1 |
Bayat M, Sarojini H, Chien S. The role of cluster of differentiation 163-positive macrophages in wound healing: a preliminary study and a systematic review. Arch Dermatol Res 2023;315:359-70. [PMID: 36283990 DOI: 10.1007/s00403-022-02407-2] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
2 |
Jarai BM, Bomb K, Fromen CA. Nanoparticle pre-treatment for enhancing the survival and activation of pulmonary macrophage transplant. Drug Deliv Transl Res 2023. [PMID: 36917409 DOI: 10.1007/s13346-023-01319-6] [Reference Citation Analysis]
|
3 |
Li GL, Tang JF, Tan WL, Zhang T, Zeng D, Zhao S, Ran JH, Li J, Wang YP, Chen DL. The anti-hepatocellular carcinoma effects of polysaccharides from Ganoderma lucidum by regulating macrophage polarization via the MAPK/NF-κB signaling pathway. Food Funct 2023. [PMID: 36883482 DOI: 10.1039/d2fo02191a] [Reference Citation Analysis]
|
4 |
Xu X, Wang Q, Qian X, Wu Y, Wang J, Li J, Li Y, Zhang Z. Spatial-Drug-Laden Protease-Activatable M1 Macrophage System Targets Lung Metastasis and Potentiates Antitumor Immunity. ACS Nano 2023. [PMID: 36877635 DOI: 10.1021/acsnano.2c08834] [Reference Citation Analysis]
|
5 |
Filin IY, Mayasin YP, Kharisova CB, Gorodilova AV, Kitaeva KV, Chulpanova DS, Solovyeva VV, Rizvanov AA. Cell Immunotherapy against Melanoma: Clinical Trials Review. Int J Mol Sci 2023;24. [PMID: 36768737 DOI: 10.3390/ijms24032413] [Reference Citation Analysis]
|
6 |
Esmaeilzadeh A, Jafari D, Ghaebi M, Elahi R, Afshari F, Karimi L. Immune Gene Therapy of Cancer. Handbook of Cancer and Immunology 2023. [DOI: 10.1007/978-3-030-80962-1_202-1] [Reference Citation Analysis]
|
7 |
Liang C, Wu S, Xia G, Huang J, Wen Z, Zhang W, Cao X. Engineered M2a macrophages for the treatment of osteoarthritis. Front Immunol 2022;13:1054938. [PMID: 36582221 DOI: 10.3389/fimmu.2022.1054938] [Reference Citation Analysis]
|
8 |
Yang C, Yokomori R, Chua LH, Tan SH, Tan DQ, Miharada K, Sanda T, Suda T. Mitochondria transfer mediates stress erythropoiesis by altering the bioenergetic profiles of early erythroblasts through CD47. J Exp Med 2022;219. [PMID: 36112140 DOI: 10.1084/jem.20220685] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
9 |
Tang X, Li D, Gu Y, Zhao Y, Li A, Qi F, Liu J. Natural cell based biomimetic cellular transformers for targeted therapy of digestive system cancer. Theranostics 2022;12:7080-107. [PMID: 36276645 DOI: 10.7150/thno.75937] [Reference Citation Analysis]
|
10 |
Hayes BH, Zhu H, Andrechak JC, Discher DE. Titrating CD47 by mismatch CRISPRi reveals incomplete repression can eliminate IgG-opsonized tumors but CD47 heterogeneity limits induction of anti-tumor IgG.. [DOI: 10.1101/2022.09.27.509740] [Reference Citation Analysis]
|
11 |
Rahmannia M, Amini A, Chien S, Bayat M. Impact of photobiomodulation on macrophages and their polarization during diabetic wound healing: a systematic review. Lasers Med Sci 2022;37:2805-15. [PMID: 35635648 DOI: 10.1007/s10103-022-03581-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
|
12 |
Dos Reis GO, da Rosa JS, Lubschinksi TL, Martin EF, Sandjo LP, Dalmarco EM. Evidence that the anti-inflammatory effect of 4-aryl-4H-chromenes is linked to macrophage repolarization. Fundam Clin Pharmacol 2022. [PMID: 35697364 DOI: 10.1111/fcp.12809] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
13 |
Tang D, Cao F, Yan C, Fang K, Ma J, Gao L, Sun B, Wang G. Extracellular Vesicle/Macrophage Axis: Potential Targets for Inflammatory Disease Intervention. Front Immunol 2022;13:705472. [DOI: 10.3389/fimmu.2022.705472] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
14 |
Khan MI, Zahra QUA, Batool F, Kalsoom F, Gao S, Ali R, Wang W, Kazmi A, Lianliang L, Wang G, Bilal M. Current Nano-Strategies to Improve Therapeutic Efficacy Across Special Structures. OpenNano 2022. [DOI: 10.1016/j.onano.2022.100049] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
