BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang C, An T, Wang D, Wan G, Zhang M, Wang H, Zhang S, Li R, Yang X, Wang Y. Stepwise pH-responsive nanoparticles containing charge-reversible pullulan-based shells and poly(β-amino ester)/poly(lactic-co-glycolic acid) cores as carriers of anticancer drugs for combination therapy on hepatocellular carcinoma. J Control Release 2016;226:193-204. [PMID: 26896737 DOI: 10.1016/j.jconrel.2016.02.030] [Cited by in Crossref: 75] [Cited by in F6Publishing: 74] [Article Influence: 12.5] [Reference Citation Analysis]
Number Citing Articles
1 Huang X, Lee F, Teng Y, Lingam CB, Chen Z, Sun M, Song Z, Balachander GM, Leo HL, Guo Q, Shah I, Yu H. Sequential drug delivery for liver diseases. Adv Drug Deliv Rev 2019;149-150:72-84. [PMID: 31734169 DOI: 10.1016/j.addr.2019.11.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
2 Singh RS, Kaur N, Rana V, Kennedy JF. Pullulan: A novel molecule for biomedical applications. Carbohydrate Polymers 2017;171:102-21. [DOI: 10.1016/j.carbpol.2017.04.089] [Cited by in Crossref: 128] [Cited by in F6Publishing: 99] [Article Influence: 25.6] [Reference Citation Analysis]
3 Fang Z, Pan S, Gao P, Sheng H, Li L, Shi L, Zhang Y, Cai X. Stimuli-responsive charge-reversal nano drug delivery system: The promising targeted carriers for tumor therapy. International Journal of Pharmaceutics 2020;575:118841. [DOI: 10.1016/j.ijpharm.2019.118841] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 9.0] [Reference Citation Analysis]
4 Yang Z, Peng Y, Qiu L. pH-Responsive supramolecular micelle based on host-guest interaction of poly(β-amino ester) derivatives and adamantyl-terminated poly(ethylene glycol) for cancer inhibition. Chinese Chemical Letters 2018;29:1839-44. [DOI: 10.1016/j.cclet.2018.11.009] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
5 Liu CM, Chen GB, Chen HH, Zhang JB, Li HZ, Sheng MX, Weng WB, Guo SM. Cancer cell membrane-cloaked mesoporous silica nanoparticles with a pH-sensitive gatekeeper for cancer treatment. Colloids Surf B Biointerfaces 2019;175:477-86. [PMID: 30572156 DOI: 10.1016/j.colsurfb.2018.12.038] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 8.5] [Reference Citation Analysis]
6 Yang J, Zhang Y, Zhao S, Zhou Q, Xin X, Chen L. Statistical Optimization of Medium for Pullulan Production by Aureobasidium pullulans NCPS2016 Using Fructose and Soybean Meal Hydrolysates. Molecules 2018;23:E1334. [PMID: 29865206 DOI: 10.3390/molecules23061334] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
7 Chen M, Song F, Liu Y, Tian J, Liu C, Li R, Zhang Q. A dual pH-sensitive liposomal system with charge-reversal and NO generation for overcoming multidrug resistance in cancer. Nanoscale 2019;11:3814-26. [DOI: 10.1039/c8nr06218h] [Cited by in Crossref: 41] [Cited by in F6Publishing: 7] [Article Influence: 13.7] [Reference Citation Analysis]
8 Chen D, Qu X, Shao J, Wang W, Dong X. Anti-vascular nano agents: a promising approach for cancer treatment. J Mater Chem B 2020;8:2990-3004. [PMID: 32211649 DOI: 10.1039/c9tb02957e] [Cited by in Crossref: 13] [Article Influence: 6.5] [Reference Citation Analysis]
9 Chen X, Liu L, Jiang C. Charge-reversal nanoparticles: novel targeted drug delivery carriers. Acta Pharm Sin B 2016;6:261-7. [PMID: 27471667 DOI: 10.1016/j.apsb.2016.05.011] [Cited by in Crossref: 55] [Cited by in F6Publishing: 49] [Article Influence: 9.2] [Reference Citation Analysis]
