BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Qu Y, Chu B, Wei X, Lei M, Hu D, Zha R, Zhong L, Wang M, Wang F, Qian Z. Redox/pH dual-stimuli responsive camptothecin prodrug nanogels for "on-demand" drug delivery. J Control Release 2019;296:93-106. [PMID: 30664976 DOI: 10.1016/j.jconrel.2019.01.016] [Cited by in Crossref: 112] [Cited by in F6Publishing: 110] [Article Influence: 28.0] [Reference Citation Analysis]
Number Citing Articles
1 Chen J, Mei MS, Xu Y, Shi S, Wang S, Wang H. Versatile functionalization of pectic conjugate: From design to biomedical applications. Carbohydr Polym 2023;306:120605. [PMID: 36746571 DOI: 10.1016/j.carbpol.2023.120605] [Reference Citation Analysis]
2 Abedi F, Ghandforoushan P, Adeli F, Yousefnezhad M, Mohammadi A, Moghaddam S, Davaran S. Development of stimuli-responsive nanogels as drug carriers and their biomedical application in 3D printing. Materials Today Chemistry 2023;29:101372. [DOI: 10.1016/j.mtchem.2022.101372] [Reference Citation Analysis]
3 Su Y, Jin G, Zhou H, Yang Z, Wang L, Mei Z, Jin Q, Lv S, Chen X. Development of stimuli responsive polymeric nanomedicines modulating tumor microenvironment for improved cancer therapy. Medical Review 2023;0. [DOI: 10.1515/mr-2022-0048] [Reference Citation Analysis]
4 Wang Y, Cong Y, Cai M, Liang X, Wang L, Zhou D. Charge-conversional click polyprodrug nanomedicine for targeted and synergistic cancer therapy. J Control Release 2023;356:567-79. [PMID: 36924894 DOI: 10.1016/j.jconrel.2023.03.019] [Reference Citation Analysis]
5 Zhang Y, Wang J, Liu C, Xing H, Jiang Y, Li X. Novel disulfide bond bridged 7-ethyl-10-hydroxyl camptothecin-undecanoic acid conjugate/human serum albumin nanoparticles for breast cancer therapy. J Mater Chem B 2023;11:2478-89. [PMID: 36843543 DOI: 10.1039/d2tb02506j] [Reference Citation Analysis]
6 Athanasopoulou F, Manolakakis M, Vernia S, Kamaly N. Nanodrug delivery systems for metabolic chronic liver diseases: advances and perspectives. Nanomedicine (Lond) 2023;:0. [PMID: 36896958 DOI: 10.2217/nnm-2022-0261] [Reference Citation Analysis]
7 Ouyang Y, Chen Y, Xu T, Sun Y, Zhao S, Chen C, Tan Y, He L, Liu H. Surface functionalized mesoporous polydopamine nanocomposites for killing tumor cells through collaborative chemo/photothermal/chemodynamic treatment. Explor Drug Sci 2023. [DOI: 10.37349/eds.2023.00003] [Reference Citation Analysis]
8 Yang H, Duan Z, Liu F, Zhao Z, Liu S. Cucurbit[7]uril-Based Supramolecular DNA Nanogel for Targeted Codelivery of Chemo/Photodynamic Drugs. ACS Macro Lett 2023;12:295-301. [PMID: 36779651 DOI: 10.1021/acsmacrolett.2c00763] [Reference Citation Analysis]
9 Lages M, Nicolas J. In situ encapsulation of biologically active ingredients into polymer particles by polymerization in dispersed media. Progress in Polymer Science 2023;137:101637. [DOI: 10.1016/j.progpolymsci.2022.101637] [Reference Citation Analysis]
10 Wong KH, Guo Z, Jiang D, Zhou X, Lin L, Zhao D, Chen M. Linear-like polypeptide-based micelle with pH-sensitive detachable PEG to deliver dimeric camptothecin for cancer therapy. Asian J Pharm Sci 2023;18:100773. [PMID: 36711109 DOI: 10.1016/j.ajps.2022.100773] [Reference Citation Analysis]
11 Koochakzadeh A, Teimouri A, Tohidi E, Ashrafizadeh M, Enzmann F, Kersten M, Sadeghnejad S. Review on using pH-sensitive microgels as enhanced oil recovery and water shutoff agents: Concepts, recent developments, and future challenges. Geoenergy Science and Engineering 2023. [DOI: 10.1016/j.geoen.2023.211477] [Reference Citation Analysis]
12 Dahiya S, Dahiya R. Smart drug delivery systems and their clinical potential. Smart Polymeric Nano-Constructs in Drug Delivery 2023. [DOI: 10.1016/b978-0-323-91248-8.00007-6] [Reference Citation Analysis]
13 Wang C, Xu P, Li X, Zheng Y, Song Z. Research progress of stimulus-responsive antibacterial materials for bone infection. Front Bioeng Biotechnol 2022;10:1069932. [PMID: 36636700 DOI: 10.3389/fbioe.2022.1069932] [Reference Citation Analysis]