15 |
Xu J, Liu D, Zhao D, Jiang X, Meng X, Jiang L, Yu M, Zhang L, Jiang H. Role of low-dose radiation in senescence and aging: A beneficial perspective. Life Sci 2022;:120644. [PMID: 35588864 DOI: 10.1016/j.lfs.2022.120644] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
16 |
Li F, Okreglicka KM, Piattini F, Pohlmeier LM, Schneider C, Kopf M. Gene therapy of Csf2ra deficiency in mouse fetal monocyte precursors restores alveolar macrophage development and function. JCI Insight 2022;7:e152271. [PMID: 35393945 DOI: 10.1172/jci.insight.152271] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
17 |
Li T, Song R, Sun F, Saeed M, Guo X, Ye J, Chen F, Hou B, Zhu Q, Wang Y, Xie C, Tang L, Xu Z, Xu H, Yu H. Bioinspired magnetic nanocomplexes amplifying STING activation of tumor-associated macrophages to potentiate cancer immunotherapy. Nano Today 2022;43:101400. [DOI: 10.1016/j.nantod.2022.101400] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
18 |
Liu L, Li H, Wang J, Zhang J, Liang XJ, Guo W, Gu Z. Leveraging macrophages for cancer theranostics. Adv Drug Deliv Rev 2022;183:114136. [PMID: 35143894 DOI: 10.1016/j.addr.2022.114136] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
19 |
Cai D, Zhao Z, Hu J, Dai X, Zhong G, Gong J, Qi F. Identification of the Tumor Immune Microenvironment and Therapeutic Biomarkers by a Novel Molecular Subtype Based on Aging-Related Genes in Hepatocellular Carcinoma. Front Surg 2022;9:836080. [DOI: 10.3389/fsurg.2022.836080] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
20 |
Li S, Song L, Zhang Y, Zhan Z, Yang Y, Yu L, Zhu H, Huang W, Wang W, Feng H, Li Y, Mussano F. Optimizing the Method for Differentiation of Macrophages from Human Induced Pluripotent Stem Cells. Stem Cells International 2022;2022:1-13. [DOI: 10.1155/2022/6593403] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
21 |
Volovat S, Ursulescu CL, Moisii LG, Volovat C, Boboc D, Scripcariu D, Amurariti F, Stefanescu C, Stolniceanu CR, Agop M, Lungulescu C, Volovat CC. The Landscape of Nanovectors for Modulation in Cancer Immunotherapy. Pharmaceutics 2022;14:397. [DOI: 10.3390/pharmaceutics14020397] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
|
22 |
Jarai BM, Fromen CA. Nanoparticle Internalization Promotes the Survival of Primary Macrophages. Advanced NanoBiomed Research. [DOI: 10.1002/anbr.202100127] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
23 |
Wang T, Dong Y, Yao L, Lu F, Wen C, Wan Z, Fan L, Li Z, Bu T, Wei M, Yang X, Zhang Y. Adoptive transfer of metabolically reprogrammed macrophages for atherosclerosis treatment in diabetic ApoE−/- mice. Bioactive Materials 2022. [DOI: 10.1016/j.bioactmat.2022.02.002] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
24 |
Vinchi F. Macrophage-based Cell Strategies: A Novel Approach in Immunotherapy. HemaSphere 2022;6:e682. [DOI: 10.1097/hs9.0000000000000682] [Reference Citation Analysis]
|
25 |
Lang SM, Dorigo O. Cell-based immunotherapies in gynecologic cancers. Curr Opin Obstet Gynecol 2022;34:10-4. [PMID: 34967809 DOI: 10.1097/GCO.0000000000000760] [Reference Citation Analysis]
|
26 |
Jo H, Seo H, Gil D, Park Y, Han H, Han H, Thimmulappa RK, Kim SC, Kim J. Single-Cell RNA Sequencing of Human Pluripotent Stem Cell-Derived Macrophages for Quality Control of The Cell Therapy Product. Front Genet 2022;12:658862. [DOI: 10.3389/fgene.2021.658862] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
27 |
Yadav K, Pradhan M, Singh D, Singh MR. Macrophage-Associated Disorders: Pathophysiology, Treatment Challenges, and Possible Solutions. Macrophage Targeted Delivery Systems 2022. [DOI: 10.1007/978-3-030-84164-5_4] [Reference Citation Analysis]
|
28 |
Siddiqui L, Mahtab A, Rabbani SA, Verma A, Talegaonkar S. Polymeric Nanoparticles-Assisted Macrophage Targeting: Basic Concepts and Therapeutic Goals. Macrophage Targeted Delivery Systems 2022. [DOI: 10.1007/978-3-030-84164-5_6] [Reference Citation Analysis]
