BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ye D, Zhang T, Lou G, Xu W, Dong F, Chen G, Liu Y. Plasma miR-17, miR-20a, miR-20b and miR-122 as potential biomarkers for diagnosis of NAFLD in type 2 diabetes mellitus patients. Life Sci 2018;208:201-7. [PMID: 30030064 DOI: 10.1016/j.lfs.2018.07.029] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 8.8] [Reference Citation Analysis]
Number Citing Articles
1 Wang H. MicroRNA, Diabetes Mellitus and Colorectal Cancer. Biomedicines 2020;8:E530. [PMID: 33255227 DOI: 10.3390/biomedicines8120530] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Bai Y, Li H, Dong J. Up-regulation of miR-20a weakens inflammation and apoptosis in high-glucose-induced renal tubular cell mediating diabetic kidney disease by repressing CXCL8 expression. Arch Physiol Biochem 2020;:1-8. [PMID: 32608284 DOI: 10.1080/13813455.2020.1785506] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
3 Pielok A, Marycz K. Non-Coding RNAs as Potential Novel Biomarkers for Early Diagnosis of Hepatic Insulin Resistance. Int J Mol Sci 2020;21:E4182. [PMID: 32545342 DOI: 10.3390/ijms21114182] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
4 Wang S, Liang C, Ai H, Yang M, Yi J, Liu L, Song Z, Bao Y, Li Y, Sun L, Zhao H. Hepatic miR-181b-5p Contributes to Glycogen Synthesis Through Targeting EGR1. Dig Dis Sci 2019;64:1548-59. [PMID: 30627917 DOI: 10.1007/s10620-018-5442-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
5 Cansanção K, Citelli M, Carvalho Leite N, López de Las Hazas MC, Dávalos A, Tavares do Carmo MDG, Peres WAF. Impact of Long-Term Supplementation with Fish Oil in Individuals with Non-Alcoholic Fatty Liver Disease: A Double Blind Randomized Placebo Controlled Clinical Trial. Nutrients 2020;12:E3372. [PMID: 33147705 DOI: 10.3390/nu12113372] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Xin S, Zhan Q, Chen X, Xu J, Yu Y. Efficacy of serum miRNA test as a non-invasive method to diagnose nonalcoholic steatohepatitis: a systematic review and meta-analysis. BMC Gastroenterol 2020;20:186. [PMID: 32532204 DOI: 10.1186/s12876-020-01334-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
7 Wang H. MicroRNAs, Parkinson's Disease, and Diabetes Mellitus. Int J Mol Sci 2021;22:2953. [PMID: 33799467 DOI: 10.3390/ijms22062953] [Reference Citation Analysis]
8 López-Pastor AR, Infante-Menéndez J, Escribano Ó, Gómez-Hernández A. miRNA Dysregulation in the Development of Non-Alcoholic Fatty Liver Disease and the Related Disorders Type 2 Diabetes Mellitus and Cardiovascular Disease. Front Med (Lausanne) 2020;7:527059. [PMID: 33102495 DOI: 10.3389/fmed.2020.527059] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
9 Shin PK, Kim MS, Park SJ, Kwon DY, Kim MJ, Yang HJ, Kim SH, Kim K, Chun S, Lee HJ, Choi SW. A Traditional Korean Diet Alters the Expression of Circulating MicroRNAs Linked to Diabetes Mellitus in a Pilot Trial. Nutrients 2020;12:E2558. [PMID: 32846929 DOI: 10.3390/nu12092558] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Dewidar B, Kahl S, Pafili K, Roden M. Metabolic liver disease in diabetes - From mechanisms to clinical trials. Metabolism 2020;111S:154299. [PMID: 32569680 DOI: 10.1016/j.metabol.2020.154299] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 8.5] [Reference Citation Analysis]
11 Suksangrat T, Phannasil P, Jitrapakdee S. miRNA Regulation of Glucose and Lipid Metabolism in Relation to Diabetes and Non-alcoholic Fatty Liver Disease. In: Guest PC, editor. Reviews on Biomarker Studies of Metabolic and Metabolism-Related Disorders. Cham: Springer International Publishing; 2019. pp. 129-48. [DOI: 10.1007/978-3-030-12668-1_7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
12 Fang Z, Dou G, Wang L. MicroRNAs in the Pathogenesis of Nonalcoholic Fatty Liver Disease. Int J Biol Sci 2021;17:1851-63. [PMID: 33994867 DOI: 10.7150/ijbs.59588] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Yang D, Tan Y, Li H, Zhang X, Li X, Zhou F. Upregulation of miR-20b Protects Against Cerebral Ischemic Stroke by Targeting Thioredoxin Interacting Protein (TXNIP). Exp Neurobiol 2021;30:170-82. [PMID: 33972468 DOI: 10.5607/en20046] [Reference Citation Analysis]
