, Li F, Duan X, Jin L, Lian Y, Liu S, Liu K. A novel adaptive iterative learning control approach and human-in-the-loop control pattern for lower limb rehabilitation robot in disturbances environment. Auton Robot 2021;45:595-610. [DOI: 10.1007/s10514-021-09988-3] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
40 Sohane A, Agarwal R. Evaluation of 3D design lower limb exoskeleton on human musculoskeletal with various loads. Expert Systems 2021;38. [DOI: 10.1111/exsy.12738] [Reference Citation Analysis]
41 Oyman EL, Korkut MY, Ylmaz C, Bayraktaroglu ZY, Arslan MS. Design and control of a cable-driven rehabilitation robot for upper and lower limbs. Robotica 2022;40:1-37. [DOI: 10.1017/s0263574721000357] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
42 Khalid S, Alnajjar F, Gochoo M, Renawi A, Shimoda S. Robotic assistive and rehabilitation devices leading to motor recovery in upper limb: a systematic review. Disabil Rehabil Assist Technol 2021;:1-15. [PMID: 33861684 DOI: 10.1080/17483107.2021.1906960] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Zhu L, Mao G, Su H, Zhou Z, Li W, Lu X, Wang Z. A Wearable, High-Resolution, and Wireless System for Multichannel Surface Electromyography Detection. IEEE Sensors J 2021;21:9937-48. [DOI: 10.1109/jsen.2021.3058987] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
44 Shi M, Yang C, Zhang D, Jiang Y. A Novel Human-Machine Collaboration Model of an Ankle Joint Rehabilitation Robot Driven by EEG Signals. Mathematical Problems in Engineering 2021;2021:1-8. [DOI: 10.1155/2021/5564235] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
45 Chen Z, Guo Q, Xiong H, Jiang D, Yan Y. Control and Implementation of 2-DOF Lower Limb Exoskeleton Experiment Platform. Chin J Mech Eng 2021;34. [DOI: 10.1186/s10033-021-00537-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
46 Hasan SK, Dhingra AK. An adaptive controller for human lower extremity exoskeleton robot. Microsyst Technol 2021;27:2829-46. [DOI: 10.1007/s00542-020-05207-8] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
47 Li Y, Ke J, Zeng J. Tracking control for lower limb rehabilitation robots based on polynomial nonlinear uncertain models. Int J Robust Nonlinear Control 2021;31:2186-204. [DOI: 10.1002/rnc.5381] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
48 Kosar T, Lu Z, Mernik M, Horvat M, Črepinšek M. A Case Study on the Design and Implementation of a Platform for Hand Rehabilitation. Applied Sciences 2021;11:389. [DOI: 10.3390/app11010389] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
49 Kirtas O, Savas Y, Bayraker M, Baskaya F, Basturk H, Samur E. Design, implementation, and evaluation of a backstepping control algorithm for an active ankle–foot orthosis. Control Engineering Practice 2021;106:104667. [DOI: 10.1016/j.conengprac.2020.104667] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
50 [DOI: 10.1145/3448326.3448333] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
51 Nicholson-smith C, Mehrabi V, Atashzar SF, Patel RV. A Multi-Functional Lower- and Upper-Limb Stroke Rehabilitation Robot. IEEE Trans Med Robot Bionics 2020;2:549-52. [DOI: 10.1109/tmrb.2020.3034497] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
52 Cao W, Yu H, Wu X, Li S, Meng Q, Chen C. Voice controlled wheelchair integration rehabilitation training and posture transformation for people with lower limb motor dysfunction. Technol Health Care 2021;29:609-14. [PMID: 32741795 DOI: 10.3233/THC-202386] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
53 Sharifi M, Behzadipour S, Salarieh H, Tavakoli M. Assist-as-needed policy for movement therapy using telerobotics-mediated therapist supervision. Control Engineering Practice 2020;101:104481. [DOI: 10.1016/j.conengprac.2020.104481] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