10 Ganie SA, Rather LJ, Li Q. A review on anticancer applications of pullulan and pullulan derivative nanoparticles. Carbohydrate Polymer Technologies and Applications 2021;2:100115. [DOI: 10.1016/j.carpta.2021.100115] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
11 Li C, Lin F, Sun W, Wu F, Yang H, Lv R, Zhu Y, Jia H, Wang C, Gao G, Chen Z. Self-Assembled Rose Bengal-Exopolysaccharide Nanoparticles for Improved Photodynamic Inactivation of Bacteria by Enhancing Singlet Oxygen Generation Directly in the Solution. ACS Appl Mater Interfaces 2018;10:16715-22. [DOI: 10.1021/acsami.8b01545] [Cited by in Crossref: 44] [Cited by in F6Publishing: 28] [Article Influence: 11.0] [Reference Citation Analysis]
12 Mosaiab T, Farr DC, Kiefel MJ, Houston TA. Carbohydrate-based nanocarriers and their application to target macrophages and deliver antimicrobial agents. Advanced Drug Delivery Reviews 2019;151-152:94-129. [DOI: 10.1016/j.addr.2019.09.002] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
13 Xu Q, Guo L, A S, Gao Y, Zhou D, Greiser U, Creagh-Flynn J, Zhang H, Dong Y, Cutlar L, Wang F, Liu W, Wang W, Wang W. Injectable hyperbranched poly(β-amino ester) hydrogels with on-demand degradation profiles to match wound healing processes. Chem Sci 2018;9:2179-87. [PMID: 29719691 DOI: 10.1039/c7sc03913a] [Cited by in Crossref: 69] [Cited by in F6Publishing: 12] [Article Influence: 17.3] [Reference Citation Analysis]
14 Tian Z, Xu L, Chen Q, Feng R, Lu H, Tan H, Kang J, Wang Y, Yan H. Treatment of Surgical Brain Injury by Immune Tolerance Induced by Peripheral Intravenous Injection of Biotargeting Nanoparticles Loaded With Brain Antigens. Front Immunol 2019;10:743. [PMID: 31024567 DOI: 10.3389/fimmu.2019.00743] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
15 Turato C, Balasso A, Carloni V, Tiribelli C, Mastrotto F, Mazzocca A, Pontisso P. New molecular targets for functionalized nanosized drug delivery systems in personalized therapy for hepatocellular carcinoma. J Control Release 2017;268:184-97. [PMID: 29051062 DOI: 10.1016/j.jconrel.2017.10.027] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 4.2] [Reference Citation Analysis]
16 Mohamed NK, Hamad MA, Hafez MZ, Wooley KL, Elsabahy M. Nanomedicine in management of hepatocellular carcinoma: Challenges and opportunities: Nanomedicine in management of HCC. Int J Cancer 2017;140:1475-84. [DOI: 10.1002/ijc.30517] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 4.8] [Reference Citation Analysis]
17 Zhu Y, Meng T, Tan Y, Yang X, Liu Y, Liu X, Yu F, Wen L, Dai S, Yuan H, Hu F. Negative Surface Shielded Polymeric Micelles with Colloidal Stability for Intracellular Endosomal/Lysosomal Escape. Mol Pharmaceutics 2018;15:5374-86. [DOI: 10.1021/acs.molpharmaceut.8b00842] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
18 Nigam K, Kaur A, Tyagi A, Manda K, Goswami N, Nematullah M, Khan F, Gabrani R, Gauba P, Dang S. In vitro & In vivo evaluations of PLGA nanoparticle based combinatorial drug therapy for Baclofen and Lamotrigine for neuropathic pain management. J Microencapsul 2022;:1-34. [PMID: 35147068 DOI: 10.1080/02652048.2022.2041751] [Reference Citation Analysis]