14 Lambrecht J, Verhulst S, Reynaert H, van Grunsven LA. The miRFIB-Score: A Serological miRNA-Based Scoring Algorithm for the Diagnosis of Significant Liver Fibrosis. Cells 2019;8:E1003. [PMID: 31470644 DOI: 10.3390/cells8091003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
15 Assmann TS, Milagro FI, Martínez JA. Crosstalk between microRNAs, the putative target genes and the lncRNA network in metabolic diseases. Mol Med Rep 2019;20:3543-54. [PMID: 31485667 DOI: 10.3892/mmr.2019.10595] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
16 Chakraborty M, Rao A. Alternate Causes for Pathogenesis of Exfoliation Glaucoma, a Multifactorial Elastotic Disorder: A Literature Review. CIMB 2022;44:1191-202. [DOI: 10.3390/cimb44030078] [Reference Citation Analysis]
17 Zhong Z, Su W, Chen H. MicroRNA‑532‑5p regulates oxidative stress and insulin secretion damage in high glucose‑induced pancreatic β cells by downregulating the expression levels of CCND1. Mol Med Rep 2021;24:793. [PMID: 34515323 DOI: 10.3892/mmr.2021.12433] [Reference Citation Analysis]
18 Krishnan P, Syed F, Jiyun Kang N, Mirmira RG, Evans-Molina C. Profiling of RNAs from Human Islet-Derived Exosomes in a Model of Type 1 Diabetes. Int J Mol Sci 2019;20:E5903. [PMID: 31775218 DOI: 10.3390/ijms20235903] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
19 Gjorgjieva M, Sobolewski C, Dolicka D, Correia de Sousa M, Foti M. miRNAs and NAFLD: from pathophysiology to therapy. Gut 2019;68:2065-79. [PMID: 31300518 DOI: 10.1136/gutjnl-2018-318146] [Cited by in Crossref: 72] [Cited by in F6Publishing: 63] [Article Influence: 24.0] [Reference Citation Analysis]
20 Wang X, Ma Y, Yang LY, Zhao D. MicroRNA-20a-5p Ameliorates Non-alcoholic Fatty Liver Disease via Inhibiting the Expression of CD36. Front Cell Dev Biol 2020;8:596329. [PMID: 33344451 DOI: 10.3389/fcell.2020.596329] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
21 Fan X, Hao Z, Li Z, Wang X, Wang J. Inhibition of miR-17~92 Cluster Ameliorates High Glucose-Induced Podocyte Damage. Mediators Inflamm 2020;2020:6126490. [PMID: 32774146 DOI: 10.1155/2020/6126490] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
22 Albracht-Schulte K, Gonzalez S, Jackson A, Wilson S, Ramalingam L, Kalupahana NS, Moustaid-Moussa N. Eicosapentaenoic Acid Improves Hepatic Metabolism and Reduces Inflammation Independent of Obesity in High-Fat-Fed Mice and in HepG2 Cells. Nutrients 2019;11:E599. [PMID: 30871035 DOI: 10.3390/nu11030599] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
23 Oses M, Margareto Sanchez J, Portillo MP, Aguilera CM, Labayen I. Circulating miRNAs as Biomarkers of Obesity and Obesity-Associated Comorbidities in Children and Adolescents: A Systematic Review. Nutrients 2019;11:E2890. [PMID: 31783635 DOI: 10.3390/nu11122890] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
24 Zhang Y, Wang C, Lu J, Jin Y, Xu C, Meng Q, Liu Q, Dong D, Ma X, Liu K, Sun H. Targeting of miR-96-5p by catalpol ameliorates oxidative stress and hepatic steatosis in LDLr-/- mice via p66shc/cytochrome C cascade. Aging (Albany NY) 2020;12:2049-69. [PMID: 32023549 DOI: 10.18632/aging.102721] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
25 Kitamura H. Effects of Propolis Extract and Propolis-Derived Compounds on Obesity and Diabetes: Knowledge from Cellular and Animal Models. Molecules 2019;24:E4394. [PMID: 31805752 DOI: 10.3390/molecules24234394] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
26 Zhang Q, Yu J, Guo T, Tian L, Quan J, Lin W, Niu X, Liu J. High glucose/ox-LDL induced hepatic sinusoidal capillarization via αvβ5/FAK/ERK signaling pathway. Biochemical and Biophysical Research Communications 2019;513:1055-62. [DOI: 10.1016/j.bbrc.2019.04.082] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
