BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Fukunaga K, Shinoda Y, Tagashira H. The role of SIGMAR1 gene mutation and mitochondrial dysfunction in amyotrophic lateral sclerosis. Journal of Pharmacological Sciences 2015;127:36-41. [DOI: 10.1016/j.jphs.2014.12.012] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 4.7] [Reference Citation Analysis]
Number Citing Articles
1 Arjmand B, Kokabi Hamidpour S, Rabbani Z, Tayanloo-beik A, Rahim F, Aghayan HR, Larijani B. Organ on a Chip: A Novel in vitro Biomimetic Strategy in Amyotrophic Lateral Sclerosis (ALS) Modeling. Front Neurol 2022;12:788462. [DOI: 10.3389/fneur.2021.788462] [Reference Citation Analysis]
2 Aishwarya R, Abdullah CS, Morshed M, Remex NS, Bhuiyan MS. Sigmar1's Molecular, Cellular, and Biological Functions in Regulating Cellular Pathophysiology. Front Physiol 2021;12:705575. [PMID: 34305655 DOI: 10.3389/fphys.2021.705575] [Reference Citation Analysis]
3 Audano M, Schneider A, Mitro N. Mitochondria, lysosomes, and dysfunction: their meaning in neurodegeneration. J Neurochem 2018;147:291-309. [DOI: 10.1111/jnc.14471] [Cited by in Crossref: 38] [Cited by in F6Publishing: 37] [Article Influence: 9.5] [Reference Citation Analysis]
4 Manfredi G, Kawamata H. Mitochondria and endoplasmic reticulum crosstalk in amyotrophic lateral sclerosis. Neurobiol Dis 2016;90:35-42. [PMID: 26282323 DOI: 10.1016/j.nbd.2015.08.004] [Cited by in Crossref: 47] [Cited by in F6Publishing: 43] [Article Influence: 6.7] [Reference Citation Analysis]
5 Yorgason JT, Hedges DM, Obray JD, Jang EY, Bills KB, Woodbury M, Williams B, Parsons MJ, Andres MA, Steffensen SC. Methamphetamine increases dopamine release in the nucleus accumbens through calcium-dependent processes. Psychopharmacology (Berl) 2020;237:1317-30. [PMID: 31965252 DOI: 10.1007/s00213-020-05459-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
6 Halpern M, Brennand KJ, Gregory J. Examining the relationship between astrocyte dysfunction and neurodegeneration in ALS using hiPSCs. Neurobiol Dis 2019;132:104562. [PMID: 31381978 DOI: 10.1016/j.nbd.2019.104562] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
7 Delprat B, Crouzier L, Su TP, Maurice T. At the Crossing of ER Stress and MAMs: A Key Role of Sigma-1 Receptor? Adv Exp Med Biol 2020;1131:699-718. [PMID: 31646531 DOI: 10.1007/978-3-030-12457-1_28] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
8 Teoh HL, Carey K, Sampaio H, Mowat D, Roscioli T, Farrar M. Inherited Paediatric Motor Neuron Disorders: Beyond Spinal Muscular Atrophy. Neural Plast 2017;2017:6509493. [PMID: 28634552 DOI: 10.1155/2017/6509493] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.4] [Reference Citation Analysis]
9 Potier-Cartereau M, Raoul W, Weber G, Mahéo K, Rapetti-Mauss R, Gueguinou M, Buscaglia P, Goupille C, Le Goux N, Abdoul-Azize S, Lecomte T, Fromont G, Chantome A, Mignen O, Soriani O, Vandier C. Potassium and Calcium Channel Complexes as Novel Targets for Cancer Research. Rev Physiol Biochem Pharmacol 2020. [PMID: 32767122 DOI: 10.1007/112_2020_24] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
10 Boylan K. Familial Amyotrophic Lateral Sclerosis. Neurol Clin 2015;33:807-30. [PMID: 26515623 DOI: 10.1016/j.ncl.2015.07.001] [Cited by in Crossref: 64] [Cited by in F6Publishing: 53] [Article Influence: 9.1] [Reference Citation Analysis]
11 Snyder MA, Mccann K, Lalande MJ, Thivierge J, Bergeron R. Sigma receptor type 1 knockout mice show a mild deficit in plasticity but no significant change in synaptic transmission in the CA1 region of the hippocampus. J Neurochem 2016;138:700-9. [DOI: 10.1111/jnc.13695] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
12 Lisak RP, Nedelkoska L, Benjamins JA. Sigma-1 receptor agonists as potential protective therapies in multiple sclerosis. Journal of Neuroimmunology 2020;342:577188. [DOI: 10.1016/j.jneuroim.2020.577188] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
