BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ghezzi M, Pescina S, Padula C, Santi P, Del Favero E, Cantù L, Nicoli S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release 2021;332:312-36. [PMID: 33652113 DOI: 10.1016/j.jconrel.2021.02.031] [Cited by in Crossref: 117] [Cited by in F6Publishing: 131] [Article Influence: 58.5] [Reference Citation Analysis]
Number Citing Articles
1 Cai WQ, Liu X, Chen W, Huang Z, Li C, Huang X, Harold C, Su BL, Zhang BB, Yang QQ. Synergistic effect of lecithin and alginate, CMC, or PVP in stabilizing curcumin and its potential mechanism. Food Chem 2023;413:135634. [PMID: 36780858 DOI: 10.1016/j.foodchem.2023.135634] [Reference Citation Analysis]
2 Malec K, Monaco S, Delso I, Nestorowicz J, Kozakiewicz-Latała M, Karolewicz B, Khimyak YZ, Angulo J, Nartowski KP. Unravelling the mechanisms of drugs partitioning phenomena in micellar systems via NMR spectroscopy. J Colloid Interface Sci 2023;638:135-48. [PMID: 36736115 DOI: 10.1016/j.jcis.2023.01.063] [Reference Citation Analysis]
3 Fei Q, Bentley I, Ghadiali SN, Englert JA. Pulmonary drug delivery for acute respiratory distress syndrome. Pulm Pharmacol Ther 2023;79:102196. [PMID: 36682407 DOI: 10.1016/j.pupt.2023.102196] [Reference Citation Analysis]
4 Leonhard V, Comini LR, Alasino RV, Cometto MJ, Bierbrauer KL, Beltramo DM. Self-Assembled Teicoplanin Micelles as Amphotericin B Nanocarrier. J Pharm Sci 2023;112:1081-8. [PMID: 36528112 DOI: 10.1016/j.xphs.2022.12.007] [Reference Citation Analysis]
5 Edwards IA, De Carlo F, Sitta J, Varner W, Howard CM, Claudio PP. Enhancing Targeted Therapy in Breast Cancer by Ultrasound-Responsive Nanocarriers. IJMS 2023;24:5474. [DOI: 10.3390/ijms24065474] [Reference Citation Analysis]
6 Wang Q, Atluri K, Tiwari AK, Babu RJ. Exploring the Application of Micellar Drug Delivery Systems in Cancer Nanomedicine. Pharmaceuticals 2023;16:433. [DOI: 10.3390/ph16030433] [Reference Citation Analysis]
7 Xu D, Li A, Lin W, Zou Q, Wu S, Mondal AK, Xiao W, Huang F. Preparation and characterization of pH and thermally responsive perfluoropolyether acrylate copolymer micelles and investigation its drug‐loading properties. J of Applied Polymer Sci 2023. [DOI: 10.1002/app.53805] [Reference Citation Analysis]
8 Gaydhane MK, Sharma CS, Majumdar S. Electrospun nanofibres in drug delivery: advances in controlled release strategies. RSC Adv 2023;13:7312-28. [PMID: 36891485 DOI: 10.1039/d2ra06023j] [Reference Citation Analysis]
9 Dirany Z, El-dirany R, Smith GN, Nguewa P, González-gaitano G. Mixed micelles and gels of a hydrophilic poloxamine (Tetronic 1307) and miltefosine: Structural characterization by small-angle neutron scattering and in vitro evaluation for the treatment of leishmaniasis. Journal of Molecular Liquids 2023. [DOI: 10.1016/j.molliq.2023.121654] [Reference Citation Analysis]
10 Huysecom A, Glorieux C, Thoen J, Thielemans W, Fustin C, Moldenaers P, Cardinaels R. Phase behavior of medium-length hydrophobically associating PEO-PPO multiblock copolymers in aqueous media. Journal of Colloid and Interface Science 2023. [DOI: 10.1016/j.jcis.2023.03.013] [Reference Citation Analysis]
11 Li A, Li D, Gu Y, Liu R, Tang X, Zhao Y, Qi F, Wei J, Liu J. Plant-derived nanovesicles: Further exploration of biomedical function and application potential. Acta Pharmaceutica Sinica B 2023. [DOI: 10.1016/j.apsb.2022.12.022] [Reference Citation Analysis]
12 Gomes D, Batista-silva J, Sousa A, Passarinha L. Progress and opportunities in Gellan gum-based materials: A review of preparation, characterization and emerging applications. Carbohydrate Polymers 2023. [DOI: 10.1016/j.carbpol.2023.120782] [Reference Citation Analysis]
13 Trivedi S, Bhoyar V, Akojwar N, Belgamwar V. Transport of nanocarriers to brain for treatment of glioblastoma multiforme: Routes and challenges. Nano Trends 2023;1:100005. [DOI: 10.1016/j.nwnano.2023.100005] [Reference Citation Analysis]
14 Patel D, Tripathi N, Ray D, Aswal VK, Kuperkar K, Bahadur P. Self-assembly generation triggered in highly hydrophilic Pluronics® by sugars/ polyols. Journal of Molecular Liquids 2023. [DOI: 10.1016/j.molliq.2023.121614] [Reference Citation Analysis]
15 Lei X, Cheng K, Li Y, Zhong Z, Hou X, Song L, Zhang F, Wang J, Zhao Y, Xu Q. The Eradication of Biofilm for Therapy of Bacterial Infected Chronic Wound Based on pH-Responsive Micelle of Antimicrobial Peptide Derived Biodegradable Microneedle Patch. Chemical Engineering Journal 2023. [DOI: 10.1016/j.cej.2023.142222] [Reference Citation Analysis]
16 Tryfon P, Kamou NN, Pavlou A, Mourdikoudis S, Menkissoglu-Spiroudi U, Dendrinou-Samara C. Nanocapsules of ZnO Nanorods and Geraniol as a Novel Mean for the Effective Control of Botrytis cinerea in Tomato and Cucumber Plants. Plants (Basel) 2023;12. [PMID: 36903940 DOI: 10.3390/plants12051074] [Reference Citation Analysis]
17 Zhang J, Zhang Y, Wang H, Chen W, Lu A, Li H, Kang L, Wu C. Solubilisation and Enhanced Oral Absorption of Curcumin Using a Natural Non-Nutritive Sweetener Mogroside V. Int J Nanomedicine 2023;18:1031-45. [PMID: 36855540 DOI: 10.2147/IJN.S395266] [Reference Citation Analysis]
18 Zhu C, Zhang Z, Wen Y, Song X, Zhu J, Yao Y, Li J. Cationic micelles as nanocarriers for enhancing intra-cartilage drug penetration and retention. J Mater Chem B 2023;11:1670-83. [PMID: 36621526 DOI: 10.1039/d2tb02050e] [Reference Citation Analysis]
19 Heil CM, Ma Y, Bharti B, Jayaraman A. Computational Reverse-Engineering Analysis for Scattering Experiments for Form Factor and Structure Factor Determination (“P(q) and S(q) CREASE”). JACS Au 2023. [DOI: 10.1021/jacsau.2c00697] [Reference Citation Analysis]
20 Fang JM, Basu S, Phu J, Nieh MP, LoTurco JJ. Cellular Localization, Aggregation, and Cytotoxicity of Bicelle-Quantum Dot Nanocomposites. ACS Appl Bio Mater 2023;6:566-77. [PMID: 36739562 DOI: 10.1021/acsabm.2c00827] [Reference Citation Analysis]
21 Mansour A, Romani M, Acharya AB, Rahman B, Verron E, Badran Z. Drug Delivery Systems in Regenerative Medicine: An Updated Review. Pharmaceutics 2023;15. [PMID: 36840018 DOI: 10.3390/pharmaceutics15020695] [Reference Citation Analysis]
22 Gagliardi M, Vincenzi A, Baroncelli L, Cecchini M. Stabilized Reversed Polymeric Micelles as Nanovector for Hydrophilic Compounds. Polymers (Basel) 2023;15. [PMID: 36850229 DOI: 10.3390/polym15040946] [Reference Citation Analysis]
23 Pandey RP, Vidic J, Mukherjee R, Chang CM. Experimental Methods for the Biological Evaluation of Nanoparticle-Based Drug Delivery Risks. Pharmaceutics 2023;15. [PMID: 36839932 DOI: 10.3390/pharmaceutics15020612] [Reference Citation Analysis]
