BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Marques AC, Costa PJ, Velho S, Amaral MH. Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies. J Control Release 2020;320:180-200. [PMID: 31978444 DOI: 10.1016/j.jconrel.2020.01.035] [Cited by in Crossref: 85] [Cited by in F6Publishing: 93] [Article Influence: 42.5] [Reference Citation Analysis]
Number Citing Articles
1 Navarro-tovar G, Salado-leza D, Carreón-álvarez C, Acosta-ruelas BJ, Rodríguez-lópez JL. Surface functionalization of nanoparticles: Structure determines function. Antimicrobial Activity of Nanoparticles 2023. [DOI: 10.1016/b978-0-12-821637-8.00004-3] [Reference Citation Analysis]
2 Oliveira AEF, Pereira AC, Ferreira LF. Disposable electropolymerized molecularly imprinted electrochemical sensor for determination of breast cancer biomarker CA 15-3 in human serum samples. Talanta 2023;252:123819. [DOI: 10.1016/j.talanta.2022.123819] [Reference Citation Analysis]
3 Li R, Zhang Y, Zhao J, Wang Y, Wang H, Zhang Z, Lin H, Li Z. Quantum-dot-based sandwich lateral flow immunoassay for the rapid detection of shrimp major allergen tropomyosin. Journal of Food Composition and Analysis 2022;114:104776. [DOI: 10.1016/j.jfca.2022.104776] [Reference Citation Analysis]
4 Gabel M, Knauss A, Fischer D, Neurath MF, Weigmann B. Surface Design Options in Polymer- and Lipid-Based siRNA Nanoparticles Using Antibodies. IJMS 2022;23:13929. [DOI: 10.3390/ijms232213929] [Reference Citation Analysis]
5 Yu H, Wu M, Chen S, Song M, Yue Y. Biomimetic nanoparticles for tumor immunotherapy. Front Bioeng Biotechnol 2022;10. [DOI: 10.3389/fbioe.2022.989881] [Reference Citation Analysis]
6 Pranav, Laskar P, Jaggi M, Chauhan SC, Yallapu MM. Biomolecule-functionalized nanoformulations for prostate cancer theranostics. Journal of Advanced Research 2022. [DOI: 10.1016/j.jare.2022.11.001] [Reference Citation Analysis]
7 du Toit LC, Hulisani Demana P, Essop Choonara Y. A nano-enabled biotinylated anti-LDL theranostic system to modulate systemic LDL cholesterol. International Journal of Pharmaceutics 2022;628:122258. [DOI: 10.1016/j.ijpharm.2022.122258] [Reference Citation Analysis]
8 Navarro-palomares E, García-hevia L, Galán-vidal J, Gandarillas A, García-reija F, Sánchez-iglesias A, Liz-marzán LM, Valiente R, Fanarraga ML. Shiga Toxin-B Targeted Gold Nanorods for Local Photothermal Treatment in Oral Cancer Clinical Samples. IJN 2022;Volume 17:5747-5760. [DOI: 10.2147/ijn.s381628] [Reference Citation Analysis]
9 Ratre P, Jain B, Kumari R, Thareja S, Tiwari R, Srivastava RK, Goryacheva IY, Mishra PK. Bioanalytical Applications of Graphene Quantum Dots for Circulating Cell-Free Nucleic Acids: A Review. ACS Omega 2022. [DOI: 10.1021/acsomega.2c05414] [Reference Citation Analysis]
10 Abesekara MS, Chau Y. Recent advances in surface modification of micro- and nano-scale biomaterials with biological membranes and biomolecules. Front Bioeng Biotechnol 2022;10:972790. [DOI: 10.3389/fbioe.2022.972790] [Reference Citation Analysis]
11 Liu X, Cheng Y, Xia F, Fan L, Gao X, Sun X, Li X, Zhu L, Li J. Quantum dot nanobeads as multicolor labels for simultaneous multiplex immunochromatography detection of four nitrofuran metabolites in aquatic products.. [DOI: 10.21203/rs.3.rs-2034331/v1] [Reference Citation Analysis]
