BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ghosh B, Biswas S. Polymeric micelles in cancer therapy: State of the art. J Control Release 2021;332:127-47. [PMID: 33609621 DOI: 10.1016/j.jconrel.2021.02.016] [Cited by in Crossref: 88] [Cited by in F6Publishing: 97] [Article Influence: 44.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhang X, Xu X, Wang X, Lin Y, Zheng Y, Xu W, Liu J, Xu W. Hepatoma-targeting and reactive oxygen species-responsive chitosan-based polymeric micelles for delivery of celastrol. Carbohydr Polym 2023;303:120439. [PMID: 36657834 DOI: 10.1016/j.carbpol.2022.120439] [Reference Citation Analysis]
2 Fu X, Li M, Ju J, Wu H, Geng Y, Jia S, Li S, Huang S. Nanoporous Silica Nanoparticles Coloaded with Cisplatin Prodrug and l-Buthionine Sulfoximine for Cancer Therapy. ACS Appl Nano Mater 2023. [DOI: 10.1021/acsanm.2c04933] [Reference Citation Analysis]
3 Wang Q, Wang Z, Li Z, Li D, He F, Wang K, Tian J, Zhao X. Biomimetic camouflaged nanoparticle-based folfirinox platform for optimizing clinical pancreatic cancer treatment. Nano Today 2023;48:101733. [DOI: 10.1016/j.nantod.2022.101733] [Reference Citation Analysis]
4 Sawpari R, Samanta S, Banerjee J, Das S, Dash SS, Ahmed R, Giri B, Dash SK. Recent advances and futuristic potentials of nano-tailored doxorubicin for prostate cancer therapy. Journal of Drug Delivery Science and Technology 2023. [DOI: 10.1016/j.jddst.2023.104212] [Reference Citation Analysis]
5 Li H, Gou R, Liao J, Wang Y, Qu R, Tang Q, Gan J, Zou L, Shi S. Recent advances in nano-targeting drug delivery systems for rheumatoid arthritis treatment. Acta Materia Medica 2023;2. [DOI: 10.15212/amm-2022-0039] [Reference Citation Analysis]
6 Al-Hetty HRAK, Kadhim MS, Al-Tamimi JHZ, Ahmed NM, Jalil AT, Saleh MM, Kandeel M, Abbas RH. Implications of biomimetic nanocarriers in targeted drug delivery. Emergent Mater 2023;:1-13. [PMID: 36686331 DOI: 10.1007/s42247-023-00453-8] [Reference Citation Analysis]
7 Jia W, Zhou L, Li L, Zhou P, Shen Z. Nano-Based Drug Delivery of Polyphenolic Compounds for Cancer Treatment: Progress, Opportunities, and Challenges. Pharmaceuticals (Basel) 2023;16. [PMID: 36678599 DOI: 10.3390/ph16010101] [Reference Citation Analysis]
8 Kaur J, Gulati M, Corrie L, Awasthi A, Jha NK, Chellappan DK, Gupta G, MacLoughlin R, Oliver BG, Dua K, Singh SK. Role of nucleic acid-based polymeric micelles in treating lung diseases. Nanomedicine (Lond) 2023. [PMID: 36606499 DOI: 10.2217/nnm-2022-0260] [Reference Citation Analysis]
9 Qin Y, Geng X, Sun Y, Zhao Y, Chai W, Wang X, Wang P. Ultrasound nanotheranostics: Toward precision medicine. J Control Release 2023;353:105-24. [PMID: 36400289 DOI: 10.1016/j.jconrel.2022.11.021] [Reference Citation Analysis]
10 Zhang C, Zhao J, Wang W, Geng H, Wang Y, Gao B. Current advances in the application of nanomedicine in bladder cancer. Biomed Pharmacother 2023;157:114062. [PMID: 36469969 DOI: 10.1016/j.biopha.2022.114062] [Reference Citation Analysis]
11 Wande DP, Trevaskis N, Farooq MA, Jabeen A, Nayak AK. Theranostic nanostructures as nanomedicines. Design and Applications of Theranostic Nanomedicines 2023. [DOI: 10.1016/b978-0-323-89953-6.00008-8] [Reference Citation Analysis]
12 Addisu KD, Lee W, Tsai H, Wu S. Fabrication of amino acid conjugated polymeric micelles for controlled anticancer drug delivery using radiation and pH-stimuli-triggering systems. Journal of Drug Delivery Science and Technology 2023. [DOI: 10.1016/j.jddst.2023.104170] [Reference Citation Analysis]
13 Zhao C, Zhou B. Polyethyleneimine-Based Drug Delivery Systems for Cancer Theranostics. J Funct Biomater 2022;14. [PMID: 36662059 DOI: 10.3390/jfb14010012] [Reference Citation Analysis]
14 Lee J, Kim K, Kwon IC, Lee KY. Intracellular Glucose-Depriving Polymer Micelles for Antiglycolytic Cancer Treatment. Adv Mater 2022;:e2207342. [PMID: 36524460 DOI: 10.1002/adma.202207342] [Reference Citation Analysis]