24 Shalmani AA, Ahmed Z, Sheybanifard M, Wang A, Weiler M, Buhl EM, Klinkenberg G, Schmid R, Hennink W, Kiessling F, Metselaar JM, Lammers T, Peña Q, Shi Y. Effect of Radical Polymerization Method on Pharmaceutical Properties of Π Electron-Stabilized HPMA-Based Polymeric Micelles. Biomacromolecules 2023. [PMID: 36753733 DOI: 10.1021/acs.biomac.2c01261] [Reference Citation Analysis]
25 Mustafai A, Zubair M, Hussain A, Ullah A. Recent Progress in Proteins-Based Micelles as Drug Delivery Carriers. Polymers (Basel) 2023;15. [PMID: 36850121 DOI: 10.3390/polym15040836] [Reference Citation Analysis]
26 Sipos B, Bella Z, Gróf I, Veszelka S, Deli MA, Szűcs KF, Sztojkov-Ivanov A, Ducza E, Gáspár R, Kecskeméti G, Janáky T, Volk B, Budai-Szűcs M, Ambrus R, Szabó-Révész P, Csóka I, Katona G. Soluplus® promotes efficient transport of meloxicam to the central nervous system via nasal administration. Int J Pharm 2023;632:122594. [PMID: 36626972 DOI: 10.1016/j.ijpharm.2023.122594] [Reference Citation Analysis]
27 Zlotnikov ID, Streltsov DA, Belogurova NG, Kudryashova EV. Chitosan or Cyclodextrin Grafted with Oleic Acid Self-Assemble into Stabilized Polymeric Micelles with Potential of Drug Carriers. Life (Basel) 2023;13. [PMID: 36836803 DOI: 10.3390/life13020446] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Ataide JA, Coco JC, Dos Santos ÉM, Beraldo-Araujo V, Silva JRA, de Castro KC, Lopes AM, Filipczak N, Yalamarty SSK, Torchilin VP, Mazzola PG. Co-Encapsulation of Drugs for Topical Application-A Review. Molecules 2023;28. [PMID: 36771111 DOI: 10.3390/molecules28031449] [Reference Citation Analysis]
29 Huang SY, Yeh NT, Wang TH, Hsu TC, Chin HY, Tzang BS, Chiang WH. Onion-like doxorubicin-carrying polymeric nanomicelles with tumor acidity-sensitive dePEGylation to expose positively-charged chitosan shell for enhanced cancer chemotherapy. Int J Biol Macromol 2023;227:925-37. [PMID: 36563808 DOI: 10.1016/j.ijbiomac.2022.12.172] [Reference Citation Analysis]
30 Verma P, Gupta GD, Markandeywar TS, Singh D. A Critical Sojourn of Polymeric Micelles: Technological Concepts, Recent Advances, and Future Prospects. Assay Drug Dev Technol 2023;21:31-47. [PMID: 36856457 DOI: 10.1089/adt.2022.079] [Reference Citation Analysis]
31 da Silva TN, de Lima EV, Barradas TN, Testa CG, Picciani PHS, Figueiredo CP, do Carmo FA, Clarke JR. Nanosystems for gene therapy targeting brain damage caused by viral infections. Mater Today Bio 2023;18:100525. [PMID: 36619201 DOI: 10.1016/j.mtbio.2022.100525] [Reference Citation Analysis]
32 Bhaladhare S, Bhattacharjee S. Chemical, physical, and biological stimuli-responsive nanogels for biomedical applications (mechanisms, concepts, and advancements): A review. Int J Biol Macromol 2023;226:535-53. [PMID: 36521697 DOI: 10.1016/j.ijbiomac.2022.12.076] [Reference Citation Analysis]
33 Hetta HF, Ramadan YN, Al-Harbi AI, A Ahmed E, Battah B, Abd Ellah NH, Zanetti S, Donadu MG. Nanotechnology as a Promising Approach to Combat Multidrug Resistant Bacteria: A Comprehensive Review and Future Perspectives. Biomedicines 2023;11. [PMID: 36830949 DOI: 10.3390/biomedicines11020413] [Reference Citation Analysis]
34 Sharma S, Bal T. Exploring and Characterizing the drug Release Potential of Novel Tissue Compatible Amphiphilic Graft Copolymer of Polyvinyl Acetate Grafted Neem Gum (NG-g-PVAc). J Polym Environ 2023. [DOI: 10.1007/s10924-023-02765-6] [Reference Citation Analysis]
35 Augusto de Castro M, Henrique Reis P, Fernandes C, Geraldo de Sousa R, Toshio Inoue T, Ligório Fialho S, Silva-Cunha A. Thermoresponsive in-situ gel containing hyaluronic acid and indomethacin for the treatment of corneal chemical burn. Int J Pharm 2023;631:122468. [PMID: 36503038 DOI: 10.1016/j.ijpharm.2022.122468] [Reference Citation Analysis]
36 Li H, Gou R, Liao J, Wang Y, Qu R, Tang Q, Gan J, Zou L, Shi S. Recent advances in nano-targeting drug delivery systems for rheumatoid arthritis treatment. Acta Materia Medica 2023;2. [DOI: 10.15212/amm-2022-0039] [Reference Citation Analysis]
37 Placci M, Giannotti MI, Muro S. Polymer-Based Drug Delivery Systems Under Investigation For Enzyme Replacement And Other Therapies Of Lysosomal Storage Disorders. Adv Drug Deliv Rev 2023;:114683. [PMID: 36657645 DOI: 10.1016/j.addr.2022.114683] [Reference Citation Analysis]
38 Lupu A, Rosca I, Gradinaru VR, Bercea M. Temperature Induced Gelation and Antimicrobial Properties of Pluronic F127 Based Systems. Polymers (Basel) 2023;15. [PMID: 36679236 DOI: 10.3390/polym15020355] [Reference Citation Analysis]
39 Jia W, Zhou L, Li L, Zhou P, Shen Z. Nano-Based Drug Delivery of Polyphenolic Compounds for Cancer Treatment: Progress, Opportunities, and Challenges. Pharmaceuticals (Basel) 2023;16. [PMID: 36678599 DOI: 10.3390/ph16010101] [Reference Citation Analysis]
40 Martín Giménez VM, Moretton MA, Chiappetta DA, Salgueiro MJ, Fornés MW, Manucha W. Polymeric Nanomicelles Loaded with Anandamide and Their Renal Effects as a Therapeutic Alternative for Hypertension Treatment by Passive Targeting. Pharmaceutics 2023;15. [PMID: 36678805 DOI: 10.3390/pharmaceutics15010176] [Reference Citation Analysis]
41 Priester MI, Ten Hagen TLM. Image-guided drug delivery in nanosystem-based cancer therapies. Adv Drug Deliv Rev 2023;192:114621. [PMID: 36402247 DOI: 10.1016/j.addr.2022.114621] [Reference Citation Analysis]
42 Malik K, Pathak M, Kaur L, Verma P, Singhal R, Ojha H. Biomaterials and biomaterial-based fibers in drug delivery systems. Fiber and Textile Engineering in Drug Delivery Systems 2023. [DOI: 10.1016/b978-0-323-96117-2.00003-0] [Reference Citation Analysis]
43 Khumaini Mudhar Bintang MA, Tipmanee V, Srichana T. Colistin sulfate-sodium deoxycholate sulfate micelle formulations; molecular interactions, cell nephrotoxicity and bioactivity. Journal of Drug Delivery Science and Technology 2023;79:104091. [DOI: 10.1016/j.jddst.2022.104091] [Reference Citation Analysis]
44 Mahani M, Bahmanpouri M, Khakbaz F, Divsar F. Doxorubicin-loaded polymeric micelles decorated with nitrogen-doped carbon dots for targeted breast cancer therapy. Journal of Drug Delivery Science and Technology 2023;79:104055. [DOI: 10.1016/j.jddst.2022.104055] [Reference Citation Analysis]
45 Cerda-sumbarda YD, Zizumbo-lopez A, Licea-claverie A. Nanomaterials. Phytochemical Nanodelivery Systems as Potential Biopharmaceuticals 2023. [DOI: 10.1016/b978-0-323-90390-5.00008-6] [Reference Citation Analysis]
46 Wande DP, Trevaskis N, Farooq MA, Jabeen A, Nayak AK. Theranostic nanostructures as nanomedicines. Design and Applications of Theranostic Nanomedicines 2023. [DOI: 10.1016/b978-0-323-89953-6.00008-8] [Reference Citation Analysis]
47 Patil TV, Lim K. Fundamental in Polymer-/Nanohybrid-Based Nanorobotics for Theranostics. Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine 2023. [DOI: 10.1007/978-3-031-16084-4_5] [Reference Citation Analysis]