54 He B, Zhang D, Gu Z, Zhu X, Cao X. Skeleton model-based product low carbon design optimization. Journal of Cleaner Production 2020;264:121687. [DOI: 10.1016/j.jclepro.2020.121687] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
55 Zhao Z, Li X, Lu C, Zhang M, Wang Y. Compliant Manipulation Method for a Nursing Robot Based on Physical Structure of Human Limb. J Intell Robot Syst 2020;100:973-86. [DOI: 10.1007/s10846-020-01221-0] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
56 Qin F, Zhao H, Zhen S, Zhang Y. Adaptive robust control for lower limb rehabilitation robot with uncertainty based on Udwadia–Kalaba approach. Advanced Robotics 2020;34:1012-22. [DOI: 10.1080/01691864.2020.1774414] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
57 Hu L, Jiang Y, Wang F, Hwang K, Hossain MS, Muhammad G. Follow me Robot-Mind: Cloud brain based personalized robot service with migration. Future Generation Computer Systems 2020;107:324-32. [DOI: 10.1016/j.future.2020.01.041] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
58 Baser O, Kizilhan H, Kilic E. Employing variable impedance (stiffness/damping) hybrid actuators on lower limb exoskeleton robots for stable and safe walking trajectory tracking. J Mech Sci Technol 2020;34:2597-607. [DOI: 10.1007/s12206-020-0534-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
59 Jalaeian-f. M, Fateh MM, Rahimiyan M. Optimal Predictive Impedance Control in the Presence of Uncertainty for a Lower Limb Rehabilitation Robot. J Syst Sci Complex 2020;33:1310-29. [DOI: 10.1007/s11424-020-8335-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
60 Jalaeian-f. M, Fateh MM, Rahimiyan M. Bi-Level Adaptive Computed-Current Impedance Controller for Electrically Driven Robots. Robotica 2021;39:200-16. [DOI: 10.1017/s0263574720000314] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
61 Chen C, Zhang S, Zhu X, Shen J, Xu Z. Disturbance Observer-Based Patient-Cooperative Control of a Lower Extremity Rehabilitation Exoskeleton. Int J Precis Eng Manuf 2020;21:957-68. [DOI: 10.1007/s12541-019-00312-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 4.5] [Reference Citation Analysis]
62 [DOI: 10.1109/icra40945.2020.9197422] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
63 Gao S, Wang Y, Fang C, Xu L. A Smart Terrain Identification Technique Based on Electromyography, Ground Reaction Force, and Machine Learning for Lower Limb Rehabilitation. Applied Sciences 2020;10:2638. [DOI: 10.3390/app10082638] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
64 [DOI: 10.1109/icarsc49921.2020.9096205] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
65 [DOI: 10.1109/icarsc49921.2020.9096186] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
66 Gull MA, Bai S, Bak T. A Review on Design of Upper Limb Exoskeletons. Robotics 2020;9:16. [DOI: 10.3390/robotics9010016] [Cited by in Crossref: 77] [Cited by in F6Publishing: 50] [Article Influence: 38.5] [Reference Citation Analysis]
67 Hasanzadeh Fereydooni R, Siahkali H, Shayanfar HA, Mazinan AH. sEMG-based variable impedance control of lower-limb rehabilitation robot using wavelet neural network and model reference adaptive control. IR 2020;47:349-58. [DOI: 10.1108/ir-10-2019-0210] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
68 Kim T. Factors Influencing Usability of Rehabilitation Robotic Devices for Lower Limbs. Sustainability 2020;12:598. [DOI: 10.3390/su12020598] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
69 Zhang P, Zhang J, Zhang Z. Design of RBFNN-Based Adaptive Sliding Mode Control Strategy for Active Rehabilitation Robot. IEEE Access 2020;8:155538-47. [DOI: 10.1109/access.2020.3018737] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