12 Bahutair WN, Abuwatfa WH, Husseini GA. Ultrasound Triggering of Liposomal Nanodrugs for Cancer Therapy: A Review. Nanomaterials (Basel) 2022;12:3051. [PMID: 36080088 DOI: 10.3390/nano12173051] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Chis AA, Arseniu AM, Morgovan C, Dobrea CM, Frum A, Juncan AM, Butuca A, Ghibu S, Gligor FG, Rus LL. Biopolymeric Prodrug Systems as Potential Antineoplastic Therapy. Pharmaceutics 2022;14:1773. [DOI: 10.3390/pharmaceutics14091773] [Reference Citation Analysis]
14 Atanasio GN, Ferrari PF, Baião A, Perego P, Sarmento B, Palombo D, Campardelli R. Bevacizumab encapsulation into PLGA nanoparticles functionalized with immunouteroglobin-1 as an innovative delivery system for atherosclerosis. Int J Biol Macromol 2022:S0141-8130(22)01763-9. [PMID: 35970371 DOI: 10.1016/j.ijbiomac.2022.08.063] [Reference Citation Analysis]
15 Shi X, Sun Y, Shen L. Preparation and in vivo imaging of a novel potential αvβ3 targeting PET/MRI dual-modal imaging agent. J Radioanal Nucl Chem. [DOI: 10.1007/s10967-022-08431-w] [Reference Citation Analysis]
16 Cheng M, Dai D. Inhibitory of active dual cancer targeting 5-Fluorouracil nanoparticles on liver cancer in vitro and in vivo. Front Oncol 2022;12:971475. [DOI: 10.3389/fonc.2022.971475] [Reference Citation Analysis]
17 Tian C, Zheng S, Liu X, Kamei KI. Tumor-on-a-chip model for advancement of anti-cancer nano drug delivery system. J Nanobiotechnology 2022;20:338. [PMID: 35858898 DOI: 10.1186/s12951-022-01552-0] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Rouco H, García-García P, Évora C, Díaz-Rodríguez P, Delgado A. Screening strategies for surface modification of lipid-polymer hybrid nanoparticles. Int J Pharm 2022;624:121973. [PMID: 35811041 DOI: 10.1016/j.ijpharm.2022.121973] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
19 Jin Y, Edalatian Zakeri S, Bahal R, Wiemer AJ. New Technologies Bloom Together for Bettering Cancer Drug Conjugates. Pharmacol Rev 2022;74:680-711. [PMID: 35710136 DOI: 10.1124/pharmrev.121.000499] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Zhou R, Zhang M, He J, Liu J, Sun X, Ni P. Functional cRGD-Conjugated Polymer Prodrug for Targeted Drug Delivery to Liver Cancer Cells. ACS Omega. [DOI: 10.1021/acsomega.2c02683] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
21 Gao D, Cheng F, Wang X, Yang H, Liu C, Li C, Yang EM, Cheng G, He W. Developing G value as an indicator for assessing the molecular status of immobilized antibody. Colloids Surf B Biointerfaces 2022;217:112593. [PMID: 35665639 DOI: 10.1016/j.colsurfb.2022.112593] [Reference Citation Analysis]
22 Delille F, Pu Y, Lequeux N, Pons T. Designing the Surface Chemistry of Inorganic Nanocrystals for Cancer Imaging and Therapy. Cancers (Basel) 2022;14:2456. [PMID: 35626059 DOI: 10.3390/cancers14102456] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Dong X, Brahma RK, Fang C, Yao SQ. Stimulus-responsive self-assembled prodrugs in cancer therapy. Chem Sci 2022;13:4239-69. [PMID: 35509461 DOI: 10.1039/d2sc01003h] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
24 Cao Y, Wu J, Zheng X, Lu Y, Piper JA, Lu Y, Packer NH. Assessing the activity of antibodies conjugated to upconversion nanoparticles for immunolabeling. Analytica Chimica Acta 2022. [DOI: 10.1016/j.aca.2022.339863] [Reference Citation Analysis]