14 Makhathini SS, Mdanda S, Kondiah PJ, Kharodia ME, Rumbold K, Alagidede I, Pathak Y, Bulbulia Z, Rants'o TA, Kondiah PPD. Biomedicine Innovations and Its Nanohydrogel Classifications. Pharmaceutics 2022;14. [PMID: 36559335 DOI: 10.3390/pharmaceutics14122839] [Reference Citation Analysis]
15 Xie F, Wang M, Chen Q, Chi T, Zhu S, Wei P, Yang Y, Zhang L, Li X, Liao Z. Endogenous stimuli-responsive nanoparticles for cancer therapy: From bench to bedside. Pharmacological Research 2022;186:106522. [DOI: 10.1016/j.phrs.2022.106522] [Reference Citation Analysis]
16 Zhang WJ, Li S, Yan YZ, Park SS, Mohan A, Chung I, Ahn SK, Kim JR, Ha CS. Dual (pH- and ROS-) Responsive Antibacterial MXene-Based Nanocarrier for Drug Delivery. Int J Mol Sci 2022;23. [PMID: 36499252 DOI: 10.3390/ijms232314925] [Reference Citation Analysis]
17 Ali AA, Abuwatfa WH, Al-Sayah MH, Husseini GA. Gold-Nanoparticle Hybrid Nanostructures for Multimodal Cancer Therapy. Nanomaterials (Basel) 2022;12:3706. [PMID: 36296896 DOI: 10.3390/nano12203706] [Reference Citation Analysis]
18 Hu J, Zhang Q, Mu Q, Tang Y, Wu Z, Wang G. A ROS-Sensitive Diselenide-Crosslinked Polymeric Nanogel for NIR Controlled Release. Chin J Polym Sci. [DOI: 10.1007/s10118-022-2867-1] [Reference Citation Analysis]
19 Mateti T, K L, Laha A, Thakur G. A critical analysis of the recent developments in multi-stimuli responsive smart hydrogels for cancer treatment. Current Opinion in Biomedical Engineering 2022. [DOI: 10.1016/j.cobme.2022.100424] [Reference Citation Analysis]
20 Ali AA, Al-Othman A, Al-Sayah M. Multifunctional stimuli-responsive hybrid nanogels for cancer therapy: Current status and challenges. J Control Release 2022:S0168-3659(22)00628-9. [PMID: 36170926 DOI: 10.1016/j.jconrel.2022.09.033] [Reference Citation Analysis]
21 Abed HF, Abuwatfa WH, Husseini GA. Redox-Responsive Drug Delivery Systems: A Chemical Perspective. Nanomaterials 2022;12:3183. [DOI: 10.3390/nano12183183] [Reference Citation Analysis]
22 Attama AA, Nnamani PO, Onokala OB, Ugwu AA, Onugwu AL. Nanogels as target drug delivery systems in cancer therapy: A review of the last decade. Front Pharmacol 2022;13:874510. [DOI: 10.3389/fphar.2022.874510] [Reference Citation Analysis]
23 You X, Wang L, Zhang J, Tong T, Dai C, Chen C, Wu J. Effects of Polymer Molecular Weight on In Vitro and In Vivo Performance of Nanoparticle Drug Carriers for Lymphoma Therapy. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.07.063] [Reference Citation Analysis]
24 Chen X, Ma R, Fu Z, Su Q, Luo X, Han Y, Yang Y, Deng Q. Metal-phenolic networks-encapsulated cascade amplification delivery nanoparticles overcoming cancer drug resistance via combined starvation/chemodynamic/chemo therapy. Chemical Engineering Journal 2022;442:136221. [DOI: 10.1016/j.cej.2022.136221] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Yun K, Guo J, Zhu R, Wang T, Zhang X, Pan H, Pan W. Design of ROS-Responsive Hyaluronic Acid-Methotrexate Conjugates for Synergistic Chemo-Photothermal Therapy for Cancer. Mol Pharm 2022. [PMID: 35900105 DOI: 10.1021/acs.molpharmaceut.2c00472] [Reference Citation Analysis]
26 Liu T, Lang M. Preparation and characterization of novel functional tri-block copolymer for constructing temperature/redox dual-stimuli responsive micelles. Journal of Macromolecular Science, Part A. [DOI: 10.1080/10601325.2022.2092409] [Reference Citation Analysis]
27 Dutta G, Manickam S, Sugumaran A. Stimuli-Responsive Hybrid Metal Nanocomposite - A Promising Technology for Effective Anticancer Therapy. Int J Pharm 2022;:121966. [PMID: 35764265 DOI: 10.1016/j.ijpharm.2022.121966] [Reference Citation Analysis]
28 Fu C, Qin J, Liu X, Kong F. Galactosed and Reduction-Responsive Nanoparticles Assembled from Trimethylchitosan–Camptothecin Conjugates for Enhanced Hepatocellular Carcinoma Therapy. Pharmaceutics 2022;14:1315. [DOI: 10.3390/pharmaceutics14071315] [Reference Citation Analysis]
29 Liu Y, Han Y, Chen S, Liu J, Wang D, Huang Y. Liposome-based multifunctional nanoplatform as effective therapeutics for the treatment of retinoblastoma. Acta Pharmaceutica Sinica B 2022;12:2731-9. [DOI: 10.1016/j.apsb.2021.10.009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
