BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Taurin S, Nehoff H, Greish K. Anticancer nanomedicine and tumor vascular permeability; Where is the missing link? J Control Release. 2012;164:265-275. [PMID: 22800576 DOI: 10.1016/j.jconrel.2012.07.013] [Cited by in Crossref: 204] [Cited by in F6Publishing: 201] [Article Influence: 20.4] [Reference Citation Analysis]
Number Citing Articles
1 Hong SH, Larocque K, Jaunky DB, Piekny A, Oh JK. Dual disassembly and biological evaluation of enzyme/oxidation-responsive polyester-based nanoparticulates for tumor-targeting delivery. Colloids and Surfaces B: Biointerfaces 2018;172:608-17. [DOI: 10.1016/j.colsurfb.2018.09.013] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
2 Wang G, Wu B, Li Q, Chen S, Jin X, Liu Y, Zhou Z, Shen Y, Huang P. Active Transportation of Liposome Enhances Tumor Accumulation, Penetration, and Therapeutic Efficacy. Small 2020;16:e2004172. [PMID: 33030305 DOI: 10.1002/smll.202004172] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
3 Zhang T, Zhou S, Hu L, Peng B, Liu Y, Luo X, Liu X, Song Y, Deng Y. Polysialic acid-polyethylene glycol conjugate-modified liposomes as a targeted drug delivery system for epirubicin to enhance anticancer efficiency. Drug Deliv and Transl Res 2018;8:602-16. [DOI: 10.1007/s13346-018-0496-6] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
4 Clavel CM, Păunescu E, Nowak-sliwinska P, Dyson PJ. Thermoresponsive organometallic arene ruthenium complexes for tumour targeting. Chem Sci 2014;5:1097. [DOI: 10.1039/c3sc53185f] [Cited by in Crossref: 46] [Cited by in F6Publishing: 32] [Article Influence: 5.8] [Reference Citation Analysis]
5 Xu W, Ding J, Chen X. Reduction-Responsive Polypeptide Micelles for Intracellular Delivery of Antineoplastic Agent. Biomacromolecules 2017;18:3291-301. [PMID: 28877434 DOI: 10.1021/acs.biomac.7b00950] [Cited by in Crossref: 41] [Cited by in F6Publishing: 37] [Article Influence: 8.2] [Reference Citation Analysis]
6 Wang H, Mooney DJ. Metabolic glycan labelling for cancer-targeted therapy. Nat Chem 2020;12:1102-14. [PMID: 33219365 DOI: 10.1038/s41557-020-00587-w] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 7.5] [Reference Citation Analysis]
7 Guo Y, Xu L, Lin W, Chen S. Development of Nonfouling Zwitterionic Copolymerized Peptides Based on Glutamic Acid and Lysine Dimers for Adjustable Enzymatic Degradation. Langmuir 2021;37:5776-82. [PMID: 33966385 DOI: 10.1021/acs.langmuir.1c00021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
8 Parayath NN, Nehoff H, Norton SE, Highton AJ, Taurin S, Kemp RA, Greish K. Styrene maleic acid-encapsulated paclitaxel micelles: antitumor activity and toxicity studies following oral administration in a murine orthotopic colon cancer model. Int J Nanomedicine 2016;11:3979-91. [PMID: 27574427 DOI: 10.2147/IJN.S110251] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
9 Chien Y, Chan KK, Anderson T, Kong KV, Ng BK, Yong K. Advanced Near-Infrared Light-Responsive Nanomaterials as Therapeutic Platforms for Cancer Therapy. Adv Therap 2019;2:1800090. [DOI: 10.1002/adtp.201800090] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
10 Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 2014;66:2-25. [PMID: 24270007 DOI: 10.1016/j.addr.2013.11.009] [Cited by in Crossref: 1748] [Cited by in F6Publishing: 1580] [Article Influence: 218.5] [Reference Citation Analysis]
11 Umlauf BJ, Chung CY, Brown KC. Modular Three-component Delivery System Facilitates HLA Class I Antigen Presentation and CD8(+) T-cell Activation Against Tumors. Mol Ther 2015;23:1092-102. [PMID: 25868400 DOI: 10.1038/mt.2015.42] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
12 Ballarín-gonzález B, Ebbesen MF, Howard KA. Polycation-based nanoparticles for RNAi-mediated cancer treatment. Cancer Letters 2014;352:66-80. [DOI: 10.1016/j.canlet.2013.09.023] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
13 Xie Y, Papadopoulou P, de Wit B, d’Engelbronner JC, van Hage P, Kros A, Schaaf MJM. Two Types of Liposomal Formulations Improve the Therapeutic Ratio of Prednisolone Phosphate in a Zebrafish Model for Inflammation. Cells 2022;11:671. [DOI: 10.3390/cells11040671] [Reference Citation Analysis]