48 Costa MC, Shegokar R, Silva AM, Souto EB. Nanotechnologies to deliver drugs through the blood–brain and blood–retinal barriers. Nanotechnology and Regenerative Medicine 2023. [DOI: 10.1016/b978-0-323-90471-1.00010-4] [Reference Citation Analysis]
49 Antika L, Meilawati L, Dewi R, Tasfiyati A, Septama A. Scopoletin: Anticancer potential and mechanism of action. Asian Pac J Trop Biomed 2023;13:1. [DOI: 10.4103/2221-1691.367685] [Reference Citation Analysis]
50 Abbot V, Sharma D, Attri H, Sharma P. An electrolyte induced thermodynamic study of quercetin and Tween 20: A physico-chemical approach for formulation development. Materials Today: Proceedings 2023. [DOI: 10.1016/j.matpr.2023.01.239] [Reference Citation Analysis]
51 Pasika SR, Bulusu R, Rao BVK, Kommineni N, Bolla PK, Kala SG, Godugu C. Nanotechnology for Biomedical Applications. Nanomaterials 2023. [DOI: 10.1007/978-981-19-7963-7_11] [Reference Citation Analysis]
52 Wang TZ, Liu XX, Wang SY, Liu Y, Pan XY, Wang JJ, Nan KH. Engineering Advanced Drug Delivery Systems for Dry Eye: A Review. Bioengineering (Basel) 2022;10. [PMID: 36671625 DOI: 10.3390/bioengineering10010053] [Reference Citation Analysis]
53 Wu Y. Application of Polymer Micelles in Medical Field. HSET 2022;26:328-334. [DOI: 10.54097/hset.v26i.3993] [Reference Citation Analysis]
54 Belkhir K, Cerlati O, Heaugwane D, Tosi A, Benkhaled BT, Brient PL, Chatard C, Graillot A, Catrouillet S, Balor S, Goudounèche D, Payré B, Laborie P, Lim JH, Putaux JL, Vicendo P, Gibot L, Lonetti B, Mingotaud AF, Lapinte V. Synthesis and Self-Assembly of UV-Cross-Linkable Amphiphilic Polyoxazoline Block Copolymers: Importance of Multitechnique Characterization. Langmuir 2022;38:16144-55. [PMID: 36516233 DOI: 10.1021/acs.langmuir.2c02896] [Reference Citation Analysis]
55 Han Z, Song B, Yang J, Wang B, Ma Z, Yu L, Li Y, Xu H, Qiao M. Curcumin-Encapsulated Fusion Protein-Based Nanocarrier Demonstrated Highly Efficient Epidermal Growth Factor Receptor-Targeted Treatment of Colorectal Cancer. J Agric Food Chem 2022. [PMID: 36454954 DOI: 10.1021/acs.jafc.2c04668] [Reference Citation Analysis]
56 Yang Y, Ge C, He J, Lu W. Novel Worm-like Micelles for Hydrochloride Doxorubicin Delivery: Preparation, Characterization, and In Vitro Evaluation. Pharmaceutical Fronts 2022. [DOI: 10.1055/s-0042-1758191] [Reference Citation Analysis]
57 Zeng X, Teng Y, Zhu C, Li Z, Liu T, Sun Y, Han S. Combined Ibuprofen-Nanoconjugate Micelles with E-Selectin for Effective Sunitinib Anticancer Therapy. Int J Nanomedicine 2022;17:6031-46. [PMID: 36510619 DOI: 10.2147/IJN.S388234] [Reference Citation Analysis]
58 Jiang L, Zheng R, Zeng N, Wu C, Su H. In situ self-assembly of amphiphilic dextran micelles and superparamagnetic iron oxide nanoparticle-loading as magnetic resonance imaging contrast agents. Regen Biomater 2023;10:rbac096. [PMID: 36683738 DOI: 10.1093/rb/rbac096] [Reference Citation Analysis]
59 Mahajan K, Thakur N, Goswami M, simran K, Arora I. Polymer based nanoparticles for BCS class II drugs -“A mini Review”. Materials Today: Proceedings 2022. [DOI: 10.1016/j.matpr.2022.12.007] [Reference Citation Analysis]
60 Guliy OI, Staroverov SA, Fomin AS, Zhnichkova EG, Kozlov SV, Lovtsova LG, Dykman LA. Polymeric Micelles for Targeted Drug Delivery System. Appl Biochem Microbiol 2022;58:726-737. [DOI: 10.1134/s0003683822060059] [Reference Citation Analysis]
61 Khodayari H, Heydarinasab A, Moniri E, Miralinaghi M. Synthesis and Characterization of Magnetic Nanoparticles-Grafted-Hyaluronic Acid/β-Cyclodextrin as a Novel pH-Sensetive Nanocarrier for Targeted Delivery of Doxorubicin. Inorganic Chemistry Communications 2022. [DOI: 10.1016/j.inoche.2022.110366] [Reference Citation Analysis]
62 Syed MH, Zahari MAKM, Khan MMR, Beg MDH, Abdullah N. An overview on recent biomedical applications of biopolymers: Their role in drug delivery systems and comparison of major systems. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.104121] [Reference Citation Analysis]
63 Kumar Dan A, Aamna B, De S, Pereira-silva M, Sahu R, Cláudia Paiva-santos A, Parida S. Sericin nanoparticles: Future nanocarrier for target-specific delivery of chemotherapeutic drugs. Journal of Molecular Liquids 2022;368:120717. [DOI: 10.1016/j.molliq.2022.120717] [Reference Citation Analysis]
64 Alasen Sembiring Milala. Sistem Penghantaran Obat Dengan Misel Polimer. MEDICINUS 2022;35:20-31. [DOI: 10.56951/medicinus.v35i3.104] [Reference Citation Analysis]
65 Yuan H, Zhou L, Qi Z, Zhang C, Wang C. Preparation of pH-responsive solanesol-based poly (glutamic acid) micellar carrier for doxorubicin delivery. Materials Today Communications 2022;33:104800. [DOI: 10.1016/j.mtcomm.2022.104800] [Reference Citation Analysis]
66 de Moura IA, Silva AJD, de Macêdo LS, Invenção MDCV, de Sousa MMG, de Freitas AC. Enhancing the Effect of Nucleic Acid Vaccines in the Treatment of HPV-Related Cancers: An Overview of Delivery Systems. Pathogens 2022;11. [PMID: 36558778 DOI: 10.3390/pathogens11121444] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
67 Naharros-Molinero A, Caballo-González MÁ, de la Mata FJ, García-Gallego S. Direct and Reverse Pluronic Micelles: Design and Characterization of Promising Drug Delivery Nanosystems. Pharmaceutics 2022;14. [PMID: 36559122 DOI: 10.3390/pharmaceutics14122628] [Reference Citation Analysis]
68 Mazur A, Niesyto K, Neugebauer D. Pharmaceutical Functionalization of Monomeric Ionic Liquid for the Preparation of Ionic Graft Polymer Conjugates. Int J Mol Sci 2022;23. [PMID: 36499061 DOI: 10.3390/ijms232314731] [Reference Citation Analysis]
69 Wani FA, Behera K, Patel R. Amphiphilic Micelles as Superior Nanocarriers in Drug Delivery: from Current Preclinical Surveys to Structural Frameworks. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202201928] [Reference Citation Analysis]
70 Vyawahare A, Prakash R, Jori C, Ali A, Raza SS, Khan R. Caffeic Acid Modified Nanomicelles Inhibit Articular Cartilage Deterioration and Reduce Disease Severity in Experimental Inflammatory Arthritis. ACS Nano 2022;16:18579-91. [PMID: 36222569 DOI: 10.1021/acsnano.2c07027] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
71 Yang D, Yang S, Mu M, Liu X, Zhao L, Xu Z, Mu C, Li D, Ge L. Multifunctional β-Cyclodextrin-Poly(ethylene glycol)-Cholesterol Nanomicelle for Anticancer Drug Delivery. ACS Appl Bio Mater 2022;5:5418-31. [PMID: 36326507 DOI: 10.1021/acsabm.2c00773] [Reference Citation Analysis]
