BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Verma R, Bharti K. Toll like receptor 3 and viral infections of nervous system. Journal of the Neurological Sciences 2017;372:40-8. [DOI: 10.1016/j.jns.2016.11.034] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 5.6] [Reference Citation Analysis]
Number Citing Articles
1 Kim C. Toll-Like Receptors (TLRs). Glycobiology of Innate Immunology 2022. [DOI: 10.1007/978-981-16-9081-5_11] [Reference Citation Analysis]
2 Rastogi M, Pandey N, Shukla A, Singh S, Singh SK. Multidimensional Roles of Microglial Cells in Neuroviral Infections. The Biology of Glial Cells: Recent Advances 2022. [DOI: 10.1007/978-981-16-8313-8_19] [Reference Citation Analysis]
3 Luo Y, Li J, Huang C, Wang X, Long D, Cao Y. Graphene oxide links alterations of anti-viral signaling pathways with lipid metabolism via suppressing TLR3 in vascular smooth muscle cells. Mol Omics 2022;18:779-790. [DOI: 10.1039/d2mo00086e] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
4 Zhou G, Bei J, Li T, Zhu K, Tu Z. TLR3 Mediates Senescence and Immunosurveillance of Hepatic Stellate Cells. Hepat Mon 2021;21. [DOI: 10.5812/hepatmon.114381] [Reference Citation Analysis]
5 Ferraris P, Wichit S, Cordel N, Missé D. Human host genetics and susceptibility to ZIKV infection. Infect Genet Evol 2021;95:105066. [PMID: 34487865 DOI: 10.1016/j.meegid.2021.105066] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Zheng K, He FB, Liu H, He Q. Genetic variations of toll-like receptors: Impact on susceptibility, severity and prognosis of bacterial meningitis. Infect Genet Evol 2021;93:104984. [PMID: 34214672 DOI: 10.1016/j.meegid.2021.104984] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Schilling S, Chausse B, Dikmen HO, Almouhanna F, Hollnagel JO, Lewen A, Kann O. TLR2- and TLR3-activated microglia induce different levels of neuronal network dysfunction in a context-dependent manner. Brain Behav Immun 2021;96:80-91. [PMID: 34015428 DOI: 10.1016/j.bbi.2021.05.013] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 10.0] [Reference Citation Analysis]
8 Zheng W, Xu Q, Zhang Y, E X, Gao W, Zhang M, Zhai W, Rajkumar RS, Liu Z. Toll-like receptor-mediated innate immunity against herpesviridae infection: a current perspective on viral infection signaling pathways. Virol J 2020;17:192. [PMID: 33298111 DOI: 10.1186/s12985-020-01463-2] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]
9 Wang X, Yu H, Wang C, Liu Y, You J, Wang P, Xu G, Shen H, Yao H, Lan X, Zhao R, Wu X, Zhang G. Chronic ethanol exposure induces neuroinflammation in H4 cells through TLR3 / NF-κB pathway and anxiety-like behavior in male C57BL/6 mice. Toxicology 2020;446:152625. [PMID: 33161052 DOI: 10.1016/j.tox.2020.152625] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
10 Federico S, Pozzetti L, Papa A, Carullo G, Gemma S, Butini S, Campiani G, Relitti N. Modulation of the Innate Immune Response by Targeting Toll-like Receptors: A Perspective on Their Agonists and Antagonists. J Med Chem 2020;63:13466-513. [PMID: 32845153 DOI: 10.1021/acs.jmedchem.0c01049] [Cited by in Crossref: 40] [Cited by in F6Publishing: 46] [Article Influence: 20.0] [Reference Citation Analysis]
11 Zhang J, Huang Y, Li L, Dong J, Liao M, Sun M. Transcriptome Analysis Reveals the Neuro-Immune Interactions in Duck Tembusu Virus-Infected Brain. Int J Mol Sci 2020;21:E2402. [PMID: 32244328 DOI: 10.3390/ijms21072402] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
12 Barichello T, Simoes LR, Quevedo J, Zhang XY. Microglial Activation and Psychotic Disorders: Evidence from Pre-clinical and Clinical Studies. Curr Top Behav Neurosci 2020;44:161-205. [PMID: 30828767 DOI: 10.1007/7854_2018_81] [Cited by in Crossref: 15] [Cited by in F6Publishing: 4] [Article Influence: 7.5] [Reference Citation Analysis]
13 Zheng C, Chen J, Chu F, Zhu J, Jin T. Inflammatory Role of TLR-MyD88 Signaling in Multiple Sclerosis. Front Mol Neurosci 2019;12:314. [PMID: 31998072 DOI: 10.3389/fnmol.2019.00314] [Cited by in Crossref: 37] [Cited by in F6Publishing: 44] [Article Influence: 18.5] [Reference Citation Analysis]
14 Ní Gabhann-Dromgoole J, de Chaumont C, Shahnazaryan D, Smith S, Malone C, Hassan J, De Gascun CF, Jefferies CA, Murphy CC. Systemic IL-1β production as a consequence of corneal HSV-1 infection-contribution to the development of herpes simplex keratitis. Int J Ophthalmol 2019;12:1493-7. [PMID: 31544048 DOI: 10.18240/ijo.2019.09.19] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