30 Yang Y, Hu D, Lu Y, Chu B, He X, Chen Y, Xiao Y, Yang C, Zhou K, Yuan L, Qian Z. Tumor-targeted/reduction-triggered composite multifunctional nanoparticles for breast cancer chemo-photothermal combinational therapy. Acta Pharmaceutica Sinica B 2022;12:2710-30. [DOI: 10.1016/j.apsb.2021.08.021] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
31 Gao Y, Qiu W, Liang M, Ma X, Ye M, Xue P, Kang Y, Deng J, Xu Z. Active targeting redox-responsive mannosylated prodrug nanocolloids promote tumor recognition and cell internalization for enhanced colon cancer chemotherapy. Acta Biomater 2022:S1742-7061(22)00322-1. [PMID: 35640802 DOI: 10.1016/j.actbio.2022.05.046] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Singh R, Sharma A, Saji J, Umapathi A, Kumar S, Daima HK. Smart nanomaterials for cancer diagnosis and treatment. Nano Convergence 2022;9. [DOI: 10.1186/s40580-022-00313-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
33 Ito C, Taguchi K, Moroi Y, Enoki Y, Tokuda R, Yamasaki K, Imoto S, Matsumoto K. Trimethoxy trityl groups as a potent substituent for anti-cancer cytidine analog prodrugs. Journal of Pharmaceutical Sciences 2022. [DOI: 10.1016/j.xphs.2022.04.020] [Reference Citation Analysis]
34 Bai Y, Yang C, Deng N, Zhang M, Zhang Z, Li L, Zhou Y, Luo X, Xu C, Zhang B, Ma Y, Liu Y. Design and Synthesis of Novel 7-Ethyl-10-Fluoro-20-O-(Cinnamic Acid Ester)-Camptothecin Derivatives as Potential High Selectivity and Low Toxicity Topoisomerase I inhibitors for Hepatocellular Carcinoma. Biochemical Pharmacology 2022. [DOI: 10.1016/j.bcp.2022.115049] [Reference Citation Analysis]
35 Chen M, Wu H, Zhang H, Lin J, Yu X, Xu Q. Preparation, characterization and application of docetaxel-loaded methoxy polyethylene glycol-octacosanol micelles for breast cancer therapy. mat express 2022;12:592-8. [DOI: 10.1166/mex.2022.2174] [Reference Citation Analysis]
36 Ebhodaghe SO. A scoping review on the biomedical applications of polymeric particles. International Journal of Polymeric Materials and Polymeric Biomaterials. [DOI: 10.1080/00914037.2022.2032708] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Li Z, Dong J, Zhang Y, Zhuang T, Wang H, Du X, Cui X, Wang Z. Sono-catalysis preparation and alternating magnetic field/glutathione-triggered drug release kinetics of core-shell magnetic micro-organogel. Composites Science and Technology 2022;218:109198. [DOI: 10.1016/j.compscitech.2021.109198] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
38 Zhang HX, Lin HH, Su D, Yang DC, Liu JY. Enzyme-Activated Multifunctional Prodrug Combining Site-Specific Chemotherapy with Light-Triggered Photodynamic Therapy. Mol Pharm 2022. [PMID: 35034440 DOI: 10.1021/acs.molpharmaceut.1c00761] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
39 Cardoso VMDO, Ferreira LMB, Comparetti EJ, Sampaio I, Ferreira NN, Miranda RR, Zucolotto V. Stimuli-responsive polymeric nanoparticles as controlled drug delivery systems. Stimuli-Responsive Nanocarriers 2022. [DOI: 10.1016/b978-0-12-824456-2.00011-4] [Reference Citation Analysis]
40 Wang J, Shi X, Bo Q, Wang H, Wei F, Liu J, Wang H, Zhang L, Qi Y, Li Z, Chen Q, Sun X. Synthetic anti-angiogenic genomic therapeutics for treatment of neovascular age-related macular degeneration. Asian J Pharm Sci 2021;16:623-32. [PMID: 34849167 DOI: 10.1016/j.ajps.2021.04.001] [Reference Citation Analysis]
41 Wang H, Gao L, Fan T, Zhang C, Zhang B, Al-Hartomy OA, Al-Ghamdi A, Wageh S, Qiu M, Zhang H. Strategic Design of Intelligent-Responsive Nanogel Carriers for Cancer Therapy. ACS Appl Mater Interfaces 2021;13:54621-47. [PMID: 34767342 DOI: 10.1021/acsami.1c13634] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
42 Du X, Gao Y, Kang Q, Xing J. Design and Applications of Tumor Microenvironment-Responsive Nanogels as Drug Carriers. Front Bioeng Biotechnol 2021;9:771851. [PMID: 34746113 DOI: 10.3389/fbioe.2021.771851] [Reference Citation Analysis]