70 Li Z, Zhang D, Zhao X, Wang F, Zhang B, Ye D, Han J. A Temporally Smoothed MLP Regression Scheme for Continuous Knee/Ankle Angles Estimation by Using Multi-Channel sEMG. IEEE Access 2020;8:47433-44. [DOI: 10.1109/access.2020.2979008] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
71 [DOI: 10.1109/robio49542.2019.8961762] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
72 Khan SG, Tufail M, Shah SH, Ullah I. Reinforcement learning based compliance control of a robotic walk assist device. Advanced Robotics 2019;33:1281-92. [DOI: 10.1080/01691864.2019.1690574] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
73 [DOI: 10.1109/time-e47986.2019.9353318] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
74 Wu Q, Chen B, Wu H. Neural-network-enhanced torque estimation control of a soft wearable exoskeleton for elbow assistance. Mechatronics 2019;63:102279. [DOI: 10.1016/j.mechatronics.2019.102279] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
75 Mounis SYA, Azlan NZ, Sado F. Assist-as-needed control strategy for upper-limb rehabilitation based on subject’s functional ability. Measurement and Control 2019;52:1354-61. [DOI: 10.1177/0020294019866844] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
76 Shafiei M, Behzadipour S. The Effects of the Connection Stiffness of Robotic Exoskeletons on the Gait Quality and Comfort. Journal of Mechanisms and Robotics 2020;12:011007. [DOI: 10.1115/1.4044841] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
77 [DOI: 10.1109/smc.2019.8914629] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
78 Ren B, Liu J, Luo X, Chen J. On the kinematic design of anthropomorphic lower limb exoskeletons and their matching movement. International Journal of Advanced Robotic Systems 2019;16:172988141987590. [DOI: 10.1177/1729881419875908] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
79 Iandolo R, Marini F, Semprini M, Laffranchi M, Mugnosso M, Cherif A, De Michieli L, Chiappalone M, Zenzeri J. Perspectives and Challenges in Robotic Neurorehabilitation. Applied Sciences 2019;9:3183. [DOI: 10.3390/app9153183] [Cited by in Crossref: 32] [Cited by in F6Publishing: 9] [Article Influence: 10.7] [Reference Citation Analysis]
80 [DOI: 10.1109/ccta.2019.8920659] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
81 Jiang J, Min Z, Huang Z, Ma X, Chen Y, Yu X. Research Status on Ankle Rehabilitation Robot. MENG 2019;12:104-24. [DOI: 10.2174/2212797612666190524104033] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
82 Ren S, Wang W, Hou Z, Chen B, Liang X, Wang J, Peng L. Personalized gait trajectory generation based on anthropometric features using Random Forest. J Ambient Intell Human Comput. [DOI: 10.1007/s12652-019-01390-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
83 [DOI: 10.1109/aim.2019.8868584] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
84 [DOI: 10.23919/chicc.2019.8866001] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 3.7] [Reference Citation Analysis]
85 [DOI: 10.1109/aim.2019.8868903] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
86 [DOI: 10.1109/icra.2019.8794028] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
87 Bingjing G, Jianhai H, Xiangpan L, Lin Y. Human–robot interactive control based on reinforcement learning for gait rehabilitation training robot. International Journal of Advanced Robotic Systems 2019;16:172988141983958. [DOI: 10.1177/1729881419839584] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
88 Martinez A, Lawson B, Durrough C, Goldfarb M. A Velocity-Field-Based Controller for Assisting Leg Movement During Walking With a Bilateral Hip and Knee Lower Limb Exoskeleton. IEEE Trans Robot 2019;35:307-16. [DOI: 10.1109/tro.2018.2883819] [Cited by in Crossref: 21] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