|
29 |
Baumeister S, Woolfrey A. Gene and Cell Therapy: How to Build a BioDrug. Pediatric Cancer Therapeutics Development 2022. [DOI: 10.1007/978-3-031-06357-2_6] [Reference Citation Analysis]
|
30 |
Lisini D, Frigerio S, Nava S, Pogliani S. Stem Cell Production: Processes, Practices, and Regulation. Stem Cell Production 2022. [DOI: 10.1007/978-981-16-7589-8_6] [Reference Citation Analysis]
|
31 |
O’donnell JC, Swanson RL, Wofford KL, Grovola MR, Purvis EM, Petrov D, Cullen DK. Emerging Approaches for Regenerative Rehabilitation Following Traumatic Brain Injury. Physiology in Health and Disease 2022. [DOI: 10.1007/978-3-030-95884-8_13] [Reference Citation Analysis]
|
32 |
Wofford KL, Shultz RB, Burrell JC, Cullen DK. Neuroimmune interactions and immunoengineering strategies in peripheral nerve repair. Prog Neurobiol 2022;208:102172. [PMID: 34492307 DOI: 10.1016/j.pneurobio.2021.102172] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
|
33 |
Chen C, Zhang Y, Chen Z, Yang H, Gu Z. Cellular transformers for targeted therapy. Adv Drug Deliv Rev 2021;179:114032. [PMID: 34736989 DOI: 10.1016/j.addr.2021.114032] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
34 |
Wang Y, Gong X, Li J, Wang H, Xu X, Wu Y, Wang J, Wang S, Li Y, Zhang Z. M2 macrophage microvesicle-inspired nanovehicles improve accessibility to cancer cells and cancer stem cells in tumors. J Nanobiotechnology 2021;19:397. [PMID: 34838042 DOI: 10.1186/s12951-021-01143-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
35 |
Conte E. Targeting monocytes/macrophages in fibrosis and cancer diseases: Therapeutic approaches. Pharmacol Ther 2021;:108031. [PMID: 34774879 DOI: 10.1016/j.pharmthera.2021.108031] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
36 |
Jha MK, Passero JV, Rawat A, Ament XH, Yang F, Vidensky S, Collins SL, Horton MR, Hoke A, Rutter GA, Latremoliere A, Rothstein JD, Morrison BM. Macrophage monocarboxylate transporter 1 promotes peripheral nerve regeneration after injury in mice. Journal of Clinical Investigation 2021;131:e141964. [DOI: 10.1172/jci141964] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
37 |
Zhang G, Xue H, Sun D, Yang S, Tu M, Zeng R. Soft apoptotic-cell-inspired nanoparticles persistently bind to macrophage membranes and promote anti-inflammatory and pro-healing effects. Acta Biomater 2021;131:452-63. [PMID: 34245890 DOI: 10.1016/j.actbio.2021.07.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
38 |
Suresh R, Barakat DJ, Barberi T, Zheng L, Jaffee E, Pienta KJ, Friedman AD. NF-κB p50-deficient immature myeloid cell (p50-IMC) adoptive transfer slows the growth of murine prostate and pancreatic ductal carcinoma. J Immunother Cancer 2020;8:e000244. [PMID: 31940589 DOI: 10.1136/jitc-2019-000244] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
39 |
Li F, Okreglicka KM, Pohlmeier LM, Schneider C, Kopf M. Long-term culture of fetal monocyte precursors in vitro allowing the generation of bona fide alveolar macrophages in vivo.. [DOI: 10.1101/2021.06.04.447115] [Reference Citation Analysis]
|
40 |
Kercheva MA, Ryabov VV. Role of macrophages in cardiorenal syndrome development in patients with myocardial infarction. Russ J Cardiol 2021;26:4309. [DOI: 10.15829/1560-4071-2021-4309] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
41 |
Cui C, Barberi T, Suresh R, Friedman AD. Adoptive transfer of immature myeloid cells lacking NF-κB p50 (p50-IMC) impedes the growth of MHC-matched high-risk neuroblastoma. Mol Oncol 2021;15:1783-96. [PMID: 33480449 DOI: 10.1002/1878-0261.12904] [Reference Citation Analysis]
|
42 |
Jahromi LP, Shahbazi MA, Maleki A, Azadi A, Santos HA. Chemically Engineered Immune Cell-Derived Microrobots and Biomimetic Nanoparticles: Emerging Biodiagnostic and Therapeutic Tools. Adv Sci (Weinh) 2021;8:2002499. [PMID: 33898169 DOI: 10.1002/advs.202002499] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