72 Vargas-Nadal G, Köber M, Nsamela A, Terenziani F, Sissa C, Pescina S, Sonvico F, Gazzali AM, Wahab HA, Grisanti L, Olivera ME, Palena MC, Guzman ML, Luciani-Giacobbe LC, Jimenez-Kairuz A, Ventosa N, Ratera I, Belfield KD, Maoz BM. Fluorescent Multifunctional Organic Nanoparticles for Drug Delivery and Bioimaging: A Tutorial Review. Pharmaceutics 2022;14. [PMID: 36432688 DOI: 10.3390/pharmaceutics14112498] [Reference Citation Analysis]
73 Jin GW, Rejinold NS, Choy JH. Multifunctional Polymeric Micelles for Cancer Therapy. Polymers (Basel) 2022;14. [PMID: 36432965 DOI: 10.3390/polym14224839] [Reference Citation Analysis]
74 Parodi A, Kolesova EP, Voronina MV, Frolova AS, Kostyushev D, Trushina DB, Akasov R, Pallaeva T, Zamyatnin AA. Anticancer Nanotherapeutics in Clinical Trials: The Work behind Clinical Translation of Nanomedicine. IJMS 2022;23:13368. [DOI: 10.3390/ijms232113368] [Reference Citation Analysis]
75 Wang S, Song Y, Ma J, Chen X, Guan Y, Peng H, Yan G, Tang R. Dynamic crosslinked polymeric nano-prodrugs for highly selective synergistic chemotherapy. Asian J Pharm Sci 2022;17:880-91. [PMID: 36600901 DOI: 10.1016/j.ajps.2022.09.004] [Reference Citation Analysis]
76 Reza Soltani E, Tahvildari K, Moniri E, Ahmad Panahi H. A novel pH-and temperature sensitive polymer based on MoS2 modified poly (N-Isopropyl Acrylamide)/ allyl acetoacetate for doxorubicin delivery: synthesis, characterization, in-vitro release and cytotoxicity studies. J Polym Res 2022;29. [DOI: 10.1007/s10965-022-03286-x] [Reference Citation Analysis]
77 Flores-contreras EA, González-gonzález RB, González-gonzález E, Parra-saldívar R, Iqbal HM. Nano-vehicles modulated delivery of therapeutic epigenetic regulators to treat Triple-Negative Breast Cancer. Journal of Drug Delivery Science and Technology 2022;77:103924. [DOI: 10.1016/j.jddst.2022.103924] [Reference Citation Analysis]
78 Ali AA, Abuwatfa WH, Al-Sayah MH, Husseini GA. Gold-Nanoparticle Hybrid Nanostructures for Multimodal Cancer Therapy. Nanomaterials (Basel) 2022;12:3706. [PMID: 36296896 DOI: 10.3390/nano12203706] [Reference Citation Analysis]
79 Stephens AD, Villegas AF, Chung CW, Vanderpoorten O, Pinotsi D, Mela I, Ward E, Mccoy TM, Cubitt R, Routh AF, Kaminski CF, Schierle GSK. α-synuclein fibril and synaptic vesicle interactions lead to vesicle destruction and increased uptake into neurons.. [DOI: 10.1101/2022.10.04.510646] [Reference Citation Analysis]
80 Merritt JC, Richbart SD, Moles EG, Cox AJ, Brown KC, Miles SL, Finch PT, Hess JA, Tirona MT, Valentovic MA, Dasgupta P. Anti-cancer activity of sustained release capsaicin formulations. Pharmacology & Therapeutics 2022;238:108177. [DOI: 10.1016/j.pharmthera.2022.108177] [Reference Citation Analysis]
81 Türkmen Ö, Baloğlu E. Development and characterization of self-assembling sirolimus-loaded micelles as a sublingual delivery system. Journal of Drug Delivery Science and Technology 2022;76:103836. [DOI: 10.1016/j.jddst.2022.103836] [Reference Citation Analysis]
82 Qin Z, Yu G, Li R, Zhao J. Preparation of Triptolide Nano Drug Delivery System and Its Antitumor Activity In-Vitro. j biomed nanotechnol 2022;18:2417-2432. [DOI: 10.1166/jbn.2022.3442] [Reference Citation Analysis]
83 Munawar J, Shahzeb Khan M, Zehra Syeda SE, Nawaz S, Ahmed Janjhi F, Ul Haq H, Ullah Rashid E, Jesionowski T, Bilal M. Metal-organic framework-based smart nanoplatforms with multifunctional attributes for biosensing, drug delivery, and cancer theranostics. Inorganic Chemistry Communications 2022. [DOI: 10.1016/j.inoche.2022.110145] [Reference Citation Analysis]
84 Zhu G, Wang B, Feng G, Zhou Z, Li W, Liu W, Su H, Wang W, Wang T, Yu X. A nano-preparation approach to enable the delivery of daphnoretin to potentiate the therapeutical efficacy in hepatocellular cancer. Front Pharmacol 2022;13:965131. [DOI: 10.3389/fphar.2022.965131] [Reference Citation Analysis]
85 Zhang M, Zhang Z, Song X, Zhu J, Sng JA, Li J, Wen Y. Synthesis and Characterization of Palmitoyl- block -poly(methacryloyloxyethyl Phosphorylcholine) Polymer Micelles for Anticancer Drug Delivery. Biomacromolecules. [DOI: 10.1021/acs.biomac.2c00838] [Reference Citation Analysis]
86 Wang Y, Wang W, Yu E, Zhuang W, Sun X, Wang H, Li Q. Preparation of a camptothecin analog FLQY2 self-micelle solid dispersion with improved solubility and bioavailability. J Nanobiotechnology 2022;20:402. [PMID: 36064403 DOI: 10.1186/s12951-022-01596-2] [Reference Citation Analysis]
87 Tapfumaneyi P, Imran M, Mohammed Y, Roberts MS. Recent advances and future prospective of topical and transdermal delivery systems. Front Drug Deliv 2022;2. [DOI: 10.3389/fddev.2022.957732] [Reference Citation Analysis]
88 Junnuthula V, Kolimi P, Nyavanandi D, Sampathi S, Vora LK, Dyawanapelly S. Polymeric Micelles for Breast Cancer Therapy: Recent Updates, Clinical Translation and Regulatory Considerations. Pharmaceutics 2022;14:1860. [PMID: 36145608 DOI: 10.3390/pharmaceutics14091860] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
89 Baldino L, Reverchon E. Continuous supercritical CO2 assisted process for the production of nano-niosomes loaded with a second-generation antibiotic for ocular therapy. The Journal of Supercritical Fluids 2022;188:105673. [DOI: 10.1016/j.supflu.2022.105673] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
90 Vázquez-villar V, Tolosa J, García-martínez JC. AIE-dots of amphiphilic oligostyrylbenzenes: Encapsulation and release monitored via FRET. Journal of Molecular Liquids 2022;362:119771. [DOI: 10.1016/j.molliq.2022.119771] [Reference Citation Analysis]
91 Wang H, Ullah A. Synthesis and Evaluation of Thermoresponsive Renewable Lipid-Based Block Copolymers for Drug Delivery. Polymers 2022;14:3436. [DOI: 10.3390/polym14173436] [Reference Citation Analysis]
92 Yang L, Peng J, Shi A, Wang X, Li J, Su Y, Yin K, Zhao L, Zhao Y. Myocardium-Targeted Micelle Nanomedicine That Salvages the Heart from Ischemia/Reperfusion Injury. ACS Appl Mater Interfaces 2022. [PMID: 35973832 DOI: 10.1021/acsami.2c11117] [Reference Citation Analysis]
93 Figueiras A, Domingues C, Jarak I, Santos AI, Parra A, Pais A, Alvarez-lorenzo C, Concheiro A, Kabanov A, Cabral H, Veiga F. New Advances in Biomedical Application of Polymeric Micelles. Pharmaceutics 2022;14:1700. [DOI: 10.3390/pharmaceutics14081700] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
94 Wang Y, Fens MH, van Kronenburg NCH, Shi Y, Lammers T, Heger M, van Nostrum CF, Hennink WE. Magnetic beads for the evaluation of drug release from biotinylated polymeric micelles in biological media. J Control Release 2022;349:954-62. [PMID: 35931210 DOI: 10.1016/j.jconrel.2022.07.044] [Reference Citation Analysis]
95 Kotta S, Aldawsari HM, Badr-Eldin SM, Nair AB, Yt K. Progress in Polymeric Micelles for Drug Delivery Applications. Pharmaceutics 2022;14:1636. [PMID: 36015262 DOI: 10.3390/pharmaceutics14081636] [Reference Citation Analysis]