15 Alsaab HO, Alharbi FD, Alhibs AS, Alanazi NB, Alshehri BY, Saleh MA, Alshehri FS, Algarni MA, Almugaiteeb T, Uddin MN, Alzhrani RM. PLGA-Based Nanomedicine: History of Advancement and Development in Clinical Applications of Multiple Diseases. Pharmaceutics 2022;14. [PMID: 36559223 DOI: 10.3390/pharmaceutics14122728] [Reference Citation Analysis]
16 Zeng X, Teng Y, Zhu C, Li Z, Liu T, Sun Y, Han S. Combined Ibuprofen-Nanoconjugate Micelles with E-Selectin for Effective Sunitinib Anticancer Therapy. Int J Nanomedicine 2022;17:6031-46. [PMID: 36510619 DOI: 10.2147/IJN.S388234] [Reference Citation Analysis]
17 Xu W, Ye C, Qing X, Liu S, Lv X, Wang W, Dong X, Zhang Y. Multi-target tyrosine kinase inhibitor nanoparticle delivery systems for cancer therapy. Mater Today Bio 2022;16:100358. [PMID: 35880099 DOI: 10.1016/j.mtbio.2022.100358] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
18 Yuan H, Zhou L, Qi Z, Zhang C, Wang C. Preparation of pH-responsive solanesol-based poly (glutamic acid) micellar carrier for doxorubicin delivery. Materials Today Communications 2022;33:104800. [DOI: 10.1016/j.mtcomm.2022.104800] [Reference Citation Analysis]
19 Xu T, Liu Z, Huang L, Jing J, Liu X. Modulating the tumor immune microenvironment with nanoparticles: A sword for improving the efficiency of ovarian cancer immunotherapy. Front Immunol 2022;13:1057850. [PMID: 36532066 DOI: 10.3389/fimmu.2022.1057850] [Reference Citation Analysis]
20 Naharros-Molinero A, Caballo-González MÁ, de la Mata FJ, García-Gallego S. Direct and Reverse Pluronic Micelles: Design and Characterization of Promising Drug Delivery Nanosystems. Pharmaceutics 2022;14. [PMID: 36559122 DOI: 10.3390/pharmaceutics14122628] [Reference Citation Analysis]
21 Katmerlikaya TG, Dag A, Ozgen PSO, Ersen BC. Dual-Drug Conjugated Glyco-Nanoassemblies for Tumor-Triggered Targeting and Synergistic Cancer Therapy. ACS Appl Bio Mater 2022;5:5356-64. [PMID: 36346990 DOI: 10.1021/acsabm.2c00749] [Reference Citation Analysis]
22 Wei X, Xiang Z, Xue W, Chen S. Enhancing the Antitumor Efficacy of Zwitterionic Peptide-Based Nanoscale Micelles through Sensitizing Their Response in Solid Tumors. ACS Appl Nano Mater 2022. [DOI: 10.1021/acsanm.2c03880] [Reference Citation Analysis]
23 Parodi A, Kolesova EP, Voronina MV, Frolova AS, Kostyushev D, Trushina DB, Akasov R, Pallaeva T, Zamyatnin AA. Anticancer Nanotherapeutics in Clinical Trials: The Work behind Clinical Translation of Nanomedicine. IJMS 2022;23:13368. [DOI: 10.3390/ijms232113368] [Reference Citation Analysis]
24 Zhang W, Gao Y, Xue R, Nguyen W, Chen W, Wang J, Shu Y. Liquid Formulations Based on Ionic Liquids in Biomedicine. Materials Today Physics 2022. [DOI: 10.1016/j.mtphys.2022.100925] [Reference Citation Analysis]
25 Sun H, Zhan M, Mignani S, Shcharbin D, Majoral J, Rodrigues J, Shi X, Shen M. Modulation of Macrophages Using Nanoformulations with Curcumin to Treat Inflammatory Diseases: A Concise Review. Pharmaceutics 2022;14:2239. [DOI: 10.3390/pharmaceutics14102239] [Reference Citation Analysis]
26 Jeyagaran A, Lu CE, Zbinden A, Birkenfeld AL, Brucker SY, Layland SL. Type 1 diabetes and engineering enhanced islet transplantation. Adv Drug Deliv Rev 2022;189:114481. [PMID: 36002043 DOI: 10.1016/j.addr.2022.114481] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Alhaj-Suliman SO, Wafa EI, Salem AK. Engineering nanosystems to overcome barriers to cancer diagnosis and treatment. Adv Drug Deliv Rev 2022;189:114482. [PMID: 35944587 DOI: 10.1016/j.addr.2022.114482] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
28 Xiang H, Xu S, Li J, Li Y, Xue X, Liu Y, Li J, Miao X. Functional drug nanocrystals for cancer-target delivery. Journal of Drug Delivery Science and Technology 2022;76:103807. [DOI: 10.1016/j.jddst.2022.103807] [Reference Citation Analysis]