|
43 |
Chen Q, Sun T, Jiang C. Recent Advancements in Nanomedicine for 'Cold' Tumor Immunotherapy. Nanomicro Lett 2021;13:92. [PMID: 34138315 DOI: 10.1007/s40820-021-00622-6] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
|
44 |
Chowdhury P, Ghosh U, Samanta K, Jaggi M, Chauhan SC, Yallapu MM. Bioactive nanotherapeutic trends to combat triple negative breast cancer. Bioact Mater 2021;6:3269-87. [PMID: 33778204 DOI: 10.1016/j.bioactmat.2021.02.037] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
|
45 |
Wang H, Liu Y, Yang G, Zhao C. Macrophage-mediated cancer drug delivery. Materials Today Sustainability 2021;11-12:100055. [DOI: 10.1016/j.mtsust.2020.100055] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
|
46 |
Ibarra LE. Cellular Trojan horses for delivery of nanomedicines to brain tumors: where do we stand and what is next? Nanomedicine (Lond) 2021;16:517-22. [PMID: 33634710 DOI: 10.2217/nnm-2021-0034] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
47 |
Wang LL, Janes ME, Kumbhojkar N, Kapate N, Clegg JR, Prakash S, Heavey MK, Zhao Z, Anselmo AC, Mitragotri S. Cell therapies in the clinic. Bioeng Transl Med 2021;6:e10214. [PMID: 34027097 DOI: 10.1002/btm2.10214] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
|
48 |
Ukidve A, Cu K, Kumbhojkar N, Lahann J, Mitragotri S. Overcoming biological barriers to improve solid tumor immunotherapy. Drug Deliv Transl Res 2021. [PMID: 33611770 DOI: 10.1007/s13346-021-00923-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
49 |
Dong Y, Zhang S, Gao X, Yin D, Wang T, Li Z, Wan Z, Wei M, Luo Y, Yang G, Liu L. HIF1α epigenetically repressed macrophages via CRISPR/Cas9-EZH2 system for enhanced cancer immunotherapy. Bioact Mater 2021;6:2870-80. [PMID: 33718668 DOI: 10.1016/j.bioactmat.2021.02.008] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
|
50 |
Ackermann M, Mucci A, McCabe A, Frei S, Wright K, Snapper SB, Lachmann N, Williams DA, Brendel C. Restored Macrophage Function Ameliorates Disease Pathophysiology in a Mouse Model for IL10 Receptor-deficient Very Early Onset Inflammatory Bowel Disease. J Crohns Colitis 2021;15:1588-95. [PMID: 33596307 DOI: 10.1093/ecco-jcc/jjab031] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
51 |
Kamat K, Krishnan V, Berek JS, Dorigo O. Cell-based immunotherapy in gynecologic malignancies. Curr Opin Obstet Gynecol 2021;33:13-8. [PMID: 33278077 DOI: 10.1097/GCO.0000000000000676] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
52 |
Salah A, Li Y, Wang H, Qi N, Wu Y. Macrophages as a Double-Edged Weapon: The Use of Macrophages in Cancer Immunotherapy and Understanding the Cross-Talk Between Macrophages and Cancer. DNA Cell Biol 2021;40:429-40. [PMID: 33481665 DOI: 10.1089/dna.2020.6087] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
53 |
Sier VQ, de Vries MR, van der Vorst JR, Vahrmeijer AL, van Kooten C, Cruz LJ, de Geus-Oei LF, Ferreira V, Sier CFM, Alves F, Muthana M. Cell-Based Tracers as Trojan Horses for Image-Guided Surgery. Int J Mol Sci 2021;22:E755. [PMID: 33451116 DOI: 10.3390/ijms22020755] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
54 |
Xu J, Zheng B, Zhang S, Liao X, Tong Q, Wei G, Yu S, Chen G, Wu A, Gao S, Qian Y, Xiao Z, Lu W. Copper Sulfide Nanoparticle‐Redirected Macrophages for Adoptive Transfer Therapy of Melanoma. Adv Funct Mater 2021;31:2008022. [DOI: 10.1002/adfm.202008022] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
|
55 |
Qi Y, Yan X, Xia T, Liu S. Use of macrophage as a Trojan horse for cancer nanotheranostics. Materials & Design 2021;198:109388. [DOI: 10.1016/j.matdes.2020.109388] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
|
56 |