96 Lin T, Wang W, Zeng X, Lu Y, Shih P. Preparation, Structural Characterization of Anti-Cancer Drugs-Mediated Self-Assembly from the Pluronic Copolymers through Synchrotron SAXS Investigation. Materials 2022;15:5387. [DOI: 10.3390/ma15155387] [Reference Citation Analysis]
97 Uskoković V, Pejčić A, Koliqi R, Anđelković Z. Polymeric Nanotechnologies for the Treatment of Periodontitis: A Chronological Review. Int J Pharm 2022;:122065. [PMID: 35932930 DOI: 10.1016/j.ijpharm.2022.122065] [Reference Citation Analysis]
98 El Said HS, Lalatsa A, Al-Mahallawi AM, Saddar El Leithy E, Ghorab DM. Vilazodone-phospholipid mixed micelles for enhancing oral bioavailability and reducing pharmacokinetic variability between fed and fasted states. Int J Pharm 2022;:122080. [PMID: 35932929 DOI: 10.1016/j.ijpharm.2022.122080] [Reference Citation Analysis]
99 Ondreas F, Sita J, Cepa M, Svecova E, Velebny V. Interactions of hydrophobically modified hyaluronan carrier with bovine serum albumin. Applied Surface Science 2022;593:153440. [DOI: 10.1016/j.apsusc.2022.153440] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
100 Al-Shdefat R, Kadhim MM, Mahdi AB, Lafta HA, Kumar A. Theoretical evaluation of poly(amidoamine) dendrimers with different peripheral groups as a purinethol drug delivery system in aqueous medium. Colloids Surf B Biointerfaces 2022;216:112534. [PMID: 35623258 DOI: 10.1016/j.colsurfb.2022.112534] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
101 Horn JM, Zhu Y, Ahn SY, Obermeyer AC. Self-assembly of globular proteins with intrinsically disordered protein polyelectrolytes and block copolymers. Soft Matter 2022. [PMID: 35912826 DOI: 10.1039/d2sm00415a] [Reference Citation Analysis]
102 Kumar VS, Kp V, M S. Anticonvulsant and acute toxicity evaluation of phenytoin sodium–loaded polymeric nanomicelle in MES rat model. J Nanopart Res 2022;24. [DOI: 10.1007/s11051-022-05502-7] [Reference Citation Analysis]
103 Sastri KT, Gupta NV, M S, Chakraborty S, Kumar H, Chand P, Balamuralidhara V, Gowda D. Nanocarrier facilitated drug delivery to the brain through intranasal route: A promising approach to transcend bio-obstacles and alleviate neurodegenerative conditions. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103656] [Reference Citation Analysis]
104 Hani U, Osmani RAM, Yasmin S, Gowda BHJ, Ather H, Ansari MY, Siddiqua A, Ghazwani M, Fatease AA, Alamri AH, Rahamathulla M, Begum MY, Wahab S. Novel Drug Delivery Systems as an Emerging Platform for Stomach Cancer Therapy. Pharmaceutics 2022;14:1576. [DOI: 10.3390/pharmaceutics14081576] [Reference Citation Analysis]
105 Cai Y, Qi J, Lu Y, He H, Wu W. The in vivo fate of polymeric micelles. Adv Drug Deliv Rev 2022;:114463. [PMID: 35905947 DOI: 10.1016/j.addr.2022.114463] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
106 Almeida A, Castro F, Resende C, Lúcio M, Schwartz S Jr, Sarmento B. Oral delivery of camptothecin-loaded multifunctional chitosan-based micelles is effective in reduce colorectal cancer. J Control Release 2022:S0168-3659(22)00448-5. [PMID: 35905784 DOI: 10.1016/j.jconrel.2022.07.029] [Reference Citation Analysis]
107 Ghezzi M, Ferraboschi I, Delledonne A, Pescina S, Padula C, Santi P, Sissa C, Terenziani F, Nicoli S. Cyclosporine-loaded micelles for ocular delivery: Investigating the penetration mechanisms. J Control Release 2022:S0168-3659(22)00429-1. [PMID: 35901859 DOI: 10.1016/j.jconrel.2022.07.019] [Reference Citation Analysis]
108 Popovici C, Popa M, Sunel V, Atanase LI, Ichim DL. Drug Delivery Systems Based on Pluronic Micelles with Antimicrobial Activity. Polymers (Basel) 2022;14:3007. [PMID: 35893968 DOI: 10.3390/polym14153007] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
109 Bansal KK, Ali AA, Rahman M, Sjöholm E, Wilén C, Rosenholm JM. Evaluation of solubilizing potential of functional poly(jasmine lactone) micelles for hydrophobic drugs: A comparison with commercially available polymers. International Journal of Polymeric Materials and Polymeric Biomaterials. [DOI: 10.1080/00914037.2022.2090942] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
110 Esfandiarpour R, Badalkhani-Khamseh F, Hadipour NL. Exploration of phosphorene as doxorubicin nanocarrier: An atomistic view from DFT calculations and MD simulations. Colloids Surf B Biointerfaces 2022;215:112513. [PMID: 35483255 DOI: 10.1016/j.colsurfb.2022.112513] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
111 Liu F, Zhou Y, Liu L, Pan H, Liu H. Effect of 2-ethylbutyric acid on thermodynamics stability of various nonionic surfactants tanshione-loaded micelles. Journal of Molecular Liquids 2022. [DOI: 10.1016/j.molliq.2022.119775] [Reference Citation Analysis]
112 Marques MS, Lima LA, Poletto F, Contri RV, Kulkamp Guerreiro IC. Nanotechnology for the treatment of paediatric diseases: A review. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103628] [Reference Citation Analysis]
113 Uchiyama H, Kadota K, Tozuka Y. A review of transglycosylated compounds as food additives to enhance the solubility and oral absorption of hydrophobic compounds in nutraceuticals and pharmaceuticals. Crit Rev Food Sci Nutr 2022;:1-18. [PMID: 35757865 DOI: 10.1080/10408398.2022.2092056] [Reference Citation Analysis]
114 Moreno-Mendieta S, Guillén D, Vasquez-Martínez N, Hernández-Pando R, Sánchez S, Rodríguez-Sanoja R. Understanding the Phagocytosis of Particles: the Key for Rational Design of Vaccines and Therapeutics. Pharm Res 2022. [PMID: 35739369 DOI: 10.1007/s11095-022-03301-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
115 Deng Z, Tian Y, Song J, An G, Yang P. mRNA Vaccines: The Dawn of a New Era of Cancer Immunotherapy. Front Immunol 2022;13:887125. [PMID: 35720301 DOI: 10.3389/fimmu.2022.887125] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
116 Kaur J, Gulati M, Zacconi F, Dureja H, Loebenberg R, Ansari MS, AlOmeir O, Alam A, Chellappan DK, Gupta G, Jha NK, Pinto TJA, Morris A, Choonara YE, Adams J, Dua K, Singh SK. Biomedical Applications of polymeric micelles in the treatment of diabetes mellitus: Current success and future approaches. Expert Opin Drug Deliv 2022;:1-23. [PMID: 35695697 DOI: 10.1080/17425247.2022.2087629] [Reference Citation Analysis]
117 Lutz TM, Kimna C, Lieleg O. A pH-stable, mucin based nanoparticle system for the co-delivery of hydrophobic and hydrophilic drugs. Int J Biol Macromol 2022;215:102-12. [PMID: 35724899 DOI: 10.1016/j.ijbiomac.2022.06.081] [Reference Citation Analysis]