43 Morimoto N, Segui F, Qiu XP, Akiyoshi K, Winnik FM. Heat-Induced Flower Nanogels of Both Cholesterol End-Capped Poly(N-isopropylacrylamide)s in Water. Langmuir 2021. [PMID: 34730981 DOI: 10.1021/acs.langmuir.1c02394] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
44 Luo X, Chi X, Lin Y, Yang Z, Lin H, Gao J. A camptothecin prodrug induces mitochondria-mediated apoptosis in cancer cells with cascade activations. Chem Commun (Camb) 2021;57:11033-6. [PMID: 34608474 DOI: 10.1039/d1cc04379j] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
45 Pushpamalar J, Meganathan P, Tan HL, Dahlan NA, Ooi LT, Neerooa BNHM, Essa RZ, Shameli K, Teow SY. Development of a Polysaccharide-Based Hydrogel Drug Delivery System (DDS): An Update. Gels 2021;7:153. [PMID: 34698125 DOI: 10.3390/gels7040153] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
46 Dong J, Du X, Zhang Y, Zhuang T, Cui X, Li Z. Thermo/glutathione-sensitive release kinetics of heterogeneous magnetic micro-organogel prepared by sono-catalysis. Colloids Surf B Biointerfaces 2021;208:112109. [PMID: 34562785 DOI: 10.1016/j.colsurfb.2021.112109] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
47 Tehrani Fateh S, Moradi L, Kohan E, Hamblin MR, Shiralizadeh Dezfuli A. Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications. Beilstein J Nanotechnol 2021;12:808-62. [PMID: 34476167 DOI: 10.3762/bjnano.12.64] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
48 Wang N, Liu C, Yao W, Wang X, Zhou H, Chen H, Qiao W. A sequential multistage-targeted nanoparticles for MR imaging and efficient chemo/chemodynamic synergistic therapy of liver cancer. Applied Materials Today 2021;24:101147. [DOI: 10.1016/j.apmt.2021.101147] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
49 Saracoglu P, Ozmen MM. Starch Based Nanogels: From Synthesis to Miscellaneous Applications. Starch ‐ Stärke 2021;73:2100011. [DOI: 10.1002/star.202100011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
50 Gao P, Shen X, Liu X, Chen Y, Pan W, Li N, Tang B. Nucleic Acid-Gated Covalent Organic Frameworks for Cancer-Specific Imaging and Drug Release. Anal Chem 2021;93:11751-7. [PMID: 34398599 DOI: 10.1021/acs.analchem.1c02105] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
51 Du W, Zong Q, Guo R, Ling G, Zhang P. Injectable Nanocomposite Hydrogels for Cancer Therapy. Macromol Biosci 2021;:e2100186. [PMID: 34355522 DOI: 10.1002/mabi.202100186] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
52 Dey R, Mukherjee S, Barman S, Haldar J. Macromolecular Nanotherapeutics and Antibiotic Adjuvants to Tackle Bacterial and Fungal Infections. Macromol Biosci 2021;:e2100182. [PMID: 34351064 DOI: 10.1002/mabi.202100182] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
53 Deng Z, Jiang C, Younis MR, Lei S, He Y, Zheng H, Huang P, Lin J. Mild hyperthermia-enhanced chemo-photothermal synergistic therapy using doxorubicin-loaded gold nanovesicles. Chinese Chemical Letters 2021;32:2411-4. [DOI: 10.1016/j.cclet.2021.03.080] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
54 Yao J, Li T, Shi X, Wang Y, Fang S, Wang H. A general prodrug nanohydrogel platform for reduction-triggered drug activation and treatment of taxane-resistant malignancies. Acta Biomater 2021;130:409-22. [PMID: 34087447 DOI: 10.1016/j.actbio.2021.05.047] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
55 Xu P, Wang X, Li T, Li L, Wu H, Tu J, Zhang R, Zhang L, Guo Z, Chen Q. Bioinspired Microenvironment Responsive Nanoprodrug as an Efficient Hydrophobic Drug Self-Delivery System for Cancer Therapy. ACS Appl Mater Interfaces 2021;13:33926-36. [PMID: 34254767 DOI: 10.1021/acsami.1c09612] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
56 Sun Q, He M, Zhang M, Zeng S, Chen L, Zhao H, Yang H, Liu M, Ren S, Xu H. Traditional Chinese Medicine and Colorectal Cancer: Implications for Drug Discovery. Front Pharmacol 2021;12:685002. [PMID: 34276374 DOI: 10.3389/fphar.2021.685002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