25 León-janampa N, Shinkaruk S, Gilman RH, Kirwan DE, Fouquet E, Szlosek M, Sheen P, Zimic M. BIORECOGNITION AND DETECTION OF ANTIGENS FROM Mycobacterium tuberculosis using a sandwich ELISA associated with magnetic nanoparticles. Journal of Pharmaceutical and Biomedical Analysis 2022. [DOI: 10.1016/j.jpba.2022.114749] [Reference Citation Analysis]
26 Khan N, Ruchika, Kumar Dhritlahre R, Saneja A. Recent advances in dual-ligand targeted nanocarriers for cancer therapy. Drug Discovery Today 2022. [DOI: 10.1016/j.drudis.2022.04.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
27 Woythe L, Madhikar P, Feiner-Gracia N, Storm C, Albertazzi L. A Single-Molecule View at Nanoparticle Targeting Selectivity: Correlating Ligand Functionality and Cell Receptor Density. ACS Nano 2022;16:3785-96. [PMID: 35274534 DOI: 10.1021/acsnano.1c08277] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
28 Gao X, Zhang J, He Z, Chang L, Jian Z, Liu L, Li Y, Hu C, Wei X. Targeting delivery of synergistic dual drugs with elastic PEG-modified multi-functional nanoparticles for hepatocellular carcinoma therapy. International Journal of Pharmaceutics 2022;616:121567. [DOI: 10.1016/j.ijpharm.2022.121567] [Reference Citation Analysis]
29 Diniz F, Coelho P, Duarte HO, Sarmento B, Reis CA, Gomes J. Glycans as Targets for Drug Delivery in Cancer. Cancers 2022;14:911. [DOI: 10.3390/cancers14040911] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
30 Zhang N, Wu Y, Xu W, Li Z, Wang L. Synergic fabrication of multifunctional liposomes nanocomposites for improved radiofrequency ablation combination for liver metastasis cancer therapy. Drug Deliv 2022;29:506-18. [PMID: 35147065 DOI: 10.1080/10717544.2021.2008056] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
31 Mundekkad D, Cho WC. Nanoparticles in Clinical Translation for Cancer Therapy. Int J Mol Sci 2022;23:1685. [PMID: 35163607 DOI: 10.3390/ijms23031685] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
32 Biby A, Wang X, Liu X, Roberson O, Henry A, Xia X. Rapid testing for coronavirus disease 2019 (COVID-19). MRS Communications. [DOI: 10.1557/s43579-021-00146-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
33 Wang G, Mashimo Y, Kobatake E, Mie M. Development of an enhanced immunoassay based on protein nanoparticles displaying an IgG-binding domain and luciferase. Anal Bioanal Chem 2022. [PMID: 35037082 DOI: 10.1007/s00216-021-03842-2] [Reference Citation Analysis]
34 Nishimoto-Sauceda D, Romero-Robles LE, Antunes-Ricardo M. Biopolymer nanoparticles: a strategy to enhance stability, bioavailability, and biological effects of phenolic compounds as functional ingredients. J Sci Food Agric 2022;102:41-52. [PMID: 34460939 DOI: 10.1002/jsfa.11512] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
35 Farshbaf M, Valizadeh H, Panahi Y, Fatahi Y, Chen M, Zarebkohan A, Gao H. The impact of protein corona on the biological behavior of targeting nanomedicines. Int J Pharm 2022;614:121458. [PMID: 35017025 DOI: 10.1016/j.ijpharm.2022.121458] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 14.0] [Reference Citation Analysis]
36 Farmanbar N, Mohseni S, Darroudi M. Green synthesis of chitosan-coated magnetic nanoparticles for drug delivery of oxaliplatin and irinotecan against colorectal cancer cells. Polym Bull . [DOI: 10.1007/s00289-021-04066-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