13 Abraham MJ, Fleming KL, Raymond S, Wong AYC, Bergeron R. The sigma-1 receptor behaves as an atypical auxiliary subunit to modulate the functional characteristics of Kv1.2 channels expressed in HEK293 cells. Physiol Rep 2019;7:e14147. [PMID: 31222975 DOI: 10.14814/phy2.14147] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
14 Laborenz J, Bykov YS, Knöringer K, Räschle M, Filker S, Prescianotto-Baschong C, Spang A, Tatsuta T, Langer T, Storchová Z, Schuldiner M, Herrmann JM. The ER protein Ema19 facilitates the degradation of nonimported mitochondrial precursor proteins. Mol Biol Cell 2021;32:664-74. [PMID: 33596095 DOI: 10.1091/mbc.E20-11-0748] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
15 Smith EF, Shaw PJ, De Vos KJ. The role of mitochondria in amyotrophic lateral sclerosis. Neurosci Lett 2019;710:132933. [PMID: 28669745 DOI: 10.1016/j.neulet.2017.06.052] [Cited by in Crossref: 143] [Cited by in F6Publishing: 113] [Article Influence: 28.6] [Reference Citation Analysis]
16 Alsultan AA, Waller R, Heath PR, Kirby J. The genetics of amyotrophic lateral sclerosis: current insights. Degener Neurol Neuromuscul Dis 2016;6:49-64. [PMID: 30050368 DOI: 10.2147/DNND.S84956] [Cited by in Crossref: 14] [Cited by in F6Publishing: 23] [Article Influence: 2.3] [Reference Citation Analysis]
17 Ke L, Li Q, Song J, Jiao W, Ji A, Chen T, Pan H, Song Y. The mitochondrial biogenesis signaling pathway is a potential therapeutic target for myasthenia gravis via energy metabolism (Review). Exp Ther Med 2021;22:702. [PMID: 34007311 DOI: 10.3892/etm.2021.10134] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Jia J, Cheng J, Wang C, Zhen X. Sigma-1 Receptor-Modulated Neuroinflammation in Neurological Diseases. Front Cell Neurosci 2018;12:314. [PMID: 30294261 DOI: 10.3389/fncel.2018.00314] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
19 Amata E, Rescifina A, Prezzavento O, Arena E, Dichiara M, Pittalà V, Montilla-García Á, Punzo F, Merino P, Cobos EJ, Marrazzo A. (+)-Methyl (1R,2S)-2-{[4-(4-Chlorophenyl)-4-hydroxypiperidin-1-yl]methyl}-1-phenylcyclopropanecarboxylate [(+)-MR200] Derivatives as Potent and Selective Sigma Receptor Ligands: Stereochemistry and Pharmacological Properties. J Med Chem 2018;61:372-84. [PMID: 29220177 DOI: 10.1021/acs.jmedchem.7b01584] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
20 Weng TY, Tsai SA, Su TP. Roles of sigma-1 receptors on mitochondrial functions relevant to neurodegenerative diseases. J Biomed Sci 2017;24:74. [PMID: 28917260 DOI: 10.1186/s12929-017-0380-6] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 7.8] [Reference Citation Analysis]
21 Hedges DM, Obray JD, Yorgason JT, Jang EY, Weerasekara VK, Uys JD, Bellinger FP, Steffensen SC. Methamphetamine Induces Dopamine Release in the Nucleus Accumbens Through a Sigma Receptor-Mediated Pathway. Neuropsychopharmacology 2018;43:1405-14. [PMID: 29185481 DOI: 10.1038/npp.2017.291] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
22 Dhasmana S, Dhasmana A, Narula AS, Jaggi M, Yallapu MM, Chauhan SC. The panoramic view of amyotrophic lateral sclerosis: A fatal intricate neurological disorder. Life Sci 2022;288:120156. [PMID: 34801512 DOI: 10.1016/j.lfs.2021.120156] [Reference Citation Analysis]
23 Wong AYC, Hristova E, Ahlskog N, Tasse L, Ngsee JK, Chudalayandi P, Bergeron R. Aberrant Subcellular Dynamics of Sigma-1 Receptor Mutants Underlying Neuromuscular Diseases. Mol Pharmacol 2016;90:238-53. [DOI: 10.1124/mol.116.104018] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 3.5] [Reference Citation Analysis]