118 Espinola-portilla F, d’Orlyé F, Trapiella-alfonso L, Gutiérrez-granados S, Ramírez-garcía G, Varenne A. A deep understanding of the self-assembly and colloidal stability of light and pH dual-responsive spiropyran random copolymer micelle-like nano-aggregates. Materials Today Communications 2022;31:103499. [DOI: 10.1016/j.mtcomm.2022.103499] [Reference Citation Analysis]
119 Limsitthichaikoon S, Soontaranon S, Hanpramukkun N, Thumanu K, Priprem A. Polymeric Micelles Enhance Mucosal Contact Time and Deposition of Fluocinolone Acetonide. Polymers (Basel) 2022;14:2247. [PMID: 35683926 DOI: 10.3390/polym14112247] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
120 George TA, Hsu C, Meeson A, Lundy DJ. Nanocarrier-Based Targeted Therapies for Myocardial Infarction. Pharmaceutics 2022;14:930. [DOI: 10.3390/pharmaceutics14050930] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
121 Huang T, Gao J, Cai L, Xie H, Wang Y, Wang Y, Zhou Q. Treating Pulmonary Fibrosis with Non-Viral Gene Therapy: From Bench to Bedside. Pharmaceutics 2022;14:813. [DOI: 10.3390/pharmaceutics14040813] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
122 Parsaei M, Akhbari K. MOF-801 as a Nanoporous Water-Based Carrier System for In Situ Encapsulation and Sustained Release of 5-FU for Effective Cancer Therapy. Inorg Chem 2022. [PMID: 35377632 DOI: 10.1021/acs.inorgchem.2c00380] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
123 De R, Mahata MK, Kim KT. Structure-Based Varieties of Polymeric Nanocarriers and Influences of Their Physicochemical Properties on Drug Delivery Profiles. Adv Sci (Weinh) 2022;9:e2105373. [PMID: 35112798 DOI: 10.1002/advs.202105373] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 16.0] [Reference Citation Analysis]
124 Zohreh N, Karimi N, Hosseini SH, Istrate C, Busuioc C. Fabrication of a magnetic nanocarrier for doxorubicin delivery based on hyperbranched polyglycerol and carboxymethyl cellulose: An investigation on the effect of borax cross-linker on pH-sensitivity. Int J Biol Macromol 2022;203:80-92. [PMID: 35092736 DOI: 10.1016/j.ijbiomac.2022.01.150] [Reference Citation Analysis]
125 Cláudia Paiva-santos A, Gama M, Peixoto D, Sousa-oliveira I, Ferreira-faria I, Zeinali M, Abbaspour-ravasjani S, Mascarenhas-melo F, Hamishehkar H, Veiga F. Nanocarrier-based dermopharmaceutical formulations for the topical management of atopic dermatitis. International Journal of Pharmaceutics 2022;618:121656. [DOI: 10.1016/j.ijpharm.2022.121656] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
126 Loo HL, Goh BH, Lee LH, Chuah LH. Application of chitosan nanoparticles in skin wound healing. Asian Journal of Pharmaceutical Sciences 2022. [DOI: 10.1016/j.ajps.2022.04.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
127 Krishnan A, Roy S, Menon S. Amphiphilic Block Copolymers: From Synthesis Including Living Polymerization Methods to Applications in Drug Delivery. European Polymer Journal 2022. [DOI: 10.1016/j.eurpolymj.2022.111224] [Reference Citation Analysis]
128 Khursheed R, Paudel KR, Gulati M, Vishwas S, Jha NK, Hansbro PM, Oliver BG, Dua K, Singh SK. Expanding the arsenal against pulmonary diseases using surface-functionalized polymeric micelles: breakthroughs and bottlenecks. Nanomedicine (Lond) 2022. [PMID: 35332783 DOI: 10.2217/nnm-2021-0451] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
129 Kaushik N, Borkar SB, Nandanwar SK, Panda PK, Choi EH, Kaushik NK. Nanocarrier cancer therapeutics with functional stimuli-responsive mechanisms. J Nanobiotechnology 2022;20:152. [PMID: 35331246 DOI: 10.1186/s12951-022-01364-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
130 Prossnitz AN, Pun SH. Modulating Boronic Ester Stability in Block Copolymer Micelles via the Neighbor Effect of Copolymerized Tertiary Amines for Controlled Release of Polyphenolic Drugs. ACS Macro Lett 2022;11:276-83. [PMID: 35575376 DOI: 10.1021/acsmacrolett.1c00751] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
131 Zare I, Yaraki MT, Speranza G, Najafabadi AH, Haghighi AS, Nik AB, Manshian BB, Saraiva C, Soenen SJ, Kogan MJ, Lee JW, Apollo NV, Bernardino L, Araya E, Mayer D, Mao G, Hamblin MR. Gold nanostructures: synthesis, properties, and neurological applications. Chem Soc Rev 2022. [PMID: 35234776 DOI: 10.1039/d1cs01111a] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
132 Zhai H, Chen K, Meng Y, Wu Z, Deng R, Bai Y, Zhou J, Quan D. Synthesis and self-assembly of amphiphilic diblock polycarbonates with various pendant hydrophilic groups. Polymer 2022;244:124664. [DOI: 10.1016/j.polymer.2022.124664] [Reference Citation Analysis]
133 Pooresmaeil M, Namazi H. Folic acid-modified photoluminescent dialdehyde carboxymethyl cellulose crosslinked bionanogels for pH-controlled and tumor-targeted co-drug delivery. Int J Biol Macromol 2022;200:247-62. [PMID: 35007630 DOI: 10.1016/j.ijbiomac.2022.01.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
134 Rayatnia M, Foroutan G. Surface functionalization of polypropylene nanoparticles in a pulsed low pressure air plasma discharge. Surface Science 2022;717:121987. [DOI: 10.1016/j.susc.2021.121987] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
135 Guerrero-Hernández L, Meléndez-Ortiz HI, Cortez-Mazatan GY, Vaillant-Sánchez S, Peralta-Rodríguez RD. Gemini and Bicephalous Surfactants: A Review on Their Synthesis, Micelle Formation, and Uses. Int J Mol Sci 2022;23:1798. [PMID: 35163721 DOI: 10.3390/ijms23031798] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
136 Ameli H, Alizadeh N. Targeted delivery of capecitabine to colon cancer cells using nano polymeric micelles based on beta cyclodextrin. RSC Adv 2022;12:4681-91. [PMID: 35425510 DOI: 10.1039/d1ra07791k] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
137 Basko AV, Lebedeva TN, Yurov MY, Pochivalov KV. The Effect of Physical State of Thymol on the Duration of Its Release from the Mixture with a Semicrystalline Polymer: Thermodynamic Aspects and Kinetics of the Process. Polym Sci Ser A 2022;64:10-18. [DOI: 10.1134/s0965545x22010011] [Reference Citation Analysis]
138 El-Fattah AA, Grillo Fernandes E, Chiellini F, Chiellini E. Amphiphilic Pentablock Copolymers Prepared from Pluronic and ε-Caprolactone by Enzymatic Ring Opening Polymerization. Int J Mol Sci 2022;23:1390. [PMID: 35163317 DOI: 10.3390/ijms23031390] [Reference Citation Analysis]
139 Al Sharabati M, Sabouni R, Husseini GA. Biomedical Applications of Metal−Organic Frameworks for Disease Diagnosis and Drug Delivery: A Review. Nanomaterials 2022;12:277. [DOI: 10.3390/nano12020277] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 10.0] [Reference Citation Analysis]
140 Ningthoujam SS. Preclinical, clinical, and patented nanodrug delivery systems. Advances in Nanotechnology-Based Drug Delivery Systems 2022. [DOI: 10.1016/b978-0-323-88450-1.00003-x] [Reference Citation Analysis]