37 Archontakis E, Woythe L, van Hoof B, Albertazzi L. Mapping the relationship between total and functional antibodies conjugated to nanoparticles with spectrally-resolved direct stochastic optical reconstruction microscopy (SR-dSTORM). Nanoscale Adv . [DOI: 10.1039/d2na00435f] [Reference Citation Analysis]
38 Guan Q, Wang M. Core-Shell Structured Theranostics. Nano LIFE 2021;11:2141004. [DOI: 10.1142/s179398442141004x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Ganie SA, Rather LJ, Li Q. A review on anticancer applications of pullulan and pullulan derivative nanoparticles. Carbohydrate Polymer Technologies and Applications 2021;2:100115. [DOI: 10.1016/j.carpta.2021.100115] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
40 Ravi Kiran AVVV, Kusuma Kumari G, Krishnamurthy PT, Khaydarov RR. Tumor microenvironment and nanotherapeutics: intruding the tumor fort. Biomater Sci 2021;9:7667-704. [PMID: 34673853 DOI: 10.1039/d1bm01127h] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
41 Zhang J. Recent Advances on Biomarkers and Bioreceptor Used for Cancer Detection. 2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC) 2021. [DOI: 10.1109/ic-nidc54101.2021.9660450] [Reference Citation Analysis]
42 Roacho-Pérez JA, Garza-Treviño EN, Delgado-Gonzalez P, G-Buentello Z, Delgado-Gallegos JL, Chapa-Gonzalez C, Sánchez-Domínguez M, Sánchez-Domínguez CN, Islas JF. Target Nanoparticles against Pancreatic Cancer: Fewer Side Effects in Therapy. Life (Basel) 2021;11:1187. [PMID: 34833063 DOI: 10.3390/life11111187] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
43 Bi Z, Huang L, Han M, Ma J, Wang P. One‐pot preparation of small lipid‐indocyanine green nanoparticles to induced intracellular oxidative/thermal stress damage for effective colorectal cancer therapy. Micro & Nano Letters 2021;16:636-42. [DOI: 10.1049/mna2.12093] [Reference Citation Analysis]
44 Murakami K, Nagatoishi S, Kasahara K, Nagai H, Sasajima Y, Sasaki R, Tsumoto K. Electrostatic-triggered exothermic antibody adsorption to the cellulose nanoparticles. Anal Biochem 2021;632:114337. [PMID: 34391727 DOI: 10.1016/j.ab.2021.114337] [Reference Citation Analysis]
45 Laucirica G, Toum Terrones Y, Cayón V, Cortez ML, Toimil-molares ME, Trautmann C, Marmisollé W, Azzaroni O. Biomimetic solid-state nanochannels for chemical and biological sensing applications. TrAC Trends in Analytical Chemistry 2021;144:116425. [DOI: 10.1016/j.trac.2021.116425] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
46 Subjakova V, Oravczova V, Tatarko M, Hianik T. Advances in electrochemical aptasensors and immunosensors for detection of bacterial pathogens in food. Electrochimica Acta 2021;389:138724. [DOI: 10.1016/j.electacta.2021.138724] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 10.0] [Reference Citation Analysis]
47 Komane PP, Kumar P, Choonara YE. Atrial Natriuretic Peptide Antibody-Functionalised, PEGylated Multiwalled Carbon Nanotubes for Targeted Ischemic Stroke Intervention. Pharmaceutics 2021;13:1357. [PMID: 34575433 DOI: 10.3390/pharmaceutics13091357] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
48 Dang MN, Hoover EC, Scully MA, Sterin EH, Day ES. Antibody Nanocarriers for Cancer Management. Curr Opin Biomed Eng 2021;19:100295. [PMID: 34423177 DOI: 10.1016/j.cobme.2021.100295] [Reference Citation Analysis]