19 Shi S, Wang Y, Wang B, Chen Q, Wan G, Yang X, Zhang J, Zhang L, Li C, Wang Y. Homologous-targeting biomimetic nanoparticles for photothermal therapy and Nrf2-siRNA amplified photodynamic therapy against oral tongue squamous cell carcinoma. Chemical Engineering Journal 2020;388:124268. [DOI: 10.1016/j.cej.2020.124268] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
20 Gou J, Liang Y, Miao L, Guo W, Chao Y, He H, Zhang Y, Yang J, Wu C, Yin T, Wang Y, Tang X. Improved tumor tissue penetration and tumor cell uptake achieved by delayed charge reversal nanoparticles. Acta Biomater 2017;62:157-66. [PMID: 28827183 DOI: 10.1016/j.actbio.2017.08.025] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 5.2] [Reference Citation Analysis]
21 Wang Y, Wan G, Li Z, Shi S, Chen B, Li C, Zhang L, Wang Y. PEGylated doxorubicin nanoparticles mediated by HN-1 peptide for targeted treatment of oral squamous cell carcinoma. International Journal of Pharmaceutics 2017;525:21-31. [DOI: 10.1016/j.ijpharm.2017.04.027] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
22 Yang X, Shi X, D'arcy R, Tirelli N, Zhai G. Amphiphilic polysaccharides as building blocks for self-assembled nanosystems: molecular design and application in cancer and inflammatory diseases. Journal of Controlled Release 2018;272:114-44. [DOI: 10.1016/j.jconrel.2017.12.033] [Cited by in Crossref: 32] [Cited by in F6Publishing: 23] [Article Influence: 8.0] [Reference Citation Analysis]
23 Son S, Deepagan VG, Shin S, Ko H, Min J, Um W, Jeon J, Kwon S, Lee ES, Suh M, Lee DS, Park JH. Ultrasmall gold nanosatellite-bearing transformable hybrid nanoparticles for deep tumor penetration. Acta Biomater 2018;79:294-305. [PMID: 30134209 DOI: 10.1016/j.actbio.2018.08.019] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
24 Karlsson J, Vaughan HJ, Green JJ. Biodegradable Polymeric Nanoparticles for Therapeutic Cancer Treatments. Annu Rev Chem Biomol Eng 2018;9:105-27. [PMID: 29579402 DOI: 10.1146/annurev-chembioeng-060817-084055] [Cited by in Crossref: 62] [Cited by in F6Publishing: 40] [Article Influence: 15.5] [Reference Citation Analysis]
25 Das S, Kudale P, Dandekar P, Devarajan PV. Asialoglycoprotein Receptor and Targeting Strategies. In: Devarajan PV, Dandekar P, D'souza AA, editors. Targeted Intracellular Drug Delivery by Receptor Mediated Endocytosis. Cham: Springer International Publishing; 2019. pp. 353-81. [DOI: 10.1007/978-3-030-29168-6_12] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
26 Zou L, Liu X, Li J, Li W, Zhang L, Fu C, Zhang J, Gu Z. Redox-sensitive carrier-free nanoparticles self-assembled by disulfide-linked paclitaxel-tetramethylpyrazine conjugate for combination cancer chemotherapy. Theranostics 2021;11:4171-86. [PMID: 33754055 DOI: 10.7150/thno.42260] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Sharifian M, Baharvand P, Moayyedkazemi A. Liver Cancer: New Insights into Surgical and Nonsurgical Treatments. CCTR 2021;17:197-206. [DOI: 10.2174/1573394717666210219104201] [Reference Citation Analysis]
28 Miao L, Guo S, Lin CM, Liu Q, Huang L. Nanoformulations for combination or cascade anticancer therapy. Adv Drug Deliv Rev 2017;115:3-22. [PMID: 28624477 DOI: 10.1016/j.addr.2017.06.003] [Cited by in Crossref: 99] [Cited by in F6Publishing: 86] [Article Influence: 19.8] [Reference Citation Analysis]