29 Gang H, Wang H, Ma S, Wang C, Bian L, Wang Z, Zhou Y, Gu S, Liu X, Xu W, Zhuang Y, Yang H. Polylactic acid/silk fibroin composite hollow fibers as excellent controlled drug release systems. Polymers for Advanced Techs. [DOI: 10.1002/pat.5883] [Reference Citation Analysis]
30 Zhao J, Zhang C, Wang W, Li C, Mu X, Hu K. Current progress of nanomedicine for prostate cancer diagnosis and treatment. Biomed Pharmacother 2022;155:113714. [PMID: 36150309 DOI: 10.1016/j.biopha.2022.113714] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Zheng J, Song X, Yang Z, Yin C, Luo W, Yin C, Ni Y, Wang Y, Zhang Y. Self-assembly hydrogels of therapeutic agents for local drug delivery. J Control Release 2022;350:898-921. [PMID: 36089171 DOI: 10.1016/j.jconrel.2022.09.001] [Reference Citation Analysis]
32 Jesús Villarreal-gómez L, Lizeth Pérez-gonzález G. Novel Drug Carries: Properties and Applications. Drug Carriers [Working Title] 2022. [DOI: 10.5772/intechopen.106868] [Reference Citation Analysis]
33 Junnuthula V, Kolimi P, Nyavanandi D, Sampathi S, Vora LK, Dyawanapelly S. Polymeric Micelles for Breast Cancer Therapy: Recent Updates, Clinical Translation and Regulatory Considerations. Pharmaceutics 2022;14:1860. [PMID: 36145608 DOI: 10.3390/pharmaceutics14091860] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
34 Shukla A, Maiti P. Nanomedicine and versatile therapies for cancer treatment. MedComm 2022;3. [DOI: 10.1002/mco2.163] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Wang X, Zheng Y, Qiu L, Ouyang H, Xu X, Xu W, Zhang Y, Xu W. Evaluation and antitumor mechanism of functionalized chitosan-based polymeric micelles for oral delivery of paclitaxel. Int J Pharm 2022;625:122138. [PMID: 36029990 DOI: 10.1016/j.ijpharm.2022.122138] [Reference Citation Analysis]
36 Takakura Y, Takahashi Y. Strategies for persistent retention of macromolecules and nanoparticles in the blood circulation. J Control Release 2022:S0168-3659(22)00543-0. [PMID: 36029894 DOI: 10.1016/j.jconrel.2022.05.063] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
37 Wang H, Ullah A. Synthesis and Evaluation of Thermoresponsive Renewable Lipid-Based Block Copolymers for Drug Delivery. Polymers 2022;14:3436. [DOI: 10.3390/polym14173436] [Reference Citation Analysis]
38 Figueiras A, Domingues C, Jarak I, Santos AI, Parra A, Pais A, Alvarez-lorenzo C, Concheiro A, Kabanov A, Cabral H, Veiga F. New Advances in Biomedical Application of Polymeric Micelles. Pharmaceutics 2022;14:1700. [DOI: 10.3390/pharmaceutics14081700] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Wang Z, Mu X, Yang Q, Luo J, Zhao Y. Hypoxia-responsive nanocarriers for chemotherapy sensitization via dual-mode inhibition of hypoxia-inducible factor-1 alpha. J Colloid Interface Sci 2022;628:106-15. [PMID: 35987150 DOI: 10.1016/j.jcis.2022.08.060] [Reference Citation Analysis]
40 Sikder A, Vambhurkar G, Amulya E, Bagasariya D, Famta P, Shah S, Khatri DK, Singh SB, Sinha VR, Srivastava S. Advancements in redox-sensitive micelles as nanotheranostics: A new horizon in cancer management. J Control Release 2022;349:1009-30. [PMID: 35961470 DOI: 10.1016/j.jconrel.2022.08.008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
41 Kotta S, Aldawsari HM, Badr-Eldin SM, Nair AB, Yt K. Progress in Polymeric Micelles for Drug Delivery Applications. Pharmaceutics 2022;14:1636. [PMID: 36015262 DOI: 10.3390/pharmaceutics14081636] [Reference Citation Analysis]
42 Kumbhar P, Kole K, Khadake V, Marale P, Manjappa A, Nadaf S, Jadhav R, Patil A, Singh SK, Dua K, Jha NK, Disouza J, Patravale V. Nanoparticulate drugs and vaccines: Breakthroughs and bottlenecks of repurposing in breast cancer. J Control Release 2022;349:812-30. [PMID: 35914614 DOI: 10.1016/j.jconrel.2022.07.039] [Reference Citation Analysis]