49 Atabakhshi-Kashi M, Carril M, Mahdavi H, Parak WJ, Carrillo-Carrion C, Khajeh K. In Vitro Cellular Uptake Studies of Self-Assembled Fluorinated Nanoparticles Labelled with Antibodies. Nanomaterials (Basel) 2021;11:1906. [PMID: 34443736 DOI: 10.3390/nano11081906] [Reference Citation Analysis]
50 Moulahoum H, Ghorbanizamani F, Zihnioglu F, Timur S. Surface Biomodification of Liposomes and Polymersomes for Efficient Targeted Drug Delivery. Bioconjug Chem 2021. [PMID: 34283580 DOI: 10.1021/acs.bioconjchem.1c00285] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
51 Ashok B, Peppas NA, Wechsler ME. Lipid- and Polymer-Based Nanoparticle Systems for the Delivery of CRISPR/Cas9. J Drug Deliv Sci Technol 2021;65:102728. [PMID: 34335878 DOI: 10.1016/j.jddst.2021.102728] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
52 Kadkhoda J, Akrami-Hasan-Kohal M, Tohidkia MR, Khaledi S, Davaran S, Aghanejad A. Advances in antibody nanoconjugates for diagnosis and therapy: A review of recent studies and trends. Int J Biol Macromol 2021;185:664-78. [PMID: 34224755 DOI: 10.1016/j.ijbiomac.2021.06.191] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 18.0] [Reference Citation Analysis]
53 Lan HR, Wu ZQ, Zhang LH, Jin KT, Wang SB. Nanotechnology Assisted Chemotherapy for Targeted Cancer Treatment: Recent Advances and Clinical Perspectives. Curr Top Med Chem 2020;20:2442-58. [PMID: 32703133 DOI: 10.2174/1568026620666200722110808] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
54 Liu Z, Wang S, Tapeinos C, Torrieri G, Känkänen V, El-Sayed N, Python A, Hirvonen JT, Santos HA. Non-viral nanoparticles for RNA interference: Principles of design and practical guidelines. Adv Drug Deliv Rev 2021;174:576-612. [PMID: 34019958 DOI: 10.1016/j.addr.2021.05.018] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
55 Rawal S, Patel M. Bio-Nanocarriers for Lung Cancer Management: Befriending the Barriers. Nanomicro Lett 2021;13:142. [PMID: 34138386 DOI: 10.1007/s40820-021-00630-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
56 Lee C, Kang S. Development of HER2-Targeting-Ligand-Modified Albumin Nanoparticles Based on the SpyTag/SpyCatcher System for Photothermal Therapy. Biomacromolecules 2021;22:2649-58. [PMID: 34060808 DOI: 10.1021/acs.biomac.1c00336] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
57 Nieto C, Vega MA, Martín Del Valle E. Nature-Inspired Nanoparticles as Paclitaxel Targeted Carrier for the Treatment of HER2-Positive Breast Cancer. Cancers (Basel) 2021;13:2526. [PMID: 34064007 DOI: 10.3390/cancers13112526] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
58 Frickenstein AN, Hagood JM, Britten CN, Abbott BS, McNally MW, Vopat CA, Patterson EG, MacCuaig WM, Jain A, Walters KB, McNally LR. Mesoporous Silica Nanoparticles: Properties and Strategies for Enhancing Clinical Effect. Pharmaceutics 2021;13:570. [PMID: 33920503 DOI: 10.3390/pharmaceutics13040570] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 16.0] [Reference Citation Analysis]
59 Briolay T, Petithomme T, Fouet M, Nguyen-Pham N, Blanquart C, Boisgerault N. Delivery of cancer therapies by synthetic and bio-inspired nanovectors. Mol Cancer 2021;20:55. [PMID: 33761944 DOI: 10.1186/s12943-021-01346-2] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 22.0] [Reference Citation Analysis]