14 van Wamel A, Sontum PC, Healey A, Kvåle S, Bush N, Bamber J, de Lange Davies C. Acoustic Cluster Therapy (ACT) enhances the therapeutic efficacy of paclitaxel and Abraxane® for treatment of human prostate adenocarcinoma in mice. Journal of Controlled Release 2016;236:15-21. [DOI: 10.1016/j.jconrel.2016.06.018] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 4.7] [Reference Citation Analysis]
15 Eid M. Preparation and characterization of natural polymers as stabilizer for magnetic nanoparticles by gamma irradiation. J Polym Res 2013;20. [DOI: 10.1007/s10965-013-0112-x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
16 Xu C, Tian H, Wang P, Wang Y, Chen X. The suppression of metastatic lung cancer by pulmonary administration of polymer nanoparticles for co-delivery of doxorubicin and Survivin siRNA. Biomater Sci 2016;4:1646-54. [DOI: 10.1039/c6bm00601a] [Cited by in Crossref: 31] [Cited by in F6Publishing: 9] [Article Influence: 5.2] [Reference Citation Analysis]
17 Ibaraki H, Takeda A, Arima N, Hatakeyama N, Takashima Y, Seta Y, Kanazawa T. In Vivo Fluorescence Imaging of Passive Inflammation Site Accumulation of Liposomes via Intravenous Administration Focused on Their Surface Charge and PEG Modification. Pharmaceutics 2021;13:104. [PMID: 33466905 DOI: 10.3390/pharmaceutics13010104] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Friberg S, Nyström AM. Nanotechnology in the war against cancer: new arms against an old enemy – a clinical view. Future Oncology 2015;11:1961-75. [DOI: 10.2217/fon.15.91] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
19 Shohdy KS, Alfaar AS. Nanoparticles targeting mechanisms in cancer therapy: current limitations and emerging solutions. Therapeutic Delivery 2013;4:1197-209. [DOI: 10.4155/tde.13.75] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
20 An SY, Hong SH, Tang C, Oh JK. Rosin-based block copolymer intracellular delivery nanocarriers with reduction-responsive sheddable coronas for cancer therapy. Polym Chem 2016;7:4751-60. [DOI: 10.1039/c6py00914j] [Cited by in Crossref: 23] [Article Influence: 3.8] [Reference Citation Analysis]
21 Taurin S, Nehoff H, Diong J, Larsen L, Rosengren RJ, Greish K. Curcumin-derivative nanomicelles for the treatment of triple negative breast cancer. J Drug Target 2013;21:675-83. [PMID: 23679865 DOI: 10.3109/1061186X.2013.796955] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
22 Øverbye A, Holsæter AM, Markus F, Škalko-Basnet N, Iversen TG, Torgersen ML, Sønstevold T, Engebraaten O, Flatmark K, Mælandsmo GM, Skotland T, Sandvig K. Ceramide-containing liposomes with doxorubicin: time and cell-dependent effect of C6 and C12 ceramide. Oncotarget 2017;8:76921-34. [PMID: 29100358 DOI: 10.18632/oncotarget.20217] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
23 Wang W, Wang J, Ding Y. Gold nanoparticle-conjugated nanomedicine: design, construction, and structure-efficacy relationship studies. J Mater Chem B 2020;8:4813-30. [PMID: 32227036 DOI: 10.1039/c9tb02924a] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 10.0] [Reference Citation Analysis]
24 Malik P, Mukherjee TK. Recent advances in gold and silver nanoparticle based therapies for lung and breast cancers. International Journal of Pharmaceutics 2018;553:483-509. [DOI: 10.1016/j.ijpharm.2018.10.048] [Cited by in Crossref: 26] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
25 Palivan CG, Goers R, Najer A, Zhang X, Car A, Meier W. Bioinspired polymer vesicles and membranes for biological and medical applications. Chem Soc Rev 2016;45:377-411. [DOI: 10.1039/c5cs00569h] [Cited by in Crossref: 348] [Cited by in F6Publishing: 63] [Article Influence: 58.0] [Reference Citation Analysis]
26 Xu W, Ding J, Xiao C, Li L, Zhuang X, Chen X. Versatile preparation of intracellular-acidity-sensitive oxime-linked polysaccharide-doxorubicin conjugate for malignancy therapeutic. Biomaterials 2015;54:72-86. [DOI: 10.1016/j.biomaterials.2015.03.021] [Cited by in Crossref: 99] [Cited by in F6Publishing: 97] [Article Influence: 14.1] [Reference Citation Analysis]