24 Esmaeili MA, Yadav S, Gupta RK, Waggoner GR, Deloach A, Calingasan NY, Beal MF, Kiaei M. Preferential PPAR-α activation reduces neuroinflammation, and blocks neurodegeneration in vivo. Hum Mol Genet 2016;25:317-27. [PMID: 26604138 DOI: 10.1093/hmg/ddv477] [Cited by in Crossref: 38] [Cited by in F6Publishing: 37] [Article Influence: 5.4] [Reference Citation Analysis]
25 Ceccanti M, Onesti E, Rubino A, Cambieri C, Tartaglia G, Miscioscia A, Frasca V, Inghilleri M. Modulation of human corticospinal excitability by paired associative stimulation in patients with amyotrophic lateral sclerosis and effects of Riluzole. Brain Stimulation 2018;11:775-81. [DOI: 10.1016/j.brs.2018.02.007] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
26 Krämer L, Groh C, Herrmann JM. The proteasome: friend and foe of mitochondrial biogenesis. FEBS Lett 2021;595:1223-38. [PMID: 33249599 DOI: 10.1002/1873-3468.14010] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
27 Finsterer J, Mishra A, Wakil S, Pennuto M, Soraru G. Mitochondrial implications in bulbospinal muscular atrophy (Kennedy disease). Amyotroph Lateral Scler Frontotemporal Degener 2015;17:112-8. [PMID: 26428534 DOI: 10.3109/21678421.2015.1089910] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
28 Tesei A, Cortesi M, Pignatta S, Arienti C, Dondio GM, Bigogno C, Malacrida A, Miloso M, Meregalli C, Chiorazzi A, Carozzi V, Cavaletti G, Rui M, Marra A, Rossi D, Collina S. Anti-tumor Efficacy Assessment of the Sigma Receptor Pan Modulator RC-106. A Promising Therapeutic Tool for Pancreatic Cancer. Front Pharmacol 2019;10:490. [PMID: 31156430 DOI: 10.3389/fphar.2019.00490] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
29 Sun Y, Curle AJ, Haider AM, Balmus G. The role of DNA damage response in amyotrophic lateral sclerosis. Essays Biochem 2020;64:847-61. [PMID: 33078197 DOI: 10.1042/EBC20200002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
30 Penke B, Fulop L, Szucs M, Frecska E. The Role of Sigma-1 Receptor, an Intracellular Chaperone in Neurodegenerative Diseases. Curr Neuropharmacol 2018;16:97-116. [PMID: 28554311 DOI: 10.2174/1570159X15666170529104323] [Cited by in Crossref: 26] [Cited by in F6Publishing: 30] [Article Influence: 6.5] [Reference Citation Analysis]
31 Jha SK, Jha NK, Kumar D, Ambasta RK, Kumar P. Linking mitochondrial dysfunction, metabolic syndrome and stress signaling in Neurodegeneration. Biochim Biophys Acta. 2016; Jun 21. [Epub ahead of print]. [PMID: 27345267 DOI: 10.1016/j.bbadis.2016.06.015] [Cited by in Crossref: 47] [Cited by in F6Publishing: 42] [Article Influence: 7.8] [Reference Citation Analysis]
32 Chu UB, Ruoho AE. Biochemical Pharmacology of the Sigma-1 Receptor. Mol Pharmacol 2016;89:142-53. [PMID: 26560551 DOI: 10.1124/mol.115.101170] [Cited by in Crossref: 77] [Cited by in F6Publishing: 74] [Article Influence: 11.0] [Reference Citation Analysis]
33 Su TP, Su TC, Nakamura Y, Tsai SY. The Sigma-1 Receptor as a Pluripotent Modulator in Living Systems. Trends Pharmacol Sci 2016;37:262-78. [PMID: 26869505 DOI: 10.1016/j.tips.2016.01.003] [Cited by in Crossref: 154] [Cited by in F6Publishing: 151] [Article Influence: 25.7] [Reference Citation Analysis]
34 Rodríguez-Muñoz M, Cortés-Montero E, Garzón-Niño J, Sánchez-Blázquez P. The ALS-related σ1R E102Q Mutant Eludes Ligand Control and Exhibits Anomalous Response to Calcium. Int J Mol Sci 2020;21:E7339. [PMID: 33020464 DOI: 10.3390/ijms21197339] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Herrando-Grabulosa M, Gaja-Capdevila N, Vela JM, Navarro X. Sigma 1 receptor as a therapeutic target for amyotrophic lateral sclerosis. Br J Pharmacol 2021;178:1336-52. [PMID: 32761823 DOI: 10.1111/bph.15224] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
36 Zhang YJ, Fan DS. Elimination Rate of Serum Lactate is Correlated with Amyotrophic Lateral Sclerosis Progression. Chin Med J (Engl) 2016;129:28-32. [PMID: 26712429 DOI: 10.4103/0366-6999.172561] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]