60 Lin X, O'Reilly Beringhs A, Lu X. Applications of Nanoparticle-Antibody Conjugates in Immunoassays and Tumor Imaging. AAPS J 2021;23:43. [PMID: 33718979 DOI: 10.1208/s12248-021-00561-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
61 Reche-Perez FJ, Plesselova S, De Los Reyes-Berbel E, Ortega-Muñoz M, Lopez-Jaramillo FJ, Hernandez-Mateo F, Santoyo-Gonzalez F, Salto-Gonzalez R, Giron-Gonzalez MD. Single chain variable fragment fused to maltose binding protein: a modular nanocarrier platform for the targeted delivery of antitumorals. Biomater Sci 2021;9:1728-38. [PMID: 33432316 DOI: 10.1039/d0bm01903h] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
62 Lee GP, Willis A, Pernal S, Phakatkar A, Shokuhfar T, Blot V, Engelhard HH. Targeted sonodynamic destruction of glioblastoma cells using antibody-titanium dioxide nanoparticle conjugates. Nanomedicine (Lond) 2021;16:523-34. [PMID: 33660528 DOI: 10.2217/nnm-2020-0452] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
63 Lin ZC, Hwang TL, Huang TH, Tahara K, Trousil J, Fang JY. Monovalent antibody-conjugated lipid-polymer nanohybrids for active targeting to desmoglein 3 of keratinocytes to attenuate psoriasiform inflammation. Theranostics 2021;11:4567-84. [PMID: 33754014 DOI: 10.7150/thno.56995] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
64 Liu R, Zuo R, Hudalla GA. Harnessing molecular recognition for localized drug delivery. Adv Drug Deliv Rev 2021;170:238-60. [PMID: 33484737 DOI: 10.1016/j.addr.2021.01.008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
65 Khochaiche A, Westlake M, O'Keefe A, Engels E, Vogel S, Valceski M, Li N, Rule KC, Horvat J, Konstantinov K, Rosenfeld A, Lerch M, Corde S, Tehei M. First extensive study of silver-doped lanthanum manganite nanoparticles for inducing selective chemotherapy and radio-toxicity enhancement. Mater Sci Eng C Mater Biol Appl 2021;123:111970. [PMID: 33812598 DOI: 10.1016/j.msec.2021.111970] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
66 Escareño N, Hassan N, Kogan MJ, Juárez J, Topete A, Daneri-Navarro A. Microfluidics-assisted conjugation of chitosan-coated polymeric nanoparticles with antibodies: Significance in drug release, uptake, and cytotoxicity in breast cancer cells. J Colloid Interface Sci 2021;591:440-50. [PMID: 33631531 DOI: 10.1016/j.jcis.2021.02.031] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 15.0] [Reference Citation Analysis]
67 Woythe L, Tito NB, Albertazzi L. A quantitative view on multivalent nanomedicine targeting. Adv Drug Deliv Rev 2021;169:1-21. [PMID: 33264593 DOI: 10.1016/j.addr.2020.11.010] [Cited by in Crossref: 19] [Cited by in F6Publishing: 25] [Article Influence: 19.0] [Reference Citation Analysis]
68 Rebelo AL, Chevalier MT, Russo L, Pandit A. Sweet tailoring of glyco-modulatory extracellular matrix-inspired biomaterials to target neuroinflammation. Cell Reports Physical Science 2021;2:100321. [DOI: 10.1016/j.xcrp.2021.100321] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
69 Vlcnovska M, Stossova A, Kuchynka M, Dillingerova V, Polanska H, Masarik M, Hrstka R, Adam V, Kanicky V, Vaculovic T, Vaculovicova M. Comparison of Metal Nanoparticles (Au, Ag, Eu, Cd) Used for Immunoanalysis Using LA-ICP-MS Detection. Molecules 2021;26:630. [PMID: 33530345 DOI: 10.3390/molecules26030630] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