27 Schmitt V, Rodríguez-rodríguez C, Hamilton JL, Shenoi RA, Schaffer P, Sossi V, Kizhakkedathu JN, Saatchi K, Häfeli UO. Quantitative SPECT imaging and biodistribution point to molecular weight independent tumor uptake for some long-circulating polymer nanocarriers. RSC Adv 2018;8:5586-95. [DOI: 10.1039/c7ra09183d] [Cited by in Crossref: 3] [Article Influence: 0.8] [Reference Citation Analysis]
28 Duan L, Yang L, Jin J, Yang F, Liu D, Hu K, Wang Q, Yue Y, Gu N. Micro/nano-bubble-assisted ultrasound to enhance the EPR effect and potential theranostic applications. Theranostics 2020;10:462-83. [PMID: 31903132 DOI: 10.7150/thno.37593] [Cited by in Crossref: 74] [Cited by in F6Publishing: 60] [Article Influence: 37.0] [Reference Citation Analysis]
29 Tomalova B, Sirova M, Rossmann P, Pola R, Strohalm J, Chytil P, Cerny V, Tomala J, Kabesova M, Rihova B, Ulbrich K, Etrych T, Kovar M. The structure-dependent toxicity, pharmacokinetics and anti-tumour activity of HPMA copolymer conjugates in the treatment of solid tumours and leukaemia. J Control Release 2016;223:1-10. [PMID: 26708020 DOI: 10.1016/j.jconrel.2015.12.023] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 4.6] [Reference Citation Analysis]
30 Studenovský M, Rumlerová A, Kostka L, Etrych T. HPMA-Based Polymer Conjugates for Repurposed Drug Mebendazole and Other Imidazole-Based Therapeutics. Polymers (Basel) 2021;13:2530. [PMID: 34372133 DOI: 10.3390/polym13152530] [Reference Citation Analysis]
31 Chen M, Gao C, Lü S, Chen Y, Liu M. Dual redox-triggered shell-sheddable micelles self-assembled from mPEGylated starch conjugates for rapid drug release. RSC Adv 2016;6:9164-74. [DOI: 10.1039/c5ra23618e] [Cited by in Crossref: 22] [Article Influence: 3.7] [Reference Citation Analysis]
32 Sato S, Yoshida K, Kawauchi S, Hosoe K, Akutsu Y, Fujimoto N, Nawashiro H, Terakawa M. Highly site-selective transvascular drug delivery by the use of nanosecond pulsed laser-induced photomechanical waves. Journal of Controlled Release 2014;192:228-35. [DOI: 10.1016/j.jconrel.2014.07.048] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
33 Shi S, Shi K, Tan L, Qu Y, Shen G, Chu B, Zhang S, Su X, Li X, Wei Y, Qian Z. The use of cationic MPEG-PCL-g-PEI micelles for co-delivery of Msurvivin T34A gene and doxorubicin. Biomaterials 2014;35:4536-47. [DOI: 10.1016/j.biomaterials.2014.02.010] [Cited by in Crossref: 63] [Cited by in F6Publishing: 64] [Article Influence: 7.9] [Reference Citation Analysis]
34 Park CR, Jo JH, Song MG, Park JY, Kim YH, Youn H, Paek SH, Chung JK, Jeong JM, Lee YS, Kang KW. Secreted protein acidic and rich in cysteine mediates active targeting of human serum albumin in U87MG xenograft mouse models. Theranostics 2019;9:7447-57. [PMID: 31695779 DOI: 10.7150/thno.34883] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
35 Jin X, Yang Q, Zhang Y. Synergistic apoptotic effects of apigenin TPGS liposomes and tyroservatide: implications for effective treatment of lung cancer. Int J Nanomedicine 2017;12:5109-18. [PMID: 28761344 DOI: 10.2147/IJN.S140096] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 3.2] [Reference Citation Analysis]
36 Li Y, Zhang T, Liu Q, He J. PEG-Derivatized Dual-Functional Nanomicelles for Improved Cancer Therapy. Front Pharmacol 2019;10:808. [PMID: 31379579 DOI: 10.3389/fphar.2019.00808] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
37 Su FY, Mac QD, Sivakumar A, Kwong GA. Interfacing Biomaterials with Synthetic T Cell Immunity. Adv Healthc Mater 2021;10:e2100157. [PMID: 33887123 DOI: 10.1002/adhm.202100157] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Foster C, Watson A, Kaplinsky J, Kamaly N. Improved Targeting of Cancers with Nanotherapeutics. Methods Mol Biol 2017;1530:13-37. [PMID: 28150194 DOI: 10.1007/978-1-4939-6646-2_2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