29 Zhang S, Wang D, Li Y, Li L, Chen H, Xiong Q, Liu Y, Wang Y. pH- and redox-responsive nanoparticles composed of charge-reversible pullulan-based shells and disulfide-containing poly( ß -amino ester) cores for co-delivery of a gene and chemotherapeutic agent. Nanotechnology 2018;29:325101. [DOI: 10.1088/1361-6528/aac4b5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
30 Yan K, Zhang Y, Mu C, Xu Q, Jing X, Wang D, Dang D, Meng L, Ma J. Versatile Nanoplatforms with enhanced Photodynamic Therapy: Designs and Applications. Theranostics 2020;10:7287-318. [PMID: 32641993 DOI: 10.7150/thno.46288] [Cited by in Crossref: 20] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]
31 Singh RS, Kaur N, Hassan M, Kennedy JF. Pullulan in biomedical research and development - A review. Int J Biol Macromol 2021;166:694-706. [PMID: 33137388 DOI: 10.1016/j.ijbiomac.2020.10.227] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
32 Li Y, Yang HY, Thambi T, Park J, Lee DS. Charge-convertible polymers for improved tumor targeting and enhanced therapy. Biomaterials 2019;217:119299. [DOI: 10.1016/j.biomaterials.2019.119299] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 9.3] [Reference Citation Analysis]
33 Pardeshi SR, Nikam A, Chandak P, Mandale V, Naik JB, Giram PS. Recent advances in PLGA based nanocarriers for drug delivery system: a state of the art review. International Journal of Polymeric Materials and Polymeric Biomaterials. [DOI: 10.1080/00914037.2021.1985495] [Reference Citation Analysis]
34 Park JH, Mohapatra A, Zhou J, Holay M, Krishnan N, Gao W, Fang RH, Zhang L. Virus-Mimicking Cell Membrane-Coated Nanoparticles for Cytosolic Delivery of mRNA. Angew Chem Int Ed Engl 2021. [PMID: 34694684 DOI: 10.1002/anie.202113671] [Reference Citation Analysis]
35 Elnaggar MH, Abushouk AI, Hassan AHE, Lamloum HM, Benmelouka A, Moatamed SA, Abd-Elmegeed H, Attia S, Samir A, Amr N, Johar D, Zaky S. Nanomedicine as a putative approach for active targeting of hepatocellular carcinoma. Semin Cancer Biol 2021;69:91-9. [PMID: 31421265 DOI: 10.1016/j.semcancer.2019.08.016] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
36 Lee T, Wu T, Park JH, Song J, Jeong G, Hyun J, Lee JY, Lee S, Lee DS, Bhang SH. Enzyme free cell detachment using pH-responsive poly(amino ester) for tissue regeneration. Journal of Industrial and Engineering Chemistry 2020;88:373-81. [DOI: 10.1016/j.jiec.2020.05.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Wang D, Zhang S, Zhang T, Wan G, Chen B, Xiong Q, Zhang J, Zhang W, Wang Y. Pullulan-coated phospholipid and Pluronic F68 complex nanoparticles for carrying IR780 and paclitaxel to treat hepatocellular carcinoma by combining photothermal therapy/photodynamic therapy and chemotherapy. Int J Nanomedicine 2017;12:8649-70. [PMID: 29255359 DOI: 10.2147/IJN.S147591] [Cited by in Crossref: 23] [Cited by in F6Publishing: 5] [Article Influence: 4.6] [Reference Citation Analysis]
38 Wang H, Wan G, Liu Y, Chen B, Chen H, Zhang S, Wang D, Xiong Q, Zhang N, Wang Y. Dual-responsive nanoparticles based on oxidized pullulan and a disulfide-containing poly(β-amino) ester for efficient delivery of genes and chemotherapeutic agents targeting hepatoma. Polym Chem 2016;7:6340-53. [DOI: 10.1039/c6py01664b] [Cited by in Crossref: 23] [Article Influence: 3.8] [Reference Citation Analysis]