15 Sonoda M, Ishimura M, Eguchi K, Shiraishi A, Kanno S, Kaku N, Inoue H, Motomura Y, Ochiai M, Sakai Y, Nakayama M, Ohara O, Ohga S. Prognostic factors for survival of herpes simplex virus-associated hemophagocytic lymphohistiocytosis. Int J Hematol 2020;111:131-6. [DOI: 10.1007/s12185-019-02738-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
16 Zhong X, Feng L, Xu WH, Wu X, Ding YD, Zhou Y, Lei CQ, Shu HB. The zinc-finger protein ZFYVE1 modulates TLR3-mediated signaling by facilitating TLR3 ligand binding. Cell Mol Immunol 2020;17:741-52. [PMID: 31388100 DOI: 10.1038/s41423-019-0265-6] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
17 Kostoula C, Shaker T, Cerovic M, Craparotta I, Marchini S, Butti E, Pascente R, Iori V, Garlanda C, Aronica E, Martino G, Ravizza T, Carmant L, Vezzani A. TLR3 preconditioning induces anti-inflammatory and anti-ictogenic effects in mice mediated by the IRF3/IFN-β axis. Brain Behav Immun 2019;81:598-607. [PMID: 31336144 DOI: 10.1016/j.bbi.2019.07.021] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
18 Mathews S, Branch Woods A, Katano I, Makarov E, Thomas MB, Gendelman HE, Poluektova LY, Ito M, Gorantla S. Human Interleukin-34 facilitates microglia-like cell differentiation and persistent HIV-1 infection in humanized mice. Mol Neurodegener 2019;14:12. [PMID: 30832693 DOI: 10.1186/s13024-019-0311-y] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 12.0] [Reference Citation Analysis]
19 Afzali AM, Müntefering T, Wiendl H, Meuth SG, Ruck T. Skeletal muscle cells actively shape (auto)immune responses. Autoimmun Rev 2018;17:518-29. [PMID: 29526638 DOI: 10.1016/j.autrev.2017.12.005] [Cited by in Crossref: 39] [Cited by in F6Publishing: 42] [Article Influence: 9.8] [Reference Citation Analysis]
20 Cao Y, Cao R, Huang Y, Zhou H, Liu Y, Li X, Zhong W, Hao P. A comprehensive study on cellular RNA editing activity in response to infections with different subtypes of influenza a viruses. BMC Genomics 2018;19:925. [PMID: 29363430 DOI: 10.1186/s12864-017-4330-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
21 Morís G, García-moncó JC. Drug-Induced Aseptic Meningitis and Other Mimics. CNS Infections 2018. [DOI: 10.1007/978-3-319-70296-4_13] [Reference Citation Analysis]
22 Wang B, Kang W, Zuo J, Kang W, Sun Y. The Significance of Type-I Interferons in the Pathogenesis and Therapy of Human Immunodeficiency Virus 1 Infection. Front Immunol 2017;8:1431. [PMID: 29163506 DOI: 10.3389/fimmu.2017.01431] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
23 Wang X, Wang Y, Liu D, Wang P, Fan D, Guan Y, Li T, Luan G, An J. Elevated expression of EBV and TLRs in the brain is associated with Rasmussen's encephalitis. Virol Sin 2017;32:423-30. [PMID: 29116594 DOI: 10.1007/s12250-017-4058-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
24 Arai A, Yoshida H, Hayakari R, Matsumiya T, Kawaguchi S, Seya K, Tanaka H, Imaizumi T. Expression of CCL5 is induced by polyinosinic : polycytidylic acid in cultured hCMEC/D3 human brain microvascular endothelial cells. Clin Exp Neuroimmunol 2017;8:331-40. [DOI: 10.1111/cen3.12416] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
25 Ding Z, Kong Y, Zhang Y, Li J, Cao F, Zhou J, Ye J. Effect of feeding frequency on growth, body composition, antioxidant status and mRNA expression of immunodependent genes before or after ammonia-N stress in juvenile oriental river prawn, Macrobrachium nipponense. Fish & Shellfish Immunology 2017;68:428-34. [DOI: 10.1016/j.fsi.2017.07.045] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
26 Oliveira BRSM, Vieira FV, de S Vieira D, da Silva SEL, Gameiro R, Flores EF, Cardoso TC. Expression of miR-155 associated with Toll-like receptors 3, 7, and 9 transcription in the olfactory bulbs of cattle naturally infected with BHV5. J Neurovirol 2017;23:772-8. [PMID: 28831740 DOI: 10.1007/s13365-017-0564-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
27 Chen N, Xia P, Li S, Zhang T, Wang TT, Zhu J. RNA sensors of the innate immune system and their detection of pathogens. IUBMB Life 2017;69:297-304. [PMID: 28374903 DOI: 10.1002/iub.1625] [Cited by in Crossref: 127] [Cited by in F6Publishing: 129] [Article Influence: 25.4] [Reference Citation Analysis]