89 Alvarez-Perez MG, Garcia-Murillo MA, Cervantes-Sánchez JJ. Robot-assisted ankle rehabilitation: a review. Disabil Rehabil Assist Technol 2020;15:394-408. [PMID: 30856032 DOI: 10.1080/17483107.2019.1578424] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.7] [Reference Citation Analysis]
90 [DOI: 10.1109/wearracon.2019.8719626] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
91 Su Y, Yu Y, Lin C, Lan C. A compact wrist rehabilitation robot with accurate force/stiffness control and misalignment adaptation. Int J Intell Robot Appl 2019;3:45-58. [DOI: 10.1007/s41315-019-00083-6] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Article Influence: 4.7] [Reference Citation Analysis]
92 Choi B, Seo C, Lee S, Kim B. Control of power-augmenting lower extremity exoskeleton while walking with heavy payload. International Journal of Advanced Robotic Systems 2019;16:172988141983053. [DOI: 10.1177/1729881419830535] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
93 Ai Q, Peng Y, Zuo J, Meng W, Liu Q. Hammerstein model for hysteresis characteristics of pneumatic muscle actuators. Int J Intell Robot Appl 2019;3:33-44. [DOI: 10.1007/s41315-019-00084-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.7] [Reference Citation Analysis]
94 Miyake T, Kobayashi Y, Fujie MG, Sugano S; Graduate School of Creative Science and Engineering, Waseda University 2-4-12 Okubo, Shinjuku-ku, Tokyo 169-0072, Japan, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama, Osaka 560-8531, Japan, Future Robotics Organization, Waseda University 2-4-12 Okubo, Shinjuku-ku, Tokyo 169-0072, Japan, Faculty of Science and Engineering, Waseda University 2-4-12 Okubo, Shinjuku-ku, Tokyo 169-0072, Japan. One-DOF Wire-Driven Robot Assisting Both Hip and Knee Flexion Motion. JRM 2019;31:135-42. [DOI: 10.20965/jrm.2019.p0135] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
95 Alamdari A, Haghighi R, Krovi V. Gravity-Balancing of Elastic Articulated-Cable Leg-Orthosis Emulator. Mechanism and Machine Theory 2019;131:351-70. [DOI: 10.1016/j.mechmachtheory.2018.09.019] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 3.7] [Reference Citation Analysis]
96 Zou Y, Wang N, Wang X, Ma H, Liu K. Design and Experimental Research of Movable Cable-Driven Lower Limb Rehabilitation Robot. IEEE Access 2019;7:2315-26. [DOI: 10.1109/access.2018.2887233] [Cited by in Crossref: 22] [Cited by in F6Publishing: 7] [Article Influence: 7.3] [Reference Citation Analysis]
97 Liu L, Lei X, Chen B, Shu L. Human Action Recognition Based on Inertial Sensors and Complexity Classification: . Journal of Information Technology Research 2019;12:18-35. [DOI: 10.4018/jitr.2019010102] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
98 Yang P, Ma X, Wang J, Zhang G, Zhang Y, Chen L. Disturbance Observer-Based Terminal Sliding Mode Control of a 5-DOF Upper-Limb Exoskeleton Robot. IEEE Access 2019;7:62833-9. [DOI: 10.1109/access.2019.2911348] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
99 Vasanthakumar M, Vinod B, Mohanta JK, Mohan S. Design and Robust Motion Control of a Planar 1P-2P RP Hybrid Manipulator for Lower Limb Rehabilitation Applications. J Intell Robot Syst 2019;96:17-30. [DOI: 10.1007/s10846-018-0972-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
100 Azcaray H, Blanco A, García C, Adam M, Reyes J, Guerrero G, Guzmán C. Robust GPI Control of a New Parallel Rehabilitation Robot of Lower Extremities. Int J Control Autom Syst 2018;16:2384-92. [DOI: 10.1007/s12555-017-0198-8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
101 Rehmat N, Zuo J, Meng W, Liu Q, Xie SQ, Liang H. Upper limb rehabilitation using robotic exoskeleton systems: a systematic review. Int J Intell Robot Appl 2018;2:283-95. [DOI: 10.1007/s41315-018-0064-8] [Cited by in Crossref: 32] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