70 Lourenço BN, Pereira RF, Barrias CC, Fischbach C, Oliveira C, Granja PL. Engineering Modular Half-Antibody Conjugated Nanoparticles for Targeting CD44v6-Expressing Cancer Cells. Nanomaterials (Basel) 2021;11:295. [PMID: 33498669 DOI: 10.3390/nano11020295] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
71 Bloise N, Okkeh M, Restivo E, Della Pina C, Visai L. Targeting the "Sweet Side" of Tumor with Glycan-Binding Molecules Conjugated-Nanoparticles: Implications in Cancer Therapy and Diagnosis. Nanomaterials (Basel) 2021;11:289. [PMID: 33499388 DOI: 10.3390/nano11020289] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
72 Arslan FB, Ozturk Atar K, Calis S. Antibody-mediated drug delivery. Int J Pharm 2021;596:120268. [PMID: 33486037 DOI: 10.1016/j.ijpharm.2021.120268] [Cited by in Crossref: 24] [Cited by in F6Publishing: 28] [Article Influence: 24.0] [Reference Citation Analysis]
73 Subjakova V, Oravczova V, Hianik T. Polymer Nanoparticles and Nanomotors Modified by DNA/RNA Aptamers and Antibodies in Targeted Therapy of Cancer. Polymers (Basel) 2021;13:341. [PMID: 33494545 DOI: 10.3390/polym13030341] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
74 Nigoghossian K. Rare-Earth-Doped Ceramic Nanoparticles for Transparency in the Biomedical Field. Transparency in Biology 2021. [DOI: 10.1007/978-981-15-9627-8_6] [Reference Citation Analysis]
75 Grigoletto A, Tedeschini T, Canato E, Pasut G. The evolution of polymer conjugation and drug targeting for the delivery of proteins and bioactive molecules. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;13:e1689. [PMID: 33314717 DOI: 10.1002/wnan.1689] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
76 Thalhauser S, Breunig M. Considerations for efficient surface functionalization of nanoparticles with a high molecular weight protein as targeting ligand. Eur J Pharm Sci 2020;155:105520. [PMID: 32822809 DOI: 10.1016/j.ejps.2020.105520] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
77 Guyon L, Groo AC, Malzert-Fréon A. Relevant Physicochemical Methods to Functionalize, Purify, and Characterize Surface-Decorated Lipid-Based Nanocarriers. Mol Pharm 2021;18:44-64. [PMID: 33244972 DOI: 10.1021/acs.molpharmaceut.0c00857] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
78 Gierlich P, Mata AI, Donohoe C, Brito RMM, Senge MO, Gomes-da-Silva LC. Ligand-Targeted Delivery of Photosensitizers for Cancer Treatment. Molecules 2020;25:E5317. [PMID: 33202648 DOI: 10.3390/molecules25225317] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 12.5] [Reference Citation Analysis]
79 Santos EDS, Nogueira KAB, Fernandes LCC, Martins JRP, Reis AVF, Neto JBV, Júnior IJDS, Pessoa C, Petrilli R, Eloy JO. EGFR targeting for cancer therapy: Pharmacology and immunoconjugates with drugs and nanoparticles. Int J Pharm 2021;592:120082. [PMID: 33188892 DOI: 10.1016/j.ijpharm.2020.120082] [Cited by in Crossref: 27] [Cited by in F6Publishing: 34] [Article Influence: 13.5] [Reference Citation Analysis]