39 Liu Y, Li Y, Keskin D, Shi L. Poly(β‐Amino Esters): Synthesis, Formulations, and Their Biomedical Applications. Adv Healthcare Mater 2018. [DOI: 10.1002/adhm.201801359] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 4.8] [Reference Citation Analysis]
40 Karlsson J, Rhodes KR, Green JJ, Tzeng SY. Poly(beta-amino ester)s as gene delivery vehicles: challenges and opportunities. Expert Opin Drug Deliv 2020;17:1395-410. [PMID: 32700581 DOI: 10.1080/17425247.2020.1796628] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
41 Chen Y, Yue Q, De G, Wang J, Li Z, Xiao S, Yu H, Ma H, Sui F, Zhao Q. Inhibition of breast cancer metastasis by paclitaxel-loaded pH responsive poly( β -amino ester) copolymer micelles. Nanomedicine 2017;12:147-64. [DOI: 10.2217/nnm-2016-0335] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
42 Guo X, Wang L, Wei X, Zhou S. Polymer-based drug delivery systems for cancer treatment: REVIEWS. J Polym Sci Part A: Polym Chem 2016;54:3525-50. [DOI: 10.1002/pola.28252] [Cited by in Crossref: 60] [Cited by in F6Publishing: 35] [Article Influence: 10.0] [Reference Citation Analysis]
43 Hanurry EY, Hsu WH, Darge HF, Birhan YS, Mekonnen TW, Andrgie AT, Chou HY, Cheng CC, Lai JY, Tsai HC. In vitro siRNA delivery via diethylenetriamine- and tetraethylenepentamine-modified carboxyl group-terminated Poly(amido)amine generation 4.5 dendrimers. Mater Sci Eng C Mater Biol Appl 2020;106:110245. [PMID: 31753357 DOI: 10.1016/j.msec.2019.110245] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
44 Chew SA, Moscato S, George S, Azimi B, Danti S. Liver Cancer: Current and Future Trends Using Biomaterials. Cancers (Basel) 2019;11:E2026. [PMID: 31888198 DOI: 10.3390/cancers11122026] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
45 Taghipour-sabzevar V, Sharifi T, Moghaddam MM. Polymeric nanoparticles as carrier for targeted and controlled delivery of anticancer agents. Therapeutic Delivery 2019;10:527-50. [DOI: 10.4155/tde-2019-0044] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 4.7] [Reference Citation Analysis]
46 Zhang H, Li J, Yuan R, Li Y, Zhang Y, Hu X, Qu J, Chen Y, Wang Z, Xia M, Wang D. Augment the efficacy of eradicating metastatic lesions and tumor proliferation in breast cancer by honokiol-loaded pH-sensitive targeted lipid nanoparticles. Colloids Surf B Biointerfaces 2021;207:112008. [PMID: 34333303 DOI: 10.1016/j.colsurfb.2021.112008] [Reference Citation Analysis]
47 Yang X, Xie Y. Recent advances in polymeric core-shell nanocarriers for targeted delivery of chemotherapeutic drugs. Int J Pharm 2021;608:121094. [PMID: 34534631 DOI: 10.1016/j.ijpharm.2021.121094] [Reference Citation Analysis]
48 Wu J, Zhang J, Deng C, Meng F, Cheng R, Zhong Z. Robust, Responsive, and Targeted PLGA Anticancer Nanomedicines by Combination of Reductively Cleavable Surfactant and Covalent Hyaluronic Acid Coating. ACS Appl Mater Interfaces 2017;9:3985-94. [PMID: 28079367 DOI: 10.1021/acsami.6b15105] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 7.8] [Reference Citation Analysis]