43 Jafari M, Abolmaali SS, Borandeh S, Najafi H, Zareshahrabadi Z, Heidari R, Azarpira N, Zomorodian K, Tamaddon AM. Amphiphilic hyperbranched polyglycerol nanoarchitectures for Amphotericin B delivery in Candida infections. Biomaterials Advances 2022;139:212996. [DOI: 10.1016/j.bioadv.2022.212996] [Reference Citation Analysis]
44 Ma Y, Liu Y, Wang Y, Guo Y, Li Y, Li R, Kong X, Han Q, Wei R, Wang J. The nanocomposite system comprising folic acid-modified graphene quantum dots loaded with evodiamine in the treatment of oral squamous cell carcinoma. Materials & Design 2022;220:110838. [DOI: 10.1016/j.matdes.2022.110838] [Reference Citation Analysis]
45 Almeida A, Castro F, Resende C, Lúcio M, Schwartz S Jr, Sarmento B. Oral delivery of camptothecin-loaded multifunctional chitosan-based micelles is effective in reduce colorectal cancer. J Control Release 2022:S0168-3659(22)00448-5. [PMID: 35905784 DOI: 10.1016/j.jconrel.2022.07.029] [Reference Citation Analysis]
46 Zhao R, Liu J, Li Z, Zhang W, Wang F, Zhang B. Recent Advances in CXCL12/CXCR4 Antagonists and Nano-Based Drug Delivery Systems for Cancer Therapy. Pharmaceutics 2022;14:1541. [PMID: 35893797 DOI: 10.3390/pharmaceutics14081541] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
47 Zhang J, Liu M, Zeng Z. The antisolvent coprecipitation method for enhanced bioavailability of poorly water-soluble drugs. Int J Pharm 2022;:122043. [PMID: 35902056 DOI: 10.1016/j.ijpharm.2022.122043] [Reference Citation Analysis]
48 Xu J, Cao W, Wang P, Liu H. Tumor-Derived Membrane Vesicles: A Promising Tool for Personalized Immunotherapy. Pharmaceuticals (Basel) 2022;15:876. [PMID: 35890175 DOI: 10.3390/ph15070876] [Reference Citation Analysis]
49 Sharma R, Chatterjee E, Mathew J, Sharma S, Rao NV, Pan CH, Lee SB, Dhingra A, Grewal AS, Liou JP, Guru SK, Nepali K. Accommodation of ring C expanded deoxyvasicinone in the HDAC inhibitory pharmacophore culminates into a tractable anti-lung cancer agent and pH-responsive nanocarrier. Eur J Med Chem 2022;240:114602. [PMID: 35858522 DOI: 10.1016/j.ejmech.2022.114602] [Reference Citation Analysis]
50 Fatfat Z, Fatfat M, Gali-Muhtasib H. Micelles as potential drug delivery systems for colorectal cancer treatment. World J Gastroenterol 2022; 28(25): 2867-2880 [DOI: 10.3748/wjg.v28.i25.2867] [Cited by in CrossRef: 1] [Article Influence: 1.0] [Reference Citation Analysis]
51 Liu F, Zhou Y, Liu L, Pan H, Liu H. Effect of 2-ethylbutyric acid on thermodynamics stability of various nonionic surfactants tanshione-loaded micelles. Journal of Molecular Liquids 2022. [DOI: 10.1016/j.molliq.2022.119775] [Reference Citation Analysis]
52 Deng Z, Tian Y, Song J, An G, Yang P. mRNA Vaccines: The Dawn of a New Era of Cancer Immunotherapy. Front Immunol 2022;13:887125. [PMID: 35720301 DOI: 10.3389/fimmu.2022.887125] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
53 Sun L, Zhao P, Chen M, Leng J, Luan Y, Du B, Yang J, Yang Y, Rong R. Taxanes prodrug-based nanomedicines for cancer therapy. J Control Release 2022;348:672-91. [PMID: 35691501 DOI: 10.1016/j.jconrel.2022.06.004] [Reference Citation Analysis]
54 Kaur J, Gulati M, Zacconi F, Dureja H, Loebenberg R, Ansari MS, AlOmeir O, Alam A, Chellappan DK, Gupta G, Jha NK, Pinto TJA, Morris A, Choonara YE, Adams J, Dua K, Singh SK. Biomedical Applications of polymeric micelles in the treatment of diabetes mellitus: Current success and future approaches. Expert Opin Drug Deliv 2022;:1-23. [PMID: 35695697 DOI: 10.1080/17425247.2022.2087629] [Reference Citation Analysis]
55 Nooreen R, Nene S, Jain H, Prasannanjaneyulu V, Chitlangya P, Otavi S, Khatri DK, Raghuvanshi RS, Singh SB, Srivastava S. Polymer nanotherapeutics: A versatile platform for effective rheumatoid arthritis therapy. J Control Release 2022;348:397-419. [PMID: 35660632 DOI: 10.1016/j.jconrel.2022.05.054] [Reference Citation Analysis]