27 Wang S, Ai H, Liu L, Zhang X, Gao F, Zheng L, Yi J, Sun L, Yu C, Zhao H, Li Y. Micro-RNA-27a/b negatively regulates hepatic gluconeogenesis by targeting FOXO1. Am J Physiol Endocrinol Metab 2019;317:E911-24. [PMID: 31526292 DOI: 10.1152/ajpendo.00190.2019] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
28 Zeinali F, Aghaei Zarch SM, Jahan-Mihan A, Kalantar SM, Vahidi Mehrjardi MY, Fallahzadeh H, Hosseinzadeh M, Rahmanian M, Mozaffari-Khosravi H. Circulating microRNA-122, microRNA-126-3p and microRNA-146a are associated with inflammation in patients with pre-diabetes and type 2 diabetes mellitus: A case control study. PLoS One 2021;16:e0251697. [PMID: 34077450 DOI: 10.1371/journal.pone.0251697] [Reference Citation Analysis]
29 Dubey SR, Ashavaid TF, Abraham P, Paradkar MU. Factors influencing circulating microRNAs as biomarkers for liver diseases. Mol Biol Rep. [DOI: 10.1007/s11033-022-07170-1] [Reference Citation Analysis]
30 Yin C, Lin X, Sun Y, Ji X. Dysregulation of miR-210 is involved in the development of diabetic retinopathy and serves a regulatory role in retinal vascular endothelial cell proliferation. Eur J Med Res 2020;25:20. [PMID: 32498701 DOI: 10.1186/s40001-020-00416-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
31 Dong L, Hou X, Liu F, Tao H, Zhang Y, Zhao H, Song G. Regulation of insulin resistance by targeting the insulin-like growth factor 1 receptor with microRNA-122-5p in hepatic cells. Cell Biol Int 2019;43:553-64. [PMID: 30958584 DOI: 10.1002/cbin.11129] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
32 Long JK, Dai W, Zheng YW, Zhao SP. miR-122 promotes hepatic lipogenesis via inhibiting the LKB1/AMPK pathway by targeting Sirt1 in non-alcoholic fatty liver disease. Mol Med 2019;25:26. [PMID: 31195981 DOI: 10.1186/s10020-019-0085-2] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 8.3] [Reference Citation Analysis]
33 Ando Y, Yamazaki M, Yamada H, Munetsuna E, Fujii R, Mizuno G, Ichino N, Osakabe K, Sugimoto K, Ishikawa H, Ohashi K, Teradaira R, Ohta Y, Hamajima N, Hashimoto S, Suzuki K. Association of circulating miR-20a, miR-27a, and miR-126 with non-alcoholic fatty liver disease in general population. Sci Rep 2019;9:18856. [PMID: 31827150 DOI: 10.1038/s41598-019-55076-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
34 Shi T, Kobara H, Oura K, Masaki T. Mechanisms Underlying Hepatocellular Carcinoma Progression in Patients with Type 2 Diabetes. J Hepatocell Carcinoma 2021;8:45-55. [PMID: 33604315 DOI: 10.2147/JHC.S274933] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Lorente-cebrián S, Herrera K, I. Milagro F, Sánchez J, de la Garza AL, Castro H. miRNAs and Novel Food Compounds Related to the Browning Process. IJMS 2019;20:5998. [DOI: 10.3390/ijms20235998] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
36 Khan AA, Gupta V, Mahapatra NR. Key regulatory miRNAs in lipid homeostasis: implications for cardiometabolic diseases and development of novel therapeutics. Drug Discov Today 2022:S1359-6446(22)00190-8. [PMID: 35550438 DOI: 10.1016/j.drudis.2022.05.003] [Reference Citation Analysis]
37 Sargazi S, Ravanbakhsh M, Nia MH, Mirinejad S, Sheervalilou R, Majidpour M, Danesh H, Saravani R, Berezin A. Association of Polymorphisms within HOX Transcript Antisense RNA (HOTAIR) with Type 2 Diabetes Mellitus and Laboratory Characteristics: A Preliminary Case-Control Study. Disease Markers 2022;2022:1-11. [DOI: 10.1155/2022/4327342] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
38 Jiang P, Chan KCA, Lo YMD. Liver-derived cell-free nucleic acids in plasma: Biology and applications in liquid biopsies. J Hepatol 2019;71:409-21. [PMID: 31004682 DOI: 10.1016/j.jhep.2019.04.003] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
39 Dai X, Ding L, Liu H, Xu Z, Jiang H, Handelman SK, Bai Y. Identifying Interaction Clusters for MiRNA and MRNA Pairs in TCGA Network. Genes (Basel) 2019;10:E702. [PMID: 31514484 DOI: 10.3390/genes10090702] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]