102 Wu Q, Wang X, Chen B, Wu H. Development of an RBFN-based neural-fuzzy adaptive control strategy for an upper limb rehabilitation exoskeleton. Mechatronics 2018;53:85-94. [DOI: 10.1016/j.mechatronics.2018.05.014] [Cited by in Crossref: 35] [Cited by in F6Publishing: 31] [Article Influence: 8.8] [Reference Citation Analysis]
103 Taha Z, Abdul Majeed APP, Zainal Abidin AF, Hashem Ali MA, Khairuddin IM, Deboucha A, Wong Paul Tze MY. A hybrid active force control of a lower limb exoskeleton for gait rehabilitation. Biomed Tech (Berl) 2018;63:491-500. [PMID: 28809745 DOI: 10.1515/bmt-2016-0039] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
104 Chaparro-Cárdenas SL, Lozano-Guzmán AA, Ramirez-Bautista JA, Hernández-Zavala A. A review in gait rehabilitation devices and applied control techniques. Disabil Rehabil Assist Technol 2018;13:819-34. [PMID: 29577779 DOI: 10.1080/17483107.2018.1447611] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
105 Yang M, Wang X, Zhu Z, Xi R, Wu Q. Development and control of a robotic lower limb exoskeleton for paraplegic patients. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 2019;233:1087-98. [DOI: 10.1177/0954406218761484] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
106 Tang J, Zheng J, Wang Y. Direct force control of upper-limb exoskeleton based on fuzzy adaptive algorithm. J VIBROENG 2018;20:636-50. [DOI: 10.21595/jve.2017.18610] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
107 Chen J, Zhang X, Cheng Y, Xi N. Surface EMG based continuous estimation of human lower limb joint angles by using deep belief networks. Biomedical Signal Processing and Control 2018;40:335-42. [DOI: 10.1016/j.bspc.2017.10.002] [Cited by in Crossref: 56] [Cited by in F6Publishing: 4] [Article Influence: 14.0] [Reference Citation Analysis]
108 Ahmed S, Wang H, Tian Y. Model-free control using time delay estimation and fractional-order nonsingular fast terminal sliding mode for uncertain lower-limb exoskeleton. Journal of Vibration and Control 2018;24:5273-90. [DOI: 10.1177/1077546317750978] [Cited by in Crossref: 46] [Cited by in F6Publishing: 35] [Article Influence: 11.5] [Reference Citation Analysis]
109 Kim H, June Shin Y, Kim J. Design and locomotion control of a hydraulic lower extremity exoskeleton for mobility augmentation. Mechatronics 2017;46:32-45. [DOI: 10.1016/j.mechatronics.2017.06.009] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
110 [DOI: 10.1109/iecon.2017.8216989] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
111 Araujo-gómez P, Mata V, Díaz-rodríguez M, Valera A, Page A. Design and Kinematic Analysis of a Novel 3UPS/RPU Parallel Kinematic Mechanism With 2T2R Motion for Knee Diagnosis and Rehabilitation Tasks. Journal of Mechanisms and Robotics 2017;9:061004. [DOI: 10.1115/1.4037800] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
112 Chrif F, Nef T, Lungarella M, Dravid R, Hunt KJ. Control design for a lower-limb paediatric therapy device using linear motor technology. Biomedical Signal Processing and Control 2017;38:119-27. [DOI: 10.1016/j.bspc.2017.05.011] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 1.6] [Reference Citation Analysis]
113 Liu D, Wu X, Du W, Wang C, Chen C, Xu T. Deep Spatial-Temporal Model for rehabilitation gait: optimal trajectory generation for knee joint of lower-limb exoskeleton. AA 2017;37:369-78. [DOI: 10.1108/aa-11-2016-155] [Cited by in Crossref: 24] [Cited by in F6Publishing: 10] [Article Influence: 4.8] [Reference Citation Analysis]
114 Sharifi M, Salarieh H, Behzadipour S, Tavakoli M. Tele-echography of moving organs using an Impedance-controlled telerobotic system. Mechatronics 2017;45:60-70. [DOI: 10.1016/j.mechatronics.2017.05.006] [Cited by in Crossref: 14] [Cited by in F6Publishing: 2] [Article Influence: 2.8] [Reference Citation Analysis]
115 [DOI: 10.1109/aim.2017.8013999] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