56 Zhang W, Taheri-ledari R, Ganjali F, Afruzi FH, Hajizadeh Z, Saeidirad M, Qazi FS, Kashtiaray A, Sehat SS, Hamblin MR, Maleki A. Nanoscale bioconjugates: A review of the structural attributes of drug-loaded nanocarrier conjugates for selective cancer therapy. Heliyon 2022;8:e09577. [DOI: 10.1016/j.heliyon.2022.e09577] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
57 Chen W, Liu P. Dendritic polyurethane-based prodrug as unimolecular micelles for precise ultrasound-activated localized drug delivery. Materials Today Chemistry 2022;24:100819. [DOI: 10.1016/j.mtchem.2022.100819] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Shpotya V, Perepukhov A, Maksimychev A, Gomzyak V, Sedush N, Chvalun S. Structure determination of hyperbranched polyester BOLTORN H40 by 1D- and 2D-NMR spectroscopy. Polym Bull . [DOI: 10.1007/s00289-022-04274-3] [Reference Citation Analysis]
59 Kaur J, Gulati M, Kapoor B, Jha NK, Gupta PK, Gupta G, Chellappan DK, Devkota HP, Prasher P, Ansari MS, Aba Alkhayl FF, Arshad MF, Morris A, Choonara YE, Adams J, Dua K, Singh SK. Advances in designing of polymeric micelles for biomedical application in brain related diseases. Chemico-Biological Interactions 2022. [DOI: 10.1016/j.cbi.2022.109960] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
60 Awad M, Thomas N, Barnes TJ, Prestidge CA. Nanomaterials enabling clinical translation of antimicrobial photodynamic therapy. J Control Release 2022:S0168-3659(22)00231-0. [PMID: 35483636 DOI: 10.1016/j.jconrel.2022.04.035] [Reference Citation Analysis]
61 Huang J, Zhuang C, Chen J, Chen X, Li X, Zhang T, Wang B, Feng Q, Zheng X, Gong M, Gong Q, Xiao K, Luo K, Li W. Targeted Drug/Gene/Photodynamic Therapy via a Stimuli-Responsive Dendritic-Polymer-Based Nanococktail for Treatment of EGFR-TKI-Resistant Non-Small-Cell Lung Cancer. Adv Mater 2022;:e2201516. [PMID: 35481881 DOI: 10.1002/adma.202201516] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
62 Xiang J, Shen Y, Zhang Y, Liu X, Zhou Q, Zhou Z, Tang J, Shao S, Shen Y. Multipotent Poly(Tertiary Amine-Oxide) Micelles for Efficient Cancer Drug Delivery. Adv Sci (Weinh) 2022;9:e2200173. [PMID: 35187868 DOI: 10.1002/advs.202200173] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
63 Nejati K, Rastegar M, Fathi F, Dadashpour M, Arabzadeh A. Nanoparticle-based drug delivery systems to overcome gastric cancer drug resistance. Journal of Drug Delivery Science and Technology 2022;70:103231. [DOI: 10.1016/j.jddst.2022.103231] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
64 Chen Z, Chen X, Liu G, Han K, Chen J, Wang J. Editorial: The Application of Nanoengineering in Advanced Drug Delivery and Translational Research. Front Bioeng Biotechnol 2022;10:886109. [DOI: 10.3389/fbioe.2022.886109] [Reference Citation Analysis]
65 Kamenova K, Grancharov G, Kortenova V, Petrov PD. Redox-Responsive Crosslinked Mixed Micelles for Controllable Release of Caffeic Acid Phenethyl Ester. Pharmaceutics 2022;14:679. [DOI: 10.3390/pharmaceutics14030679] [Reference Citation Analysis]
66 Ramesh K, Yadav S, Mishra AK, Jo S, Park S, Oh C, Lim KT. Interface‐cross ‐linked micelles of poly(D,L‐lactide)‐ b ‐poly(furfuryl methacrylate)‐ b ‐poly(N‐acryloylmorpholine) for near‐infrared‐triggered drug delivery application. Polymers for Advanced Techs. [DOI: 10.1002/pat.5663] [Reference Citation Analysis]
67 Peña Q, Wang A, Zaremba O, Shi Y, Scheeren HW, Metselaar JM, Kiessling F, Pallares RM, Wuttke S, Lammers T. Metallodrugs in cancer nanomedicine. Chem Soc Rev 2022. [PMID: 35262108 DOI: 10.1039/d1cs00468a] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
68 Tian T, Ruan J, Zhang J, Zhao CX, Chen D, Shan J. Nanocarrier-Based Tumor-Targeting Drug Delivery Systems for Hepatocellular Carcinoma Treatments: Enhanced Therapeutic Efficacy and Reduced Drug Toxicity. J Biomed Nanotechnol 2022;18:660-76. [PMID: 35715919 DOI: 10.1166/jbn.2022.3297] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
