BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Rahimi S, Roushandeh AM, Ebrahimi A, Samadani AA, Kuwahara Y, Roudkenar MH. CRISPR/Cas9-mediated knockout of Lcn2 effectively enhanced CDDP-induced apoptosis and reduced cell migration capacity of PC3 cells. Life Sciences 2019;231:116586. [DOI: 10.1016/j.lfs.2019.116586] [Cited by in Crossref: 10] [Cited by in F6Publishing: 17] [Article Influence: 3.3] [Reference Citation Analysis]
Number Citing Articles
1 Ashrafizadeh M, Aghamiri S, Tan SC, Zarrabi A, Sharifi E, Rabiee N, Kadumudi FB, Pirouz AD, Delfi M, Byrappa K, Thakur VK, Sharath Kumar KS, Girish YR, Zandsalimi F, Zare EN, Orive G, Tay F, Hushmandi K, Kumar AP, Karaman C, Karimi-maleh H, Mostafavi E, Makvandi P, Wang Y. Nanotechnological Approaches in Prostate Cancer Therapy: Integration of engineering and biology. Nano Today 2022;45:101532. [DOI: 10.1016/j.nantod.2022.101532] [Reference Citation Analysis]
2 Gonzalez-Salinas F, Martinez-Amador C, Trevino V. Characterizing genes associated with cancer using the CRISPR/Cas9 system: A systematic review of genes and methodological approaches. Gene 2022;833:146595. [PMID: 35598687 DOI: 10.1016/j.gene.2022.146595] [Reference Citation Analysis]
3 Valashedi MR, Roushandeh AM, Tomita K, Kuwahara Y, Pourmohammadi-Bejarpasi Z, Kozani PS, Sato T, Roudkenar MH. CRISPR/Cas9-mediated knockout of Lcn2 in human breast cancer cell line MDA-MB-231 ameliorates erastin-mediated ferroptosis and increases cisplatin vulnerability. Life Sci 2022;304:120704. [PMID: 35714703 DOI: 10.1016/j.lfs.2022.120704] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
4 Alzaim I, Al-saidi A, Hammoud SH, Darwiche N, Al-dhaheri Y, Eid AH, El-yazbi AF. Thromboinflammatory Processes at the Nexus of Metabolic Dysfunction and Prostate Cancer: The Emerging Role of Periprostatic Adipose Tissue. Cancers 2022;14:1679. [DOI: 10.3390/cancers14071679] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Mirzaei S, Paskeh MDA, Saghari Y, Zarrabi A, Hamblin MR, Entezari M, Hashemi M, Aref AR, Hushmandi K, Kumar AP, Rabiee N, Ashrafizadeh M, Samarghandian S. Transforming growth factor-beta (TGF-β) in prostate cancer: A dual function mediator? Int J Biol Macromol 2022:S0141-8130(22)00340-3. [PMID: 35202639 DOI: 10.1016/j.ijbiomac.2022.02.094] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
6 Schröder SK, Pinoé-schmidt M, Weiskirchen R. Lipocalin-2 (LCN2) Deficiency Leads to Cellular Changes in Highly Metastatic Human Prostate Cancer Cell Line PC-3. Cells 2022;11:260. [DOI: 10.3390/cells11020260] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Wu D, Wang X, Han Y, Wang Y. The effect of lipocalin-2 (LCN2) on apoptosis: a proteomics analysis study in an LCN2 deficient mouse model. BMC Genomics 2021;22:892. [PMID: 34903175 DOI: 10.1186/s12864-021-08211-y] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Gu Y, Xue M, Wang Q, Hong X, Wang X, Zhou F, Sun J, Wang G, Peng Y. Novel Strategy of Proxalutamide for the Treatment of Prostate Cancer through Coordinated Blockade of Lipogenesis and Androgen Receptor Axis. Int J Mol Sci 2021;22:13222. [PMID: 34948018 DOI: 10.3390/ijms222413222] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Shojaei Baghini S, Gardanova ZR, Zekiy AO, Shomali N, Tosan F, Jarahian M. Optimizing sgRNA to Improve CRISPR/Cas9 Knockout Efficiency: Special Focus on Human and Animal Cell. Front Bioeng Biotechnol 2021;9:775309. [PMID: 34869290 DOI: 10.3389/fbioe.2021.775309] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
10 Liu Q, Xin C, Chen Y, Yang J, Chen Y, Zhang W, Ye L. PUM1 Is Overexpressed in Colon Cancer Cells With Acquired Resistance to Cetuximab. Front Cell Dev Biol 2021;9:696558. [PMID: 34447749 DOI: 10.3389/fcell.2021.696558] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Montaño-Samaniego M, Bravo-Estupiñan DM, Méndez-Guerrero O, Alarcón-Hernández E, Ibáñez-Hernández M. Strategies for Targeting Gene Therapy in Cancer Cells With Tumor-Specific Promoters. Front Oncol 2020;10:605380. [PMID: 33381459 DOI: 10.3389/fonc.2020.605380] [Cited by in Crossref: 5] [Cited by in F6Publishing: 20] [Article Influence: 2.5] [Reference Citation Analysis]
12 Samadani AA, Keymoradzdeh A, Shams S, Soleymanpour A, Rashidy-Pour A, Hashemian H, Vahidi S, Norollahi SE. CAR T-cells profiling in carcinogenesis and tumorigenesis: An overview of CAR T-cells cancer therapy. Int Immunopharmacol 2021;90:107201. [PMID: 33249047 DOI: 10.1016/j.intimp.2020.107201] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
13 Yahiro K, Ogura K, Goto Y, Iyoda S, Kobayashi T, Takeuchi H, Ohnishi M, Moss J. Subtilase cytotoxin induces a novel form of Lipocalin 2, which promotes Shiga-toxigenic Escherichia coli survival. Sci Rep 2020;10:18943. [PMID: 33144618 DOI: 10.1038/s41598-020-76027-z] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
14 Schröder SK, Asimakopoulou A, Tillmann S, Koschmieder S, Weiskirchen R. TNF-α controls Lipocalin-2 expression in PC-3 prostate cancer cells. Cytokine 2020;135:155214. [PMID: 32712458 DOI: 10.1016/j.cyto.2020.155214] [Cited by in Crossref: 4] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
15 Shen M, Guo M, Wang Z, Li Y, Kong D, Shao J, Tan S, Chen A, Zhang F, Zhang Z, Zheng S. ROS-dependent inhibition of the PI3K/Akt/mTOR signaling is required for Oroxylin A to exert anti-inflammatory activity in liver fibrosis. Int Immunopharmacol 2020;85:106637. [PMID: 32512269 DOI: 10.1016/j.intimp.2020.106637] [Cited by in Crossref: 2] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
16 Zhang J, Kim S, Li L, Kemp CJ, Jiang C, Lü J. Proteomic and transcriptomic profiling of Pten gene-knockout mouse model of prostate cancer. Prostate 2020;80:588-605. [PMID: 32162714 DOI: 10.1002/pros.23972] [Cited by in Crossref: 5] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
17 Rahimi S, Roushandeh AM, Ahmadzadeh E, Jahanian-Najafabadi A, Roudkenar MH. Implication and role of neutrophil gelatinase-associated lipocalin in cancer: lipocalin-2 as a potential novel emerging comprehensive therapeutic target for a variety of cancer types. Mol Biol Rep 2020;47:2327-46. [PMID: 31970626 DOI: 10.1007/s11033-020-05261-5] [Cited by in Crossref: 7] [Cited by in F6Publishing: 19] [Article Influence: 3.5] [Reference Citation Analysis]