57 Liang Y, Liu ZY, Wang PY, Li YJ, Wang RR, Xie SY. Nanoplatform-based natural products co-delivery system to surmount cancer multidrug-resistant. J Control Release 2021;336:396-409. [PMID: 34175367 DOI: 10.1016/j.jconrel.2021.06.034] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 5.5] [Reference Citation Analysis]
58 Zhao Q, Zhang S, Wu F, Li D, Zhang X, Chen W, Xing B. Rationales Design von Nanogelen zur Überwindung biologischer Barrieren auf verschiedenen Verabreichungswegen. Angew Chem 2021;133:14884-14903. [DOI: 10.1002/ange.201911048] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
59 Alkanawati MS, Machtakova M, Landfester K, Thérien-Aubin H. Bio-Orthogonal Nanogels for Multiresponsive Release. Biomacromolecules 2021;22:2976-84. [PMID: 34129319 DOI: 10.1021/acs.biomac.1c00378] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
60 Feng L, Yang L, Li L, Xiao J, Bie N, Xu C, Zhou J, Liu H, Gan L, Wu Y. Programmed albumin nanoparticles regulate immunosuppressive pivot to potentiate checkpoint blockade cancer immunotherapy. Nano Res 2022;15:593-602. [DOI: 10.1007/s12274-021-3525-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
61 Cheng D, Ji Y, Wang B, Jin T, Xu Y, Qian X, Zhu W. Enzyme/GSH dual-responsive biodegradable nanohybrid for spatiotemporally specific photodynamic and hypoxia-augmented therapy against tumors. Int J Pharm 2021;603:120730. [PMID: 34029662 DOI: 10.1016/j.ijpharm.2021.120730] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
62 Du Q, Lv F, Huang J, Tang X, Zhao Z, Chen J. A multiple environment-sensitive prodrug nanomicelle strategy based on chitosan graftomer for enhanced tumor therapy of gambogic acid. Carbohydr Polym 2021;267:118229. [PMID: 34119182 DOI: 10.1016/j.carbpol.2021.118229] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
63 Liu J, Liu K, Zhang L, Zhong M, Hong T, Zhang R, Gao Y, Li R, Xu T, Xu ZP. Heat/pH-boosted release of 5-fluorouracil and albumin-bound paclitaxel from Cu-doped layered double hydroxide nanomedicine for synergistical chemo-photo-therapy of breast cancer. J Control Release 2021;335:49-58. [PMID: 33989692 DOI: 10.1016/j.jconrel.2021.05.011] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
64 Liu T, Zou H, Mu J, Yu N, Xu Y, Liu G, Liang X, Guo S. Acid-sensitive PEGylated cabazitaxel prodrugs for antitumor therapy. Chinese Chemical Letters 2021;32:1751-4. [DOI: 10.1016/j.cclet.2020.12.008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
65 Wang N, Liu C, Yao W, Zhou H, Yu S, Chen H, Qiao W. A Traceable, Sequential Multistage‐Targeting Nanoparticles Combining Chemo/Chemodynamic Therapy for Enhancing Antitumor Efficacy. Adv Funct Materials 2021;31:2101432. [DOI: 10.1002/adfm.202101432] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
66 Zoya I, He H, Wang L, Qi J, Lu Y, Wu W. The intragastrointestinal fate of paclitaxel-loaded micelles: Implications on oral drug delivery. Chinese Chemical Letters 2021;32:1545-9. [DOI: 10.1016/j.cclet.2020.09.038] [Cited by in Crossref: 11] [Cited by in F6Publishing: 16] [Article Influence: 5.5] [Reference Citation Analysis]
67 Li Z, Yang Y, Peng C, Liu H, Yang R, Zheng Y, Cai L, Tan H, Fu Q, Ding M. Drug-induced hierarchical self-assembly of poly(amino acid) for efficient intracellular drug delivery. Chinese Chemical Letters 2021;32:1563-6. [DOI: 10.1016/j.cclet.2020.10.016] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
68 Wang X, Wu D. Reduction‐Responsive Disulfide‐Containing Polymers for Biomedical Applications. Sulfur‐Containing Polymers 2021. [DOI: 10.1002/9783527823819.ch12] [Reference Citation Analysis]
69 Shibasaki H, Kinoh H, Cabral H, Quader S, Mochida Y, Liu X, Toh K, Miyano K, Matsumoto Y, Yamasoba T, Kataoka K. Efficacy of pH-Sensitive Nanomedicines in Tumors with Different c-MYC Expression Depends on the Intratumoral Activation Profile. ACS Nano 2021;15:5545-59. [PMID: 33625824 DOI: 10.1021/acsnano.1c00364] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