69 Guo H. Dissipative particle dynamics simulation on phase behaviour of reduction-responsive polyprodrug amphiphile. Molecular Simulation 2022;48:594-601. [DOI: 10.1080/08927022.2022.2037586] [Reference Citation Analysis]
70 Bariwal J, Ma H, Altenberg GA, Liang H. Nanodiscs: a versatile nanocarrier platform for cancer diagnosis and treatment. Chem Soc Rev 2022. [PMID: 35156110 DOI: 10.1039/d1cs01074c] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
71 Mundekkad D, Cho WC. Nanoparticles in Clinical Translation for Cancer Therapy. Int J Mol Sci 2022;23:1685. [PMID: 35163607 DOI: 10.3390/ijms23031685] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 17.0] [Reference Citation Analysis]
72 Kaur J, Gulati M, Kumar Jha N, Disouza J, Patravale V, Dua K, Kumar Singh S. Recent advances in developing polymeric micelles for treating cancer: breakthroughs and bottlenecks in their clinical translation. Drug Discovery Today 2022. [DOI: 10.1016/j.drudis.2022.02.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
73 Zhong J, Quan Y, Zhao X, Li S, He Z, Ye G, Sun M, Miao Y, Ma C, Yang H, Chen X, Huang Y. Coassembling functionalized glycopolypeptides to prepare pH-responsive self-indicating nanocomplexes to manipulate self-assembly/drug delivery and visualize intracellular drug release. Materials Science and Engineering: C 2022. [DOI: 10.1016/j.msec.2022.112711] [Reference Citation Analysis]
74 Yang X, Duan J, Wu L. Research advances in NQO1-responsive prodrugs and nanocarriers for cancer treatment. Future Med Chem 2022. [PMID: 35102756 DOI: 10.4155/fmc-2021-0289] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
75 Hemrajani C, Negi P, Parashar A, Gupta G, Jha NK, Singh SK, Chellappan DK, Dua K. Overcoming drug delivery barriers and challenges in topical therapy of atopic dermatitis: A nanotechnological perspective. Biomed Pharmacother 2022;147:112633. [PMID: 35030434 DOI: 10.1016/j.biopha.2022.112633] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
76 Yu Q, England RM, Gunnarsson A, Luxenhofer R, Treacher K, Ashford MB. Designing Highly Stable Poly(sarcosine)-Based Telodendrimer Micelles with High Drug Content Exemplified with Fulvestrant. Macromolecules. [DOI: 10.1021/acs.macromol.1c02086] [Reference Citation Analysis]
77 Pan Z, Yang G, Yuan J, Pan M, Li J, Tan H. Effect of the disulfide bond and polyethylene glycol on the degradation and biophysicochemical properties of polyurethane micelles. Biomater Sci 2022. [PMID: 34988575 DOI: 10.1039/d1bm01422f] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
78 Zhang M, Yu H, Hu J, Zhao Z, Liu L, Yang G, Wang T, Han G, Song S. Therapeutic carrier based on solanesol and hyaluronate for synergistic tumor treatment. Int J Biol Macromol 2022;201:20-8. [PMID: 34998870 DOI: 10.1016/j.ijbiomac.2021.12.194] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
79 Morad H, Jounaki K, Ansari M, Sadeghian-abadi S, Vahidi H, Barabadi H. Bioengineered Metallic Nanomaterials for Nanoscale Drug Delivery Systems. Nanotechnology in the Life Sciences 2022. [DOI: 10.1007/978-3-031-12658-1_7] [Reference Citation Analysis]
80 Liu M, Chen X, Chen H, Wu X, Fan W, Chen J. Nanotechnology-Based Drug Delivery System for Anticancer Active Ingredients from Traditional Chinese Medicines: A Review. Am J Chin Med 2022;50:2011-2032. [DOI: 10.1142/s0192415x22500860] [Reference Citation Analysis]
81 Parayath NN. Polymeric micelles as delivery systems for anticancer immunotherapy. Polymeric Micelles for Drug Delivery 2022. [DOI: 10.1016/b978-0-323-89868-3.00004-5] [Reference Citation Analysis]
82 Ya. F. Zverev, A. Ya. Rykunova. Modern Nanocarriers as a Factor in Increasing the Bioavailability and Pharmacological Activity of Flavonoids. Appl Biochem Microbiol 2022;58. [PMID: 36540406 DOI: 10.1134/S0003683822090149] [Reference Citation Analysis]