49 Liang X, Xu S, Zhang J, Li J, Shen Q. Cascade Amplifiers of Intracellular Reactive Oxygen Species Based on Mitochondria-Targeted Core-Shell ZnO-TPP@D/H Nanorods for Breast Cancer Therapy. ACS Appl Mater Interfaces 2018;10:38749-59. [PMID: 30339356 DOI: 10.1021/acsami.8b12590] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
50 Kim GG, Lee JY, Choi PS, Vyas CK, Yang SD, Hur MG, Park JH. Synthesis and evaluation of triphenylphosphonium conjugated 18F-labeled silica nanoparticles for PET imaging. J Radioanal Nucl Chem 2018;316:1099-106. [DOI: 10.1007/s10967-018-5763-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
51 Gu Y, Ma J, Fu Z, Xu Y, Gao B, Yao J, Xu W, Chu K, Chen J. Development Of Novel Liposome-Encapsulated Combretastatin A4 Acylated Derivatives: Prodrug Approach For Improving Antitumor Efficacy. Int J Nanomedicine 2019;14:8805-18. [PMID: 31806973 DOI: 10.2147/IJN.S210938] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
52 Bhattarai P, Hameed S, Dai Z. Recent advances in anti-angiogenic nanomedicines for cancer therapy. Nanoscale 2018;10:5393-423. [DOI: 10.1039/c7nr09612g] [Cited by in Crossref: 34] [Cited by in F6Publishing: 14] [Article Influence: 8.5] [Reference Citation Analysis]
53 Li M, Zhang W, Wang B, Gao Y, Song Z, Zheng QC. Ligand-based targeted therapy: a novel strategy for hepatocellular carcinoma. Int J Nanomedicine 2016;11:5645-69. [PMID: 27920520 DOI: 10.2147/IJN.S115727] [Cited by in Crossref: 67] [Cited by in F6Publishing: 25] [Article Influence: 11.2] [Reference Citation Analysis]
54 Fawzi Kabil M, Nasr M, El-Sherbiny IM. Conventional and hybrid nanoparticulate systems for the treatment of hepatocellular carcinoma: An updated review. Eur J Pharm Biopharm 2021;167:9-37. [PMID: 34271117 DOI: 10.1016/j.ejpb.2021.07.003] [Reference Citation Analysis]
55 Mi P. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics 2020;10:4557-88. [PMID: 32292515 DOI: 10.7150/thno.38069] [Cited by in Crossref: 85] [Cited by in F6Publishing: 75] [Article Influence: 42.5] [Reference Citation Analysis]
56 Tabasum S, Noreen A, Maqsood MF, Umar H, Akram N, Nazli Z, Chatha SAS, Zia KM. A review on versatile applications of blends and composites of pullulan with natural and synthetic polymers. International Journal of Biological Macromolecules 2018;120:603-32. [DOI: 10.1016/j.ijbiomac.2018.07.154] [Cited by in Crossref: 51] [Cited by in F6Publishing: 24] [Article Influence: 12.8] [Reference Citation Analysis]
57 Zhang S, Guo N, Wan G, Zhang T, Li C, Wang Y, Wang Y, Liu Y. pH and redox dual-responsive nanoparticles based on disulfide-containing poly(β-amino ester) for combining chemotherapy and COX-2 inhibitor to overcome drug resistance in breast cancer. J Nanobiotechnology 2019;17:109. [PMID: 31623608 DOI: 10.1186/s12951-019-0540-9] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
58 Dhas NL, Raval NJ, Kudarha RR, Acharya NS, Acharya SR. Core–shell nanoparticles as a drug delivery platform for tumor targeting. Inorganic Frameworks as Smart Nanomedicines. Elsevier; 2018. pp. 387-448. [DOI: 10.1016/b978-0-12-813661-4.00009-2] [Cited by in Crossref: 7] [Article Influence: 1.8] [Reference Citation Analysis]
59 Xu F, Li X, Huang X, Pan J, Wang Y, Zhou S. Development of a pH-responsive polymersome inducing endoplasmic reticulum stress and autophagy blockade. Sci Adv 2020;6:eabb8725. [PMID: 32789182 DOI: 10.1126/sciadv.abb8725] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