70 Sathiyaseelan A, Saravanakumar K, Mariadoss AVA, Wang MH. pH-controlled nucleolin targeted release of dual drug from chitosan-gold based aptamer functionalized nano drug delivery system for improved glioblastoma treatment. Carbohydr Polym 2021;262:117907. [PMID: 33838795 DOI: 10.1016/j.carbpol.2021.117907] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 17.5] [Reference Citation Analysis]
71 Zhao Q, Zhang S, Wu F, Li D, Zhang X, Chen W, Xing B. Rational Design of Nanogels for Overcoming the Biological Barriers in Various Administration Routes. Angew Chem Int Ed 2021;60:14760-78. [DOI: 10.1002/anie.201911048] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 9.5] [Reference Citation Analysis]
72 Dai J, Chen M, Xu D, Li H, Qiao Y, Ke X, Ci T. Self-assembly delivery system based on small-molecule camptothecin prodrug for treatment of colorectal carcinoma. Nanomedicine (Lond) 2021;16:355-72. [PMID: 33591852 DOI: 10.2217/nnm-2020-0453] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
73 Lu Y, Jia D, Ma X, Liang M, Hou S, Qiu W, Gao Y, Xue P, Kang Y, Xu Z. Reduction-Responsive Chemo-Capsule-Based Prodrug Nanogel for Synergistic Treatment of Tumor Chemotherapy. ACS Appl Mater Interfaces 2021;13:8940-51. [PMID: 33565847 DOI: 10.1021/acsami.0c21710] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
74 Chen Y, Pan Y, Hu D, Peng J, Hao Y, Pan M, Yuan L, Yu Y, Qian Z. Recent progress in nanoformulations of cabazitaxel. Biomed Mater 2021. [PMID: 33545700 DOI: 10.1088/1748-605X/abe396] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
75 Ofridam F, Tarhini M, Lebaz N, Gagnière É, Mangin D, Elaissari A. pH ‐sensitive polymers: Classification and some fine potential applications. Polym Adv Technol 2021;32:1455-84. [DOI: 10.1002/pat.5230] [Cited by in Crossref: 43] [Cited by in F6Publishing: 47] [Article Influence: 21.5] [Reference Citation Analysis]
76 Zhou H, He G, Sun Y, Wang J, Wu H, Jin P, Zha Z. Cryptobiosis-inspired assembly of "AND" logic gate platform for potential tumor-specific drug delivery. Acta Pharm Sin B 2021;11:534-43. [PMID: 33643829 DOI: 10.1016/j.apsb.2020.08.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
77 Mahendran G, Rahman LU. Biosynthesis and Biotechnological Production of Anticancer Drug Camptothecin in Genus Ophiorrhiza. Reference Series in Phytochemistry 2021. [DOI: 10.1007/978-3-030-30185-9_32] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
78 Zheng X, Xie J, Zhang X, Sun W, Zhao H, Li Y, Wang C. An overview of polymeric nanomicelles in clinical trials and on the market. Chinese Chemical Letters 2021;32:243-57. [DOI: 10.1016/j.cclet.2020.11.029] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 15.5] [Reference Citation Analysis]
79 Li Z, Huang J, Wu J. pH-Sensitive nanogels for drug delivery in cancer therapy. Biomater Sci 2021;9:574-89. [DOI: 10.1039/d0bm01729a] [Cited by in Crossref: 42] [Cited by in F6Publishing: 45] [Article Influence: 21.0] [Reference Citation Analysis]
80 Liao J, Peng H, Liu C, Li D, Yin Y, Lu B, Zheng H, Wang Q. Dual pH-responsive-charge-reversal micelle platform for enhanced anticancer therapy. Materials Science and Engineering: C 2021;118:111527. [DOI: 10.1016/j.msec.2020.111527] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
81 Xue Y, Bai H, Peng B, Fang B, Baell J, Li L, Huang W, Voelcker NH. Stimulus-cleavable chemistry in the field of controlled drug delivery. Chem Soc Rev 2021;50:4872-931. [DOI: 10.1039/d0cs01061h] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 19.5] [Reference Citation Analysis]
82 Yang Y, Zeng W, Huang P, Zeng X, Mei L. Smart materials for drug delivery and cancer therapy. View 2021;2:20200042. [DOI: 10.1002/viw.20200042] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 11.3] [Reference Citation Analysis]
83 Preman NK, Barki RR, Vijayan A, Sanjeeva SG, Johnson RP. Recent developments in stimuli-responsive polymer nanogels for drug delivery and diagnostics: A review. European Journal of Pharmaceutics and Biopharmaceutics 2020;157:121-53. [DOI: 10.1016/j.ejpb.2020.10.009] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 7.7] [Reference Citation Analysis]