116 Mohan S, Mohanta J, Kurtenbach S, Paris J, Corves B, Huesing M. Design, development and control of a 2PRP-2PPR planar parallel manipulator for lower limb rehabilitation therapies. Mechanism and Machine Theory 2017;112:272-94. [DOI: 10.1016/j.mechmachtheory.2017.03.001] [Cited by in Crossref: 29] [Cited by in F6Publishing: 20] [Article Influence: 5.8] [Reference Citation Analysis]
117 Lee C, Choi J, Lee H, Kim J, Lee K, Bang Y. Exoskeletal master device for dual arm robot teaching. Mechatronics 2017;43:76-85. [DOI: 10.1016/j.mechatronics.2017.02.008] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
118 Agarwal P, Yun Y, Fox J, Madden K, Deshpande AD. Design, control, and testing of a thumb exoskeleton with series elastic actuation. The International Journal of Robotics Research 2017;36:355-75. [DOI: 10.1177/0278364917694428] [Cited by in Crossref: 32] [Cited by in F6Publishing: 13] [Article Influence: 6.4] [Reference Citation Analysis]
119 Valera A, Díaz-rodríguez M, Valles M, Oliver E, Mata V, Page A. Controller–observer design and dynamic parameter identification for model-based control of an electromechanical lower-limb rehabilitation system. International Journal of Control 2017;90:702-14. [DOI: 10.1080/00207179.2016.1215529] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.4] [Reference Citation Analysis]
120 Long Y, Du Z, Cong L, Wang W, Zhang Z, Dong W. Active disturbance rejection control based human gait tracking for lower extremity rehabilitation exoskeleton. ISA Transactions 2017;67:389-97. [DOI: 10.1016/j.isatra.2017.01.006] [Cited by in Crossref: 49] [Cited by in F6Publishing: 6] [Article Influence: 9.8] [Reference Citation Analysis]
121 Yang P, Zhang G, Wang J, Wang X, Zhang L, Chen L. Command Filter Backstepping Sliding Model Control for Lower-Limb Exoskeleton. Mathematical Problems in Engineering 2017;2017:1-10. [DOI: 10.1155/2017/1064535] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
122 Zhou L, Meng W, Lu CZ, Liu Q, Ai Q, Xie SQ. Bio-Inspired Design and Iterative Feedback Tuning Control of a Wearable Ankle Rehabilitation Robot. Journal of Computing and Information Science in Engineering 2016;16:041003. [DOI: 10.1115/1.4033900] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
123 Long Y, Du Z, Wang W, Dong W. Development of a wearable exoskeleton rehabilitation system based on hybrid control mode. International Journal of Advanced Robotic Systems 2016;13:172988141666484. [DOI: 10.1177/1729881416664847] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
124 Ai Q, Ding B, Liu Q, Meng W. A Subject-Specific EMG-Driven Musculoskeletal Model for Applications in Lower-Limb Rehabilitation Robotics. Int J Human Robot 2016;13:1650005. [DOI: 10.1142/s0219843616500055] [Cited by in Crossref: 17] [Cited by in F6Publishing: 5] [Article Influence: 2.8] [Reference Citation Analysis]
125 [DOI: 10.1109/fuzz-ieee.2016.7737670] [Cited by in Crossref: 19] [Cited by in F6Publishing: 5] [Article Influence: 3.2] [Reference Citation Analysis]
126 Sheng B, Zhang Y, Meng W, Deng C, Xie S. Bilateral robots for upper-limb stroke rehabilitation: State of the art and future prospects. Med Eng Phys 2016;38:587-606. [PMID: 27117423 DOI: 10.1016/j.medengphy.2016.04.004] [Cited by in Crossref: 46] [Cited by in F6Publishing: 18] [Article Influence: 7.7] [Reference Citation Analysis]
127 [DOI: 10.1109/syscon.2016.7490531] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
128 Agarwal P, Fox J, Yun Y, O’malley MK, Deshpande AD. An index finger exoskeleton with series elastic actuation for rehabilitation: Design, control and performance characterization. The International Journal of Robotics Research 2015;34:1747-72. [DOI: 10.1177/0278364915598388] [Cited by in Crossref: 85] [Cited by in F6Publishing: 46] [Article Influence: 12.1] [Reference Citation Analysis]