60 Sun Y, Long D. Preparation, Characterization and in vitro/in vivo Evaluation of Lovastatin-Loaded PLGA Microspheres by Local Administration for Femoral Head Necrosis. Drug Des Devel Ther 2021;15:601-10. [PMID: 33623369 DOI: 10.2147/DDDT.S286306] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Hlaváč D, Klushina D, Tokarský J. Interaction of antitumoral drug erlotinib with biodegradable triblock copolymers: a molecular modeling study. Chem Pap 2018;72:2023-34. [DOI: 10.1007/s11696-018-0413-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
62 Zhang J, Zheng Y, Xie X, Wang L, Su Z, Wang Y, Leong KW, Chen M. Cleavable Multifunctional Targeting Mixed Micelles with Sequential pH-Triggered TAT Peptide Activation for Improved Antihepatocellular Carcinoma Efficacy. Mol Pharm 2017;14:3644-59. [PMID: 28994600 DOI: 10.1021/acs.molpharmaceut.7b00404] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
63 Wu W, Luo L, Wang Y, Wu Q, Dai HB, Li JS, Durkan C, Wang N, Wang GX. Endogenous pH-responsive nanoparticles with programmable size changes for targeted tumor therapy and imaging applications. Theranostics 2018;8:3038-58. [PMID: 29896301 DOI: 10.7150/thno.23459] [Cited by in Crossref: 75] [Cited by in F6Publishing: 70] [Article Influence: 18.8] [Reference Citation Analysis]
64 Jiang H, Li ZP, Tian GX, Pan RY, Xu CM, Zhang B, Wu JL. Liver-targeted liposomes for codelivery of curcumin and combretastatin A4 phosphate: preparation, characterization, and antitumor effects. Int J Nanomedicine 2019;14:1789-804. [PMID: 30880980 DOI: 10.2147/IJN.S188971] [Cited by in Crossref: 15] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
65 Jin Y, Cai L, Yang Q, Luo Z, Liang L, Liang Y, Wu B, Ding L, Zhang D, Xu X, Zhang L, Zhou F. Anti-leukemia activities of selenium nanoparticles embedded in nanotube consisted of triple-helix β-d-glucan. Carbohydr Polym 2020;240:116329. [PMID: 32475588 DOI: 10.1016/j.carbpol.2020.116329] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
66 Li X, Jiang X. Microfluidics for producing poly (lactic-co-glycolic acid)-based pharmaceutical nanoparticles. Advanced Drug Delivery Reviews 2018;128:101-14. [DOI: 10.1016/j.addr.2017.12.015] [Cited by in Crossref: 59] [Cited by in F6Publishing: 43] [Article Influence: 14.8] [Reference Citation Analysis]
67 Sathyamoorthy N, Magharla D, Chintamaneni P, Vankayalu S. Optimization of paclitaxel loaded poly (ε-caprolactone) nanoparticles using Box Behnken design. Beni-Suef University Journal of Basic and Applied Sciences 2017;6:362-73. [DOI: 10.1016/j.bjbas.2017.06.002] [Cited by in Crossref: 25] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
68 Hanurry EY, Mekonnen TW, Andrgie AT, Darge HF, Birhan YS, Hsu WH, Chou HY, Cheng CC, Lai JY, Tsai HC. Biotin-Decorated PAMAM G4.5 Dendrimer Nanoparticles to Enhance the Delivery, Anti-Proliferative, and Apoptotic Effects of Chemotherapeutic Drug in Cancer Cells. Pharmaceutics 2020;12:E443. [PMID: 32403321 DOI: 10.3390/pharmaceutics12050443] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
69 Zhu K, Zhao F, Yang Y, Mu W. Effects of simvastatin-loaded PLGA microspheres on treatment of rats with intervertebral disk degeneration and on 6-K-PGF1α and HIF-1α. Exp Ther Med 2020;19:579-84. [PMID: 31897100 DOI: 10.3892/etm.2019.8267] [Reference Citation Analysis]