84 Nakielski P, Pawłowska S, Rinoldi C, Ziai Y, De Sio L, Urbanek O, Zembrzycki K, Pruchniewski M, Lanzi M, Salatelli E, Calogero A, Kowalewski TA, Yarin AL, Pierini F. Multifunctional Platform Based on Electrospun Nanofibers and Plasmonic Hydrogel: A Smart Nanostructured Pillow for Near-Infrared Light-Driven Biomedical Applications. ACS Appl Mater Interfaces 2020;12:54328-42. [DOI: 10.1021/acsami.0c13266] [Cited by in Crossref: 46] [Cited by in F6Publishing: 49] [Article Influence: 15.3] [Reference Citation Analysis]
85 Zhu Q, Fan Z, Zuo W, Chen Y, Hou Z, Zhu X. Self-Distinguishing and Stimulus-Responsive Carrier-Free Theranostic Nanoagents for Imaging-Guided Chemo-Photothermal Therapy in Small-Cell Lung Cancer. ACS Appl Mater Interfaces 2020;12:51314-28. [PMID: 33156622 DOI: 10.1021/acsami.0c18273] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
86 Monteiro PF, Travanut A, Conte C, Alexander C. Reduction-responsive polymers for drug delivery in cancer therapy-Is there anything new to discover? Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;13:e1678. [PMID: 33155421 DOI: 10.1002/wnan.1678] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 6.3] [Reference Citation Analysis]
87 Luo K, Yin S, Zhang R, Yu H, Wang G, Li J. Multifunctional composite nanoparticles based on hyaluronic acid-paclitaxel conjugates for enhanced cancer therapy. International Journal of Pharmaceutics 2020;589:119870. [DOI: 10.1016/j.ijpharm.2020.119870] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
88 Gonzaga RV, do Nascimento LA, Santos SS, Machado Sanches BA, Giarolla J, Ferreira EI. Perspectives About Self-Immolative Drug Delivery Systems. Journal of Pharmaceutical Sciences 2020;109:3262-81. [DOI: 10.1016/j.xphs.2020.08.014] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
89 Rashidzadeh H, Rezaei SJT, Zamani S, Sarijloo E, Ramazani A. pH-sensitive curcumin conjugated micelles for tumor triggered drug delivery. J Biomater Sci Polym Ed 2021;32:320-36. [PMID: 33026298 DOI: 10.1080/09205063.2020.1833815] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 3.7] [Reference Citation Analysis]
90 Chu B, Qu Y, He X, Hao Y, Yang C, Yang Y, Hu D, Wang F, Qian Z. ROS‐Responsive Camptothecin Prodrug Nanoparticles for On‐Demand Drug Release and Combination of Chemotherapy and Photodynamic Therapy. Adv Funct Mater 2020;30:2005918. [DOI: 10.1002/adfm.202005918] [Cited by in Crossref: 62] [Cited by in F6Publishing: 61] [Article Influence: 20.7] [Reference Citation Analysis]
91 Tian B, Liu Y, Liu J. Smart stimuli-responsive drug delivery systems based on cyclodextrin: A review. Carbohydr Polym 2021;251:116871. [PMID: 33142550 DOI: 10.1016/j.carbpol.2020.116871] [Cited by in Crossref: 49] [Cited by in F6Publishing: 36] [Article Influence: 16.3] [Reference Citation Analysis]
92 Kumar M, Jha A, Dr M, Mishra B. Targeted drug nanocrystals for pulmonary delivery: a potential strategy for lung cancer therapy. Expert Opin Drug Deliv 2020;17:1459-72. [PMID: 32684002 DOI: 10.1080/17425247.2020.1798401] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 5.7] [Reference Citation Analysis]
93 Wang Q, Gao F, Zhou X. Redox-responsive AIE micelles for intracellular paclitaxel delivery. Colloid Polym Sci 2020;298:1119-28. [DOI: 10.1007/s00396-020-04679-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
94 Zhu Q, Saeed M, Song R, Sun T, Jiang C, Yu H. Dynamic covalent chemistry-regulated stimuli-activatable drug delivery systems for improved cancer therapy. Chinese Chemical Letters 2020;31:1051-9. [DOI: 10.1016/j.cclet.2019.12.002] [Cited by in Crossref: 37] [Cited by in F6Publishing: 24] [Article Influence: 12.3] [Reference Citation Analysis]
95 Saravanakumar K, Hu X, Ali DM, Wang MH. Emerging Strategies in Stimuli-Responsive Nanocarriers as the Drug Delivery System for Enhanced Cancer Therapy. Curr Pharm Des 2019;25:2609-25. [PMID: 31603055 DOI: 10.2174/1381612825666190709221141] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 8.7] [Reference Citation Analysis]