83 Ali A, Bhadane R, Asl AA, Wilén C, Salo-ahen O, Rosenholm JM, Bansal KK. Functional block copolymer micelles based on poly (jasmine lactone) for improving the loading efficiency of weakly basic drugs. RSC Adv 2022;12:26763-75. [DOI: 10.1039/d2ra03962a] [Reference Citation Analysis]
84 Puzari M, Chetia P. Nanotechnology-based cancer drug delivery. Advances in Nanotechnology-Based Drug Delivery Systems 2022. [DOI: 10.1016/b978-0-323-88450-1.00007-7] [Reference Citation Analysis]
85 Marquet F, Borchard G. Polymeric micelles for drug delivery in oncology with an emphasis on siRNA conveyance. Polymeric Micelles for Drug Delivery 2022. [DOI: 10.1016/b978-0-323-89868-3.00014-8] [Reference Citation Analysis]
86 Hang J, Chen Y, Tian P, Yu R, Wang M, Zhao M. Preparation and pharmacodynamics of niclosamide micelles. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2021.103088] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
87 Tu L, Liao Z, Luo Z, Wu Y, Herrmann A, Huo S. Ultrasound‐controlled drug release and drug activation for cancer therapy. Exploration 2021;1:20210023. [DOI: 10.1002/exp.20210023] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 11.0] [Reference Citation Analysis]
88 Guo C, Zhang C, Xia Z, Song B, Hu W, Cui Y, Xue Y, Xia M, Xu D, Zhang S, Fang J. Nano-designed CO donor ameliorates bleomycin-induced pulmonary fibrosis via macrophage manipulation. J Control Release 2021;341:566-77. [PMID: 34864115 DOI: 10.1016/j.jconrel.2021.11.047] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
89 Dai J, Dong X, Wang Q, Lou X, Xia F, Wang S. PEG-Polymer Encapsulated Aggregation-Induced Emission Nanoparticles for Tumor Theranostics. Adv Healthc Mater 2021;10:e2101036. [PMID: 34414687 DOI: 10.1002/adhm.202101036] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
90 Yang L, Hou X, Zhang Y, Wang D, Liu J, Huang F, Liu J. NIR-activated self-sensitized polymeric micelles for enhanced cancer chemo-photothermal therapy. J Control Release 2021;339:114-29. [PMID: 34536448 DOI: 10.1016/j.jconrel.2021.09.017] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
91 Zhou M, Luo Y, Zeng W, Yang X, Chen T, Zhang L, He X, Yi X, Li Y, Yi X. A Co-delivery System Based on a Dimeric Prodrug and Star-Shaped Polymeric Prodrug Micelles for Drug Delivery. Front Chem 2021;9:765021. [PMID: 34746097 DOI: 10.3389/fchem.2021.765021] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
92 Yang C, Lin ZI, Chen JA, Xu Z, Gu J, Law WC, Yang JHC, Chen CK. Organic/Inorganic Self-Assembled Hybrid Nano-Architectures for Cancer Therapy Applications. Macromol Biosci 2021;:e2100349. [PMID: 34735739 DOI: 10.1002/mabi.202100349] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
93 Bholakant R, Dong B, Zhou X, Huang X, Zhao C, Huang D, Zhong Y, Qian H, Chen W, Feijen J. Multi-functional polymeric micelles for chemotherapy-based combined cancer therapy. J Mater Chem B 2021;9:8718-38. [PMID: 34635905 DOI: 10.1039/d1tb01771c] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
94 Okubo K, Umezawa M, Soga K. Near Infrared Fluorescent Nanostructure Design for Organic/Inorganic Hybrid System. Biomedicines 2021;9:1583. [PMID: 34829811 DOI: 10.3390/biomedicines9111583] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
95 Navarro-Barreda D, Bedrina B, Galindo F, Miravet JF. Glutathione-responsive molecular nanoparticles from a dianionic bolaamphiphile and their use as carriers for targeted delivery. J Colloid Interface Sci 2021;608:2009-17. [PMID: 34752979 DOI: 10.1016/j.jcis.2021.10.142] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
96 Biglione C, Neumann‐tran TMP, Kanwal S, Klinger D. Amphiphilic micro‐ and nanogels: Combining properties from internal hydrogel networks, solid particles, and micellar aggregates. Journal of Polymer Science 2021;59:2665-703. [DOI: 10.1002/pol.20210508] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