141 Liu X, Yin L. Polymers for protein delivery. Reference Module in Materials Science and Materials Engineering 2022. [DOI: 10.1016/b978-0-12-822425-0.00051-8] [Reference Citation Analysis]
142 Raslan M, Eslam M, Sara A, Sabri NA. Clinical translation of polymeric micelles into market. Polymeric Micelles for Drug Delivery 2022. [DOI: 10.1016/b978-0-323-89868-3.00008-2] [Reference Citation Analysis]
143 Arafa KK, El-sherbiny IM. Polymeric micelles with cleavable links for drug delivery. Polymeric Micelles for Drug Delivery 2022. [DOI: 10.1016/b978-0-323-89868-3.00020-3] [Reference Citation Analysis]
144 Bayat F, Mehryab F, Akhlaghi S, Haeri A. Nanostructured drug delivery approaches for fungal infections. Emerging Nanomaterials and Nano-Based Drug Delivery Approaches to Combat Antimicrobial Resistance 2022. [DOI: 10.1016/b978-0-323-90792-7.00006-3] [Reference Citation Analysis]
145 Kahraman E, Durgun ME, Güngör S, Özsoy Y. Polymeric micellar nanocarriers: topical treatment of inflammatory diseases. Polymeric Micelles for Drug Delivery 2022. [DOI: 10.1016/b978-0-323-89868-3.00011-2] [Reference Citation Analysis]
146 Islam R, Fang J. Polymeric micellar nanomedicine for enhanced permeability and retention effect–based tumor-targeted delivery. Polymeric Micelles for Drug Delivery 2022. [DOI: 10.1016/b978-0-323-89868-3.00021-5] [Reference Citation Analysis]
147 Alghamdi MA, Mohamad N, Alsobyan FM, Greish K, Amin MCIM. Cellular interaction of polymeric micelles in targeted drug delivery systems: the road from tissue to cell. Polymeric Micelles for Drug Delivery 2022. [DOI: 10.1016/b978-0-323-89868-3.00012-4] [Reference Citation Analysis]
148 Kenguva G, Rout SR, Fatima M, Dubey SK, Alexander A, Abourehab MA, Kesharwani P, Dandela R. Solubility enhancement and drug release mechanism of polymeric micelles. Polymeric Micelles for Drug Delivery 2022. [DOI: 10.1016/b978-0-323-89868-3.00006-9] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
149 Pacios-michelena S, García-garcía JD, Ramos-gonzález R, Chávez-gonzález M, Laredo-alcalá EI, Govea-salas M, Menchaca-castro LA, Segura-ceniseros P, Vargas-segura A, Arredondo-valdes R, Martínez-hernández JL, Nava-reyna E, Ilyina A. Nanocarrier-based formulations: Concepts and applications. Bio-Based Nanoemulsions for Agri-Food Applications 2022. [DOI: 10.1016/b978-0-323-89846-1.00028-0] [Reference Citation Analysis]
150 Zafar A, Asim-ur-rehman, Ahmed N. Nanovesicles for target specific drug delivery. Applications of Nanovesicular Drug Delivery 2022. [DOI: 10.1016/b978-0-323-91865-7.00021-3] [Reference Citation Analysis]
151 Shateran F, Ghasemzadeh MA, Aghaei SS. Preparation of NiFe 2 O 4 @MIL-101(Fe)/GO as a novel nanocarrier and investigation of its antimicrobial properties. RSC Adv 2022;12:7092-102. [DOI: 10.1039/d1ra08523a] [Reference Citation Analysis]
152 Abdul Hussein HA, Maraie NK. Tenoxicam-loaded polymeric micelles material: Formulation, optimization, and evaluation. Materials Today: Proceedings 2022;61:672-680. [DOI: 10.1016/j.matpr.2021.08.218] [Reference Citation Analysis]
153 Pérez SE, Haidar ZS. Polymeric micelles: précis for past, present and future. Polymeric Micelles for Drug Delivery 2022. [DOI: 10.1016/b978-0-323-89868-3.00019-7] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
154 Kondapaneni LP, Bobde Y, Ghosh B. Exogenous stimuli–responsive polymeric micelles for drug delivery. Polymeric Micelles for Drug Delivery 2022. [DOI: 10.1016/b978-0-323-89868-3.00017-3] [Reference Citation Analysis]
155 Mateos H, Gentile L, Murgia S, Colafemmina G, Collu M, Smets J, Palazzo G. Understanding the self-assembly of the polymeric drug solubilizer Soluplus®. J Colloid Interface Sci 2021;611:224-34. [PMID: 34952275 DOI: 10.1016/j.jcis.2021.12.016] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
156 Lin EMJ, Lay CL, Subramanian GS, Tan WS, Leong SSJ, Moh LCH, Lim K. Control Release Coating for Urinary Catheters with Enhanced Released Profile for Sustained Antimicrobial Protection. ACS Appl Mater Interfaces 2021;13:59263-74. [PMID: 34846837 DOI: 10.1021/acsami.1c17697] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
157 Sosnik A, Shabo RB, Halamish HM. Cannabidiol-Loaded Mixed Polymeric Micelles of Chitosan/Poly(Vinyl Alcohol) and Poly(Methyl Methacrylate) for Trans-Corneal Delivery. Pharmaceutics 2021;13:2142. [PMID: 34959427 DOI: 10.3390/pharmaceutics13122142] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
158 Machado MGC, de Oliveira MA, Lanna EG, Siqueira RP, Pound-Lana G, Branquinho RT, Mosqueira VCF. Photodynamic therapy with the dual-mode association of IR780 to PEG-PLA nanocapsules and the effects on human breast cancer cells. Biomed Pharmacother 2022;145:112464. [PMID: 34864313 DOI: 10.1016/j.biopha.2021.112464] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
159 Mohammadinejad R, Madamsetty VS, Kumar A, Varzandeh M, Dehshahri A, Zarrabi A, Sharififar F, Mohammadi M, Fahimipour A, Ramakrishna S. Electrospun nanocarriers for delivering natural products for cancer therapy. Trends in Food Science & Technology 2021;118:887-904. [DOI: 10.1016/j.tifs.2021.10.007] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
160 Demirdogen RE, Emen FM, Karaçolak AI, Kılıç D, Kutlu E, Meral O. Preparation of novel CaMoO4:Eu3+-MCM-41 nanocomposites and their applications and monitoring as drug release systems. Journal of Drug Delivery Science and Technology 2021;66:102792. [DOI: 10.1016/j.jddst.2021.102792] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
161 Parra A, Jarak I, Santos A, Veiga F, Figueiras A. Polymeric Micelles: A Promising Pathway for Dermal Drug Delivery. Materials (Basel) 2021;14:7278. [PMID: 34885432 DOI: 10.3390/ma14237278] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
162 Ye Z, Wu Z, Jayaraman A. Computational Reverse Engineering Analysis for Scattering Experiments (CREASE) on Vesicles Assembled from Amphiphilic Macromolecular Solutions. JACS Au 2021;1:1925-36. [PMID: 34841410 DOI: 10.1021/jacsau.1c00305] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
163 Braga CB, Pilli RA, Ornelas C, Weck M. Near-Infrared Fluorescent Micelles from Poly(norbornene) Brush Triblock Copolymers for Nanotheranostics. Biomacromolecules 2021. [PMID: 34779620 DOI: 10.1021/acs.biomac.1c01196] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
164 Öztürk K, Arslan FB, Öztürk SC, Çalış S. Mixed micelles formulation for carvedilol delivery: In-vitro characterization and in-vivo evaluation. Int J Pharm 2021;:121294. [PMID: 34793934 DOI: 10.1016/j.ijpharm.2021.121294] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