80 Fonseca-Gomes J, Loureiro JA, Tanqueiro SR, Mouro FM, Ruivo P, Carvalho T, Sebastião AM, Diógenes MJ, Pereira MC. In vivo Bio-Distribution and Toxicity Evaluation of Polymeric and Lipid-Based Nanoparticles: A Potential Approach for Chronic Diseases Treatment. Int J Nanomedicine 2020;15:8609-21. [PMID: 33177821 DOI: 10.2147/IJN.S267007] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
81 Sui J, He M, Yang Y, Ma M, Guo Z, Zhao M, Liang J, Sun Y, Fan Y, Zhang X. Reversing P-Glycoprotein-Associated Multidrug Resistance of Breast Cancer by Targeted Acid-Cleavable Polysaccharide Nanoparticles with Lapatinib Sensitization. ACS Appl Mater Interfaces 2020;12:51198-211. [PMID: 33147005 DOI: 10.1021/acsami.0c13986] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
82 Suleiman E, Mayer J, Lehner E, Kohlhauser B, Katholnig A, Batzoni M, Damm D, Temchura V, Wagner A, Überla K, Vorauer-Uhl K. Conjugation of Native-Like HIV-1 Envelope Trimers onto Liposomes Using EDC/Sulfo-NHS Chemistry: Requirements and Limitations. Pharmaceutics 2020;12:E979. [PMID: 33081278 DOI: 10.3390/pharmaceutics12100979] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
83 Desai H, Mahmoud MY, Tan J, Minooei F, Demuth DR, Steinbach-Rankins JM. Assessment of CafA Targeted BAR-Encapsulated Nanoparticles against Oral Biofilms. Pharmaceutics 2020;12:E835. [PMID: 32882864 DOI: 10.3390/pharmaceutics12090835] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
84 Nieto C, Vega MA, Martín Del Valle EM. Trastuzumab: More than a Guide in HER2-Positive Cancer Nanomedicine. Nanomaterials (Basel) 2020;10:E1674. [PMID: 32859026 DOI: 10.3390/nano10091674] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
85 Juan A, Cimas FJ, Bravo I, Pandiella A, Ocaña A, Alonso-Moreno C. An Overview of Antibody Conjugated Polymeric Nanoparticles for Breast Cancer Therapy. Pharmaceutics 2020;12:E802. [PMID: 32854255 DOI: 10.3390/pharmaceutics12090802] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 17.0] [Reference Citation Analysis]
86 Ponziani S, Di Vittorio G, Pitari G, Cimini AM, Ardini M, Gentile R, Iacobelli S, Sala G, Capone E, Flavell DJ, Ippoliti R, Giansanti F. Antibody-Drug Conjugates: The New Frontier of Chemotherapy. Int J Mol Sci 2020;21:E5510. [PMID: 32752132 DOI: 10.3390/ijms21155510] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 20.0] [Reference Citation Analysis]
87 Ferreira NN, Granja S, Boni FI, Prezotti FG, Ferreira LMB, Cury BSF, Reis RM, Baltazar F, Gremião MPD. Modulating chitosan-PLGA nanoparticle properties to design a co-delivery platform for glioblastoma therapy intended for nose-to-brain route. Drug Deliv Transl Res 2020;10:1729-47. [PMID: 32683647 DOI: 10.1007/s13346-020-00824-2] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 10.0] [Reference Citation Analysis]
88 Fuentes GV, Doucet EN, Abraham A, Rodgers NK, Alonso F, Euceda N, Quinones MH, Riascos PA, Pierre K, Sarker NH, Dhar-Mascareno M, Cotlet M, Kisslinger K, Camino F, Li M, Lu F, Gao R. Nanocomposite liposomes for pH-controlled porphyrin release into human prostate cancer cells. RSC Adv 2020;10:17094-100. [PMID: 35496928 DOI: 10.1039/d0ra00846j] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
89 Martín-gracia B, Martín-barreiro A, Cuestas-ayllón C, Grazú V, Line A, Llorente A, M. de la Fuente J, Moros M. Nanoparticle-based biosensors for detection of extracellular vesicles in liquid biopsies. J Mater Chem B 2020;8:6710-38. [DOI: 10.1039/d0tb00861c] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]