Liu Y, Wang R. Immunotherapy Targeting Tumor-Associated Macrophages. Front Med (Lausanne) 2020;7:583708. [PMID: 33251232 DOI: 10.3389/fmed.2020.583708] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
|
57 |
Niu Z, Chen G, Chang W, Sun P, Luo Z, Zhang H, Zhi L, Guo C, Chen H, Yin M, Zhu W. Chimeric antigen receptor-modified macrophages trigger systemic anti-tumour immunity. J Pathol 2021;253:247-57. [PMID: 33140856 DOI: 10.1002/path.5585] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
|
58 |
Chandrasekaran R, Madheswaran T, Tharmalingam N, Bose RJ, Park H, Ha DH. Labeling and tracking cells with gold nanoparticles. Drug Discov Today 2021;26:94-105. [PMID: 33130336 DOI: 10.1016/j.drudis.2020.10.020] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
|
59 |
Hou T, Wang T, Mu W, Yang R, Liang S, Zhang Z, Fu S, Gao T, Liu Y, Zhang N. Nanoparticle-Loaded Polarized-Macrophages for Enhanced Tumor Targeting and Cell-Chemotherapy. Nanomicro Lett 2020;13:6. [PMID: 34138195 DOI: 10.1007/s40820-020-00531-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
|
60 |
Harizaj A, De Smedt SC, Lentacker I, Braeckmans K. Physical transfection technologies for macrophages and dendritic cells in immunotherapy. Expert Opin Drug Deliv 2021;18:229-47. [PMID: 32985919 DOI: 10.1080/17425247.2021.1828340] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
61 |
Martinez JO, Evangelopoulos M, Brozovich AA, Bauza G, Molinaro R, Corbo C, Liu X, Taraballi F, Tasciotti E. Mesenchymal Stromal Cell‐Mediated Treatment of Local and Systemic Inflammation through the Triggering of an Anti‐Inflammatory Response. Adv Funct Mater 2021;31:2002997. [DOI: 10.1002/adfm.202002997] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
62 |
Martin-lluesma S, Graciotti M, Grimm AJ, Boudousquié C, Chiang CL, Kandalaft LE. Are dendritic cells the most appropriate therapeutic vaccine for patients with ovarian cancer? Current Opinion in Biotechnology 2020;65:190-6. [DOI: 10.1016/j.copbio.2020.03.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
63 |
Guo J, Fu W. Immune regulation of islet homeostasis and adaptation. J Mol Cell Biol 2020;12:764-74. [PMID: 32236479 DOI: 10.1093/jmcb/mjaa009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
64 |
Cha EB, Shin KK, Seo J, Oh D. Antibody-secreting macrophages generated using CpG-free plasmid eliminate tumor cells through antibody-dependent cellular phagocytosis. BMB Rep 2020;53:442-7. [DOI: 10.5483/bmbrep.2020.53.8.024] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
65 |
Zhukova OV, Kovaleva TF, Arkhipova EV, Ryabov SA, Mukhina IV. Tumor-associated macrophages: Role in the pathological process of tumorigenesis and prospective therapeutic use (Review). Biomed Rep 2020;13:47. [PMID: 32934819 DOI: 10.3892/br.2020.1354] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
66 |
Weinstock LD, Forsmo JE, Wilkinson A, Ueda J, Wood LB. Experimental Control of Macrophage Pro-Inflammatory Dynamics Using Predictive Models. Front Bioeng Biotechnol 2020;8:666. [PMID: 32766211 DOI: 10.3389/fbioe.2020.00666] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
67 |
Kim S, Kang SH, Byun SH, Kim H, Park I, Hirschberg H, Hong SJ. Intercellular Bioimaging and Biodistribution of Gold Nanoparticle-Loaded Macrophages for Targeted Drug Delivery. Electronics 2020;9:1105. [DOI: 10.3390/electronics9071105] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
|
68 |
Kale A, Sharma A, Stolzing A, Desprez PY, Campisi J. Role of immune cells in the removal of deleterious senescent cells. Immun Ageing 2020;17:16. [PMID: 32518575 DOI: 10.1186/s12979-020-00187-9] [Cited by in Crossref: 91] [Cited by in F6Publishing: 95] [Article Influence: 30.3] [Reference Citation Analysis]
|
69 |
Hong YQ, Wan B, Li XF. Macrophage regulation of graft-vs-host disease. World J Clin Cases 2020; 8(10): 1793-1805 [PMID: 32518770 DOI: 10.12998/wjcc.v8.i10.1793] [Cited by in CrossRef: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