97 Marquet F, Patrulea V, Borchard G. Comparison of triblock copolymeric micelles based on α- and ε-poly(L-lysine): a Cornelian choice. Polym J 2022;54:199-209. [DOI: 10.1038/s41428-021-00552-5] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
98 Ren J, Cao Y, Li L, Wang X, Lu H, Yang J, Wang S. Self-assembled polymeric micelle as a novel mRNA delivery carrier. J Control Release 2021;338:537-47. [PMID: 34481924 DOI: 10.1016/j.jconrel.2021.08.061] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
99 Qin X, He L, Feng C, Fan D, Liang W, Wang Q, Fang J. Injectable Micelle-Incorporated Hydrogels for the Localized Chemo-Immunotherapy of Breast Tumors. ACS Appl Mater Interfaces 2021;13:46270-81. [PMID: 34550685 DOI: 10.1021/acsami.1c11563] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
100 Hani U, M. YB, Wahab S, Siddiqua A, Osmani RAM, Rahamathulla M. A Comprehensive Review of Current Perspectives on Novel Drug Delivery Systems and Approaches for Lung Cancer Management. J Pharm Innov. [DOI: 10.1007/s12247-021-09582-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
101 Bensa V, Calarco E, Giusto E, Perri P, Corrias MV, Ponzoni M, Brignole C, Pastorino F. Retinoids Delivery Systems in Cancer: Liposomal Fenretinide for Neuroectodermal-Derived Tumors. Pharmaceuticals (Basel) 2021;14:854. [PMID: 34577553 DOI: 10.3390/ph14090854] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
102 Kojima C, Hirose T, Katayama R, Matsumoto A. Solubilization of Paclitaxel by Self-Assembled Amphiphilic Phospholipid-Mimetic Polymers with Varied Hydrophobicity. Polymers (Basel) 2021;13:2805. [PMID: 34451342 DOI: 10.3390/polym13162805] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
103 Karayianni M, Pispas S. Block copolymer solution self‐assembly: Recent advances, emerging trends, and applications. Journal of Polymer Science 2021;59:1874-98. [DOI: 10.1002/pol.20210430] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
104 Tefas LR, Barbălată C, Tefas C, Tomuță I. Salinomycin-Based Drug Delivery Systems: Overcoming the Hurdles in Cancer Therapy. Pharmaceutics 2021;13:1120. [PMID: 34452081 DOI: 10.3390/pharmaceutics13081120] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
105 Han H, Li S, Zhong Y, Huang Y, Wang K, Jin Q, Ji J, Yao K. Emerging pro-drug and nano-drug strategies for gemcitabine-based cancer therapy. Asian Journal of Pharmaceutical Sciences 2021. [DOI: 10.1016/j.ajps.2021.06.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
106 Biswas S. Polymeric micelles as drug-delivery systems in cancer: challenges and opportunities. Nanomedicine (Lond) 2021;16:1541-4. [PMID: 34169749 DOI: 10.2217/nnm-2021-0081] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
107 Ding Y, Wang C, Sun Z, Wu Y, You W, Mao Z, Wang W. Mesenchymal Stem Cells Engineered by Nonviral Vectors: A Powerful Tool in Cancer Gene Therapy. Pharmaceutics 2021;13:913. [PMID: 34205513 DOI: 10.3390/pharmaceutics13060913] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
108 Sezgin-Bayindir Z, Losada-Barreiro S, Bravo-Díaz C, Sova M, Kristl J, Saso L. Nanotechnology-Based Drug Delivery to Improve the Therapeutic Benefits of NRF2 Modulators in Cancer Therapy. Antioxidants (Basel) 2021;10:685. [PMID: 33925605 DOI: 10.3390/antiox10050685] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
109 Kaur J, Mishra V, Singh SK, Gulati M, Kapoor B, Chellappan DK, Gupta G, Dureja H, Anand K, Dua K, Khatik GL, Gowthamarajan K. Harnessing amphiphilic polymeric micelles for diagnostic and therapeutic applications: Breakthroughs and bottlenecks. J Control Release 2021;334:64-95. [PMID: 33887283 DOI: 10.1016/j.jconrel.2021.04.014] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 11.0] [Reference Citation Analysis]