96 Huang Y, Tang Z, Peng S, Zhang J, Wang W, Wang Q, Lin W, Lin X, Zu X, Luo H, Yi G. pH/redox/UV irradiation multi-stimuli responsive nanogels from star copolymer micelles and Fe3+ complexation for “on-demand” anticancer drug delivery. Reactive and Functional Polymers 2020;149:104532. [DOI: 10.1016/j.reactfunctpolym.2020.104532] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
97 Huang Y, Li Y, Tang Z, Su Q, Liao T, Gu Y, Lin X, Zu X, Lin W, Yi G. Dual-Responsive Cross-Linked Micelles from Amphiphilic Four-Arm Star Copolymers with Different Block Ratios for Triggering DOX Release. Macromol Res 2020;28:762-71. [DOI: 10.1007/s13233-020-9094-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
98 Ahmadian N, Mehrnejad F, Amininasab M. Molecular Insight into the Interaction between Camptothecin and Acyclic Cucurbit[4]urils as Efficient Nanocontainers in Comparison with Cucurbit[7]uril: Molecular Docking and Molecular Dynamics Simulation. J Chem Inf Model 2020;60:1791-803. [PMID: 31944098 DOI: 10.1021/acs.jcim.9b01087] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
99 Ding C, Wu H, Yin Z, Gao J, Wu D, Qin Y, Kong Y. Disulfide-cleavage- and pH-triggered drug delivery based on a vesicle structured amphiphilic self-assembly. Materials Science and Engineering: C 2020;107:110366. [DOI: 10.1016/j.msec.2019.110366] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
100 Yu H, Rowley JV, Green DC, Thornton PD. Fucose-modified thermoresponsive poly(2-hydroxypropyl methacrylate) nanoparticles for controlled doxorubicin release from an injectable depot. Mater Adv 2020;1:1293-300. [DOI: 10.1039/d0ma00280a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
101 Li BL, Li R, Zou HL, Ariga K, Li NB, Leong DT. Engineered functionalized 2D nanoarchitectures for stimuli-responsive drug delivery. Mater Horiz 2020;7:455-69. [DOI: 10.1039/c9mh01300h] [Cited by in Crossref: 47] [Cited by in F6Publishing: 48] [Article Influence: 15.7] [Reference Citation Analysis]
102 Mahendran G, Rahman LU. Biosynthesis and Biotechnological Production of Anticancer Drug Camptothecin in Genus Ophiorrhiza. Reference Series in Phytochemistry 2020. [DOI: 10.1007/978-3-030-11253-0_32-1] [Reference Citation Analysis]
103 Li Y, Niu Y, Zhu J, Gao C, Xu Q, He Z, Chen D, Xu M, Liu Y. Tailor-made legumain/pH dual-responsive doxorubicin prodrug-embedded nanoparticles for efficient anticancer drug delivery and in situ monitoring of drug release. Nanoscale 2020;12:2673-85. [DOI: 10.1039/c9nr08558k] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
104 Wang Y, Shen N, Sakurai K, Tang Z. Multi-Stimuli-Responsive Polymeric Prodrug for Enhanced Cancer Treatment. Macromol Biosci 2019;19:e1900329. [PMID: 31747119 DOI: 10.1002/mabi.201900329] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
105 Sun H, Zhong Z, Feijen J. The Fifth Symposium on Innovative Polymers for Controlled Delivery (SIPCD 2018), September 14-17, 2018, Suzhou, China. J Control Release 2019;307:410-2. [PMID: 31260755 DOI: 10.1016/j.jconrel.2019.06.039] [Reference Citation Analysis]
106 Kumar P, Liu B, Behl G. A Comprehensive Outlook of Synthetic Strategies and Applications of Redox‐Responsive Nanogels in Drug Delivery. Macromol Biosci 2019;19:1900071. [DOI: 10.1002/mabi.201900071] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 6.0] [Reference Citation Analysis]
107 Duan X, Yang X, Li C, Song L. Highly Water-Soluble Methotrexate-Polyethyleneglycol-Rhodamine Prodrug Micelle for High Tumor Inhibition Activity. AAPS PharmSciTech 2019;20:245. [PMID: 31286294 DOI: 10.1208/s12249-019-1462-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
108 Zhang D, Li L, Ji X, Gao Y. Intracellular GSH-responsive camptothecin delivery systems. New J Chem 2019;43:18673-84. [DOI: 10.1039/c9nj05052c] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
109 Liao J, Song Y, Liu C, Li D, Zheng H, Lu B. Dual-drug delivery based charge-conversional polymeric micelles for enhanced cellular uptake and combination therapy. Polym Chem 2019;10:5879-93. [DOI: 10.1039/c9py01105f] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]