|
70 |
Shields CW 4th, Evans MA, Wang LL, Baugh N, Iyer S, Wu D, Zhao Z, Pusuluri A, Ukidve A, Pan DC, Mitragotri S. Cellular backpacks for macrophage immunotherapy. Sci Adv 2020;6:eaaz6579. [PMID: 32494680 DOI: 10.1126/sciadv.aaz6579] [Cited by in Crossref: 123] [Cited by in F6Publishing: 127] [Article Influence: 41.0] [Reference Citation Analysis]
|
71 |
Kang SH, Lee YK, Park IS, Park IK, Hong SM, Kwon SY, Choi YH, Madsen SJ, Hirschberg H, Hong SJ. Biomimetic Gold Nanoshell-Loaded Macrophage for Photothermal Biomedicine. Biomed Res Int 2020;2020:5869235. [PMID: 32352001 DOI: 10.1155/2020/5869235] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
|
72 |
Lipus A, Janosz E, Ackermann M, Hetzel M, Dahlke J, Buchegger T, Wunderlich S, Martin U, Cathomen T, Schambach A, Moritz T, Lachmann N. Targeted Integration of Inducible Caspase-9 in Human iPSCs Allows Efficient in vitro Clearance of iPSCs and iPSC-Macrophages. Int J Mol Sci 2020;21:E2481. [PMID: 32260086 DOI: 10.3390/ijms21072481] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
|
73 |
Cai X, Chen R, Ma K, Wang F, Zhou Y, Wang Y, Jiang T. Identification of the CXCL12–CXCR4/CXCR7 axis as a potential therapeutic target for immunomodulating macrophage polarization and foreign body response to implanted biomaterials. Applied Materials Today 2020;18:100454. [DOI: 10.1016/j.apmt.2019.100454] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
74 |
Hirao H, Dery KJ, Kageyama S, Nakamura K, Kupiec-Weglinski JW. Heme Oxygenase-1 in liver transplant ischemia-reperfusion injury: From bench-to-bedside. Free Radic Biol Med 2020;157:75-82. [PMID: 32084514 DOI: 10.1016/j.freeradbiomed.2020.02.012] [Cited by in Crossref: 24] [Cited by in F6Publishing: 29] [Article Influence: 8.0] [Reference Citation Analysis]
|
75 |
Borrelli MR, Hu MS, Hong WX, Oliver JD, Duscher D, Longaker MT, Lorenz HP. Macrophage Transplantation Fails to Improve Repair of Critical-Sized Calvarial Defects. J Craniofac Surg 2019;30:2640-5. [PMID: 31609958 DOI: 10.1097/SCS.0000000000005797] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
76 |
Wofford KL, Singh BS, Cullen DK, Spiller KL. Biomaterial-mediated reprogramming of monocytes via microparticle phagocytosis for sustained modulation of macrophage phenotype. Acta Biomater 2020;101:237-48. [PMID: 31731024 DOI: 10.1016/j.actbio.2019.11.021] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
|
77 |
Kimbrel EA, Lanza R. Blood components from pluripotent stem cells. Principles of Tissue Engineering 2020. [DOI: 10.1016/b978-0-12-818422-6.00043-5] [Reference Citation Analysis]
|
78 |
Evans MA, Shields CW, Krishnan V, Wang LL, Zhao Z, Ukidve A, Lewandowski M, Gao Y, Mitragotri S. Macrophage‐Mediated Delivery of Hypoxia‐Activated Prodrug Nanoparticles. Adv Therap 2020;3:1900162. [DOI: 10.1002/adtp.201900162] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
|
79 |
He W, Kapate N, Shields CW 4th, Mitragotri S. Drug delivery to macrophages: A review of targeting drugs and drug carriers to macrophages for inflammatory diseases. Adv Drug Deliv Rev 2020;165-166:15-40. [PMID: 31816357 DOI: 10.1016/j.addr.2019.12.001] [Cited by in Crossref: 83] [Cited by in F6Publishing: 94] [Article Influence: 20.8] [Reference Citation Analysis]
|
80 |
Tacke R, Sun J, Uchiyama S, Polovina A, Nguyen DG, Nizet V. Protection Against Lethal Multidrug-Resistant Bacterial Infections Using Macrophage Cell Therapy. Infectious Microbes and Diseases 2019;1:61-9. [DOI: 10.1097/im9.0000000000000012] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
|
81 |
Weinstock LD, Forsmo JE, Wilkinson A, Ueda J, Wood LB. Experimental control of macrophage pro-inflammatory dynamics using predictive models.. [DOI: 10.1101/826966] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
82 |