39 Liu Y, Yin L. α-Amino acid N-carboxyanhydride (NCA)-derived synthetic polypeptides for nucleic acids delivery. Adv Drug Deliv Rev 2021;171:139-63. [PMID: 33333206 DOI: 10.1016/j.addr.2020.12.007] [Cited by in Crossref: 23] [Cited by in F6Publishing: 15] [Article Influence: 23.0] [Reference Citation Analysis]
40 Martinez JO, Molinaro R, Hartman KA, Boada C, Sukhovershin R, De Rosa E, Kirui D, Zhang S, Evangelopoulos M, Carter AM, Bibb JA, Cooke JP, Tasciotti E. Biomimetic nanoparticles with enhanced affinity towards activated endothelium as versatile tools for theranostic drug delivery. Theranostics 2018;8:1131-45. [PMID: 29464004 DOI: 10.7150/thno.22078] [Cited by in Crossref: 67] [Cited by in F6Publishing: 59] [Article Influence: 16.8] [Reference Citation Analysis]
41 Luo X, Hu L, Zheng H, Liu M, Liu X, Li C, Qiu Q, Zhao Z, Cheng X, Lai C, Su Y, Deng Y, Song Y. Neutrophil-mediated delivery of pixantrone-loaded liposomes decorated with poly(sialic acid)-octadecylamine conjugate for lung cancer treatment. Drug Deliv 2018;25:1200-12. [PMID: 29791241 DOI: 10.1080/10717544.2018.1474973] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
42 Ko NR, Oh JK. Glutathione-Triggered Disassembly of Dual Disulfide Located Degradable Nanocarriers of Polylactide-Based Block Copolymers for Rapid Drug Release. Biomacromolecules 2014;15:3180-9. [DOI: 10.1021/bm5008508] [Cited by in Crossref: 82] [Cited by in F6Publishing: 72] [Article Influence: 10.3] [Reference Citation Analysis]
43 Zhou S, Zhang T, Peng B, Luo X, Liu X, Hu L, Liu Y, Di D, Song Y, Deng Y. Targeted delivery of epirubicin to tumor-associated macrophages by sialic acid-cholesterol conjugate modified liposomes with improved antitumor activity. Int J Pharm 2017;523:203-16. [PMID: 28336455 DOI: 10.1016/j.ijpharm.2017.03.034] [Cited by in Crossref: 44] [Cited by in F6Publishing: 44] [Article Influence: 8.8] [Reference Citation Analysis]
44 Ekdawi SN, Stewart JM, Dunne M, Stapleton S, Mitsakakis N, Dou YN, Jaffray DA, Allen C. Spatial and temporal mapping of heterogeneity in liposome uptake and microvascular distribution in an orthotopic tumor xenograft model. Journal of Controlled Release 2015;207:101-11. [DOI: 10.1016/j.jconrel.2015.04.006] [Cited by in Crossref: 55] [Cited by in F6Publishing: 57] [Article Influence: 7.9] [Reference Citation Analysis]
45 Kutty RV, Tay CY, Lim CS, Feng S, Leong DT. Anti-migratory and increased cytotoxic effects of novel dual drug-loaded complex hybrid micelles in triple negative breast cancer cells. Nano Res 2015;8:2533-47. [DOI: 10.1007/s12274-015-0760-8] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 3.7] [Reference Citation Analysis]
46 Yu S, Zhang Y, Wang X, Zhen X, Zhang Z, Wu W, Jiang X. Synthesis of Paclitaxel-Conjugated β-Cyclodextrin Polyrotaxane and Its Antitumor Activity. Angew Chem 2013;125:7413-8. [DOI: 10.1002/ange.201301397] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
47 Gao T, Bi A, Yang S, Liu Y, Kong X, Zeng W. Applications of Nanoparticles Probes for Prostate Cancer Imaging and Therapy. Adv Exp Med Biol 2018;1096:99-115. [PMID: 30324350 DOI: 10.1007/978-3-319-99286-0_6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
48 Wu LP, Wang D, Li Z. Grand challenges in nanomedicine. Mater Sci Eng C Mater Biol Appl 2020;106:110302. [PMID: 31753337 DOI: 10.1016/j.msec.2019.110302] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 9.0] [Reference Citation Analysis]
49 Friberg S, Nyström AM. NANOMEDICINE: will it offer possibilities to overcome multiple drug resistance in cancer? J Nanobiotechnology 2016;14:17. [PMID: 26955956 DOI: 10.1186/s12951-016-0172-2] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 4.2] [Reference Citation Analysis]
50 Jain A, Jain SK. Application Potential of Engineered Liposomes in Tumor Targeting. Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics. Elsevier; 2017. pp. 171-91. [DOI: 10.1016/b978-0-323-52725-5.00009-5] [Cited by in Crossref: 8] [Article Influence: 1.6] [Reference Citation Analysis]
51 Martey O, Nimick M, Taurin S, Sundararajan V, Greish K, Rosengren RJ. Styrene maleic acid-encapsulated RL71 micelles suppress tumor growth in a murine xenograft model of triple negative breast cancer. Int J