165 Ebrahimnejad P, Sodagar Taleghani A, Asare-Addo K, Nokhodchi A. An updated review of folate-functionalized nanocarriers: A promising ligand in cancer. Drug Discov Today 2021:S1359-6446(21)00490-6. [PMID: 34781032 DOI: 10.1016/j.drudis.2021.11.011] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
166 Bajrovic I, Le MD, Davis MM, Croyle MA. Evaluation of intermolecular interactions required for thermostability of a recombinant adenovirus within a film matrix. J Control Release 2021;341:118-31. [PMID: 34780881 DOI: 10.1016/j.jconrel.2021.11.012] [Reference Citation Analysis]
167 Gaynanova G, Vasileva L, Kashapov R, Kuznetsova D, Kushnazarova R, Tyryshkina A, Vasilieva E, Petrov K, Zakharova L, Sinyashin O. Self-Assembling Drug Formulations with Tunable Permeability and Biodegradability. Molecules 2021;26:6786. [PMID: 34833877 DOI: 10.3390/molecules26226786] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
168 Abbas G, Pandey G, Singh KB, Gautam N. One-Pot Surface Modification of β-Cu2O NPs for Biocatalytic Performance against A-549 Lung Carcinoma Cell Lines through Docking Analysis. ACS Omega 2021;6:29380-93. [PMID: 34778611 DOI: 10.1021/acsomega.1c02942] [Reference Citation Analysis]
169 Jannat K, Paul AK, Bondhon TA, Hasan A, Nawaz M, Jahan R, Mahboob T, Nissapatorn V, Wilairatana P, Pereira ML, Rahmatullah M. Nanotechnology Applications of Flavonoids for Viral Diseases. Pharmaceutics 2021;13:1895. [PMID: 34834309 DOI: 10.3390/pharmaceutics13111895] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
170 Bholakant R, Dong B, Zhou X, Huang X, Zhao C, Huang D, Zhong Y, Qian H, Chen W, Feijen J. Multi-functional polymeric micelles for chemotherapy-based combined cancer therapy. J Mater Chem B 2021;9:8718-38. [PMID: 34635905 DOI: 10.1039/d1tb01771c] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
171 Nocito MC, De Luca A, Prestia F, Avena P, La Padula D, Zavaglia L, Sirianni R, Casaburi I, Puoci F, Chimento A, Pezzi V. Antitumoral Activities of Curcumin and Recent Advances to ImProve Its Oral Bioavailability. Biomedicines 2021;9:1476. [PMID: 34680593 DOI: 10.3390/biomedicines9101476] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
172 Ren J, Cao Y, Li L, Wang X, Lu H, Yang J, Wang S. Self-assembled polymeric micelle as a novel mRNA delivery carrier. J Control Release 2021;338:537-47. [PMID: 34481924 DOI: 10.1016/j.jconrel.2021.08.061] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
173 Camara CI, Bertocchi L, Ricci C, Bassi R, Bianchera A, Cantu' L, Bettini R, Del Favero E. Hyaluronic Acid-Dexamethasone Nanoparticles for Local Adjunct Therapy of Lung Inflammation. Int J Mol Sci 2021;22:10480. [PMID: 34638821 DOI: 10.3390/ijms221910480] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
174 Ramos TI, Villacis-Aguirre CA, Santiago Vispo N, Santiago Padilla L, Pedroso Santana S, Parra NC, Alonso JRT. Forms and Methods for Interferon's Encapsulation. Pharmaceutics 2021;13:1533. [PMID: 34683824 DOI: 10.3390/pharmaceutics13101533] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
175 Ghezzi M, Pescina S, Delledonne A, Ferraboschi I, Sissa C, Terenziani F, Remiro PFR, Santi P, Nicoli S. Improvement of Imiquimod Solubilization and Skin Retention via TPGS Micelles: Exploiting the Co-Solubilizing Effect of Oleic Acid. Pharmaceutics 2021;13:1476. [PMID: 34575553 DOI: 10.3390/pharmaceutics13091476] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
176 Lichtenstein M, Zabit S, Hauser N, Farouz S, Melloul O, Hirbawi J, Lorberboum-Galski H. TAT for Enzyme/Protein Delivery to Restore or Destroy Cell Activity in Human Diseases. Life (Basel) 2021;11:924. [PMID: 34575072 DOI: 10.3390/life11090924] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
177 Han Z, Tu X, Qiao L, Sun Y, Li Z, Sun X, Wu Z. Phototherapy and multimodal imaging of cancers based on perfluorocarbon nanomaterials. J Mater Chem B 2021;9:6751-69. [PMID: 34346475 DOI: 10.1039/d1tb00554e] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
178 Bu X, Ji N, Dai L, Dong X, Chen M, Xiong L, Sun Q. Self-assembled micelles based on amphiphilic biopolymers for delivery of functional ingredients. Trends in Food Science & Technology 2021;114:386-98. [DOI: 10.1016/j.tifs.2021.06.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
179 Zuccari G, Alfei S, Zorzoli A, Marimpietri D, Turrini F, Baldassari S, Marchitto L, Caviglioli G. Increased Water-Solubility and Maintained Antioxidant Power of Resveratrol by Its Encapsulation in Vitamin E TPGS Micelles: A Potential Nutritional Supplement for Chronic Liver Disease. Pharmaceutics 2021;13:1128. [PMID: 34452090 DOI: 10.3390/pharmaceutics13081128] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
180 Skandalis A, Selianitis D, Pispas S. PnBA-b-PNIPAM-b-PDMAEA Thermo-Responsive Triblock Terpolymers and Their Quaternized Analogs as Gene and Drug Delivery Vectors. Polymers (Basel) 2021;13:2361. [PMID: 34301119 DOI: 10.3390/polym13142361] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
181 Bobde Y, Paul M, Patel T, Biswas S, Ghosh B. Polymeric micelles of a copolymer composed of all-trans retinoic acid, methoxy-poly(ethylene glycol), and b-poly(N-(2 hydroxypropyl) methacrylamide) as a doxorubicin-delivery platform and for combination chemotherapy in breast cancer. Int J Pharm 2021;606:120866. [PMID: 34237409 DOI: 10.1016/j.ijpharm.2021.120866] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
182 Cai H, Chen Y, Xu L, Zou Y, Zhou X, Liang G, Wang D, Tao Z. Differently PEGylated Polymer Nanoparticles for Pancreatic Cancer Delivery: Using a Novel Near-Infrared Emissive and Biodegradable Polymer as the Fluorescence Tracer. Front Bioeng Biotechnol 2021;9:699610. [PMID: 34268300 DOI: 10.3389/fbioe.2021.699610] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
183 Choi SH, Lee DY, Kang S, Lee MK, Lee JH, Lee SH, Lee HL, Lee HY, Jeong YI. Caffeic Acid Phenethyl Ester-Incorporated Radio-Sensitive Nanoparticles of Phenylboronic Acid Pinacol Ester-Conjugated Hyaluronic Acid for Application in Radioprotection. Int J Mol Sci 2021;22:6347. [PMID: 34198522 DOI: 10.3390/ijms22126347] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
184 Yusuf O, Ali R, Alomrani AH, Alshamsan A, Alshememry AK, Almalik AM, Lavasanifar A, Binkhathlan Z. Design and Development of D‒α‒Tocopheryl Polyethylene Glycol Succinate‒block‒Poly(ε-Caprolactone) (TPGS-b-PCL) Nanocarriers for Solubilization and Controlled Release of Paclitaxel. Molecules 2021;26:2690. [PMID: 34064416 DOI: 10.3390/molecules26092690] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
185 Jiang X, Abedi K, Shi J. Polymeric nanoparticles for RNA delivery. Reference Module in Materials Science and Materials Engineering 2021. [DOI: 10.1016/b978-0-12-822425-0.00017-8] [Cited by in F6Publishing: 1] [Reference Citation Analysis]