Hansen M, von Lindern M, van den Akker E, Varga E. Human‐induced pluripotent stem cell‐derived blood products: state of the art and future directions. FEBS Lett 2019;593:3288-303. [DOI: 10.1002/1873-3468.13599] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 6.8] [Reference Citation Analysis]
|
83 |
Elchaninov AV, Fatkhudinov TK, Vishnyakova PA, Lokhonina AV, Sukhikh GT. Phenotypical and Functional Polymorphism of Liver Resident Macrophages. Cells 2019;8:E1032. [PMID: 31491903 DOI: 10.3390/cells8091032] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 9.0] [Reference Citation Analysis]
|
84 |
Wang L, Ren X, Tian XF, Cheng XL, Zhao YY, Li QY, Duan ZY, Tian LF, Chen Z, Lu JM, Liang XY, Zhao YF, Fu RG. Protective effects of GPR120 agonist-programmed macrophages on renal interstitial fibrosis in unilateral ureteral obstruction (UUO) rats. Biomed Pharmacother 2019;117:109172. [PMID: 31261028 DOI: 10.1016/j.biopha.2019.109172] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
|
85 |
Wofford KL, Singh BS, Cullen DK, Spiller KL. Non-Genetic Reprogramming of Monocytes via Microparticle Phagocytosis for Sustained Modulation of Macrophage Phenotype.. [DOI: 10.1101/674598] [Reference Citation Analysis]
|
86 |
Chen T, Cao Q, Wang Y, Harris DCH. M2 macrophages in kidney disease: biology, therapies, and perspectives. Kidney Int 2019;95:760-73. [PMID: 30827512 DOI: 10.1016/j.kint.2018.10.041] [Cited by in Crossref: 70] [Cited by in F6Publishing: 62] [Article Influence: 17.5] [Reference Citation Analysis]
|
87 |
Wofford KL, Cullen DK, Spiller KL. Modulation of macrophage phenotype via phagocytosis of drug-loaded microparticles. J Biomed Mater Res A 2019;107:1213-24. [PMID: 30672109 DOI: 10.1002/jbm.a.36617] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
|
88 |
Yan D, Zhang D, Lu L, Qiu H, Wang J. Vascular endothelial growth factor-modified macrophages accelerate reendothelialization and attenuate neointima formation after arterial injury in atherosclerosis-prone mice. J Cell Biochem 2019;120:10652-61. [PMID: 30644609 DOI: 10.1002/jcb.28355] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
|
89 |
Schaar B, Krishnan V, Tallapragada S, Chanana A, Dorigo O. Cell-based immunotherapy in gynecologic malignancies. Curr Opin Obstet Gynecol 2019;31:43-8. [PMID: 30540582 DOI: 10.1097/GCO.0000000000000518] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
|
90 |
Beneke V, Küster F, Neehus AL, Hesse C, Lopez-Rodriguez E, Haake K, Rafiei Hashtchin A, Schott JW, Walter D, Braun A, Wolkers WF, Ackermann M, Lachmann N. An immune cell spray (ICS) formulation allows for the delivery of functional monocyte/macrophages. Sci Rep 2018;8:16281. [PMID: 30389997 DOI: 10.1038/s41598-018-34524-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
|
91 |
Choo YW, Kang M, Kim HY, Han J, Kang S, Lee JR, Jeong GJ, Kwon SP, Song SY, Go S, Jung M, Hong J, Kim BS. M1 Macrophage-Derived Nanovesicles Potentiate the Anticancer Efficacy of Immune Checkpoint Inhibitors. ACS Nano 2018;12:8977-93. [PMID: 30133260 DOI: 10.1021/acsnano.8b02446] [Cited by in Crossref: 165] [Cited by in F6Publishing: 182] [Article Influence: 33.0] [Reference Citation Analysis]
|
92 |
Han Y, Zhao R, Xu F. Neutrophil-Based Delivery Systems for Nanotherapeutics. Small 2018;14:e1801674. [PMID: 30144279 DOI: 10.1002/smll.201801674] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 6.2] [Reference Citation Analysis]
|
93 |
Morrissey MA, Williamson AP, Steinbach AM, Roberts EW, Kern N, Headley MB, Vale RD. Chimeric antigen receptors that trigger phagocytosis. Elife 2018;7:e36688. [PMID: 29862966 DOI: 10.7554/eLife.36688] [Cited by in Crossref: 112] [Cited by in F6Publishing: 120] [Article Influence: 22.4] [Reference Citation Analysis]
|
94 |
Morrissey MA, Williamson AP, Steinbach AM, Roberts EW, Kern N, Headley MB, Vale RD. Chimeric antigen receptors that trigger phagocytosis.. [DOI: 10.1101/316323] [Reference Citation Analysis]