70 Feng R, Chen Q, Zhou P, Wang Y, Yan H. Nanoparticles based on disulfide-containing poly( β -amino ester) and zwitterionic fluorocarbon surfactant as a redox-responsive drug carrier for brain tumor treatment. Nanotechnology 2018;29:495101. [DOI: 10.1088/1361-6528/aae122] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
71 Ghafouri-Fard S, Shoorei H, Abak A, Abbas Raza SH, Pichler M, Taheri M. Role of non-coding RNAs in modulating the response of cancer cells to paclitaxel treatment. Biomed Pharmacother 2021;134:111172. [PMID: 33360156 DOI: 10.1016/j.biopha.2020.111172] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
72 Liu Y, Chen J, Tang Y, Li S, Dou Y, Zheng J. Synthesis and Characterization of Quaternized Poly(β-amino ester) for Highly Efficient Delivery of Small Interfering RNA. Mol Pharmaceutics 2018;15:4558-67. [DOI: 10.1021/acs.molpharmaceut.8b00549] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
73 Tiwari S, Patil R, Dubey SK, Bahadur P. Derivatization approaches and applications of pullulan. Advances in Colloid and Interface Science 2019;269:296-308. [DOI: 10.1016/j.cis.2019.04.014] [Cited by in Crossref: 27] [Cited by in F6Publishing: 14] [Article Influence: 9.0] [Reference Citation Analysis]
74 Lin F, Li C, Chen Z. Exopolysaccharide-Derived Carbon Dots for Microbial Viability Assessment. Front Microbiol 2018;9:2697. [PMID: 30473686 DOI: 10.3389/fmicb.2018.02697] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
75 Duro-castano A, Talelli M, Rodríguez-escalona G, Vicent M. Smart Polymeric Nanocarriers for Drug Delivery. Smart Polymers and their Applications. Elsevier; 2019. pp. 439-79. [DOI: 10.1016/b978-0-08-102416-4.00013-2] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
76 Wang X, Cheng R, Cheng L, Zhong Z. Lipoyl Ester Terminated Star PLGA as a Simple and Smart Material for Controlled Drug Delivery Application. Biomacromolecules 2018;19:1368-73. [PMID: 29553255 DOI: 10.1021/acs.biomac.8b00130] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
77 Zhang X, Huang Y, Song H, Canup BSB, Gou S, She Z, Dai F, Ke B, Xiao B. Inhibition of growth and lung metastasis of breast cancer by tumor-homing triple-bioresponsive nanotherapeutics. J Control Release 2020;328:454-69. [PMID: 32890553 DOI: 10.1016/j.jconrel.2020.08.066] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
78 Yang HY, Li Y, Lee DS. Recent Advances of pH‐Induced Charge‐Convertible Polymer‐Mediated Inorganic Nanoparticles for Biomedical Applications. Macromol Rapid Commun 2020;41:2000106. [DOI: 10.1002/marc.202000106] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
79 Chen B, Zhang Y, Ran R, Wang B, Qin F, Zhang T, Wan G, Chen H, Wang Y. Reactive oxygen species-responsive nanoparticles based on a thioketal-containing poly(β-amino ester) for combining photothermal/photodynamic therapy and chemotherapy. Polym Chem 2019;10:4746-57. [DOI: 10.1039/c9py00575g] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
80 Grigoras AG. Drug Delivery Systems Based on Pullulan Polysaccharides and Their Derivatives. In: Arora D, Sharma C, Jaglan S, Lichtfouse E, editors. Pharmaceuticals from Microbes. Cham: Springer International Publishing; 2019. pp. 99-141. [DOI: 10.1007/978-3-030-01881-8_4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]