|
95 |
Golombek SK, May JN, Theek B, Appold L, Drude N, Kiessling F, Lammers T. Tumor targeting via EPR: Strategies to enhance patient responses. Adv Drug Deliv Rev 2018;130:17-38. [PMID: 30009886 DOI: 10.1016/j.addr.2018.07.007] [Cited by in Crossref: 672] [Cited by in F6Publishing: 715] [Article Influence: 134.4] [Reference Citation Analysis]
|
96 |
Smigiel KS, Parks WC. Macrophages, Wound Healing, and Fibrosis: Recent Insights. Curr Rheumatol Rep 2018;20:17. [PMID: 29550962 DOI: 10.1007/s11926-018-0725-5] [Cited by in Crossref: 62] [Cited by in F6Publishing: 55] [Article Influence: 12.4] [Reference Citation Analysis]
|
97 |
Vijayan V, Wagener FADTG, Immenschuh S. The macrophage heme-heme oxygenase-1 system and its role in inflammation. Biochem Pharmacol 2018;153:159-67. [PMID: 29452096 DOI: 10.1016/j.bcp.2018.02.010] [Cited by in Crossref: 125] [Cited by in F6Publishing: 127] [Article Influence: 25.0] [Reference Citation Analysis]
|
98 |
Huang Y, Gao X, Chen J. Leukocyte-derived biomimetic nanoparticulate drug delivery systems for cancer therapy. Acta Pharm Sin B 2018;8:4-13. [PMID: 29872618 DOI: 10.1016/j.apsb.2017.12.001] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 8.4] [Reference Citation Analysis]
|
99 |
Yong SB, Chung JY, Song Y, Kim YH. Recent challenges and advances in genetically-engineered cell therapy. J Pharm Investig 2018;48:199-208. [PMID: 30680249 DOI: 10.1007/s40005-017-0381-1] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
|
100 |
Lee S, Kivimäe S, Szoka FC. Clodronate Improves Survival of Transplanted Hoxb8 Myeloid Progenitors with Constitutively Active GMCSFR in Immunocompetent Mice. Mol Ther Methods Clin Dev 2017;7:60-73. [PMID: 29034260 DOI: 10.1016/j.omtm.2017.08.007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
101 |
Spiller KL, Koh TJ. Macrophage-based therapeutic strategies in regenerative medicine. Adv Drug Deliv Rev 2017;122:74-83. [PMID: 28526591 DOI: 10.1016/j.addr.2017.05.010] [Cited by in Crossref: 175] [Cited by in F6Publishing: 181] [Article Influence: 29.2] [Reference Citation Analysis]
|
102 |
Lin T, Pajarinen J, Nabeshima A, Lu L, Nathan K, Yao Z, Goodman SB. Establishment of NF-κB sensing and interleukin-4 secreting mesenchymal stromal cells as an "on-demand" drug delivery system to modulate inflammation. Cytotherapy 2017;19:1025-34. [PMID: 28739167 DOI: 10.1016/j.jcyt.2017.06.008] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 5.7] [Reference Citation Analysis]
|
103 |
Genard G, Lucas S, Michiels C. Reprogramming of Tumor-Associated Macrophages with Anticancer Therapies: Radiotherapy versus Chemo- and Immunotherapies. Front Immunol 2017;8:828. [PMID: 28769933 DOI: 10.3389/fimmu.2017.00828] [Cited by in Crossref: 217] [Cited by in F6Publishing: 231] [Article Influence: 36.2] [Reference Citation Analysis]
|
104 |
Smith TD, Nagalla RR, Chen EY, Liu WF. Harnessing macrophage plasticity for tissue regeneration. Adv Drug Deliv Rev 2017;114:193-205. [PMID: 28449872 DOI: 10.1016/j.addr.2017.04.012] [Cited by in Crossref: 74] [Cited by in F6Publishing: 66] [Article Influence: 12.3] [Reference Citation Analysis]
|
105 |
Ngambenjawong C, Gustafson HH, Pun SH. Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv Drug Deliv Rev 2017;114:206-21. [PMID: 28449873 DOI: 10.1016/j.addr.2017.04.010] [Cited by in Crossref: 291] [Cited by in F6Publishing: 322] [Article Influence: 48.5] [Reference Citation Analysis]
|
106 |
Lu KY, Lin PY, Chuang EY, Shih CM, Cheng TM, Lin TY, Sung HW, Mi FL. H2O2-Depleting and O2-Generating Selenium Nanoparticles for Fluorescence Imaging and Photodynamic Treatment of Proinflammatory-Activated Macrophages. ACS Appl Mater Interfaces 2017;9:5158-72. [PMID: 28120612 DOI: 10.1021/acsami.6b15515] [Cited by in Crossref: 58] [Cited by in F6Publishing: 62] [Article Influence: 9.7] [Reference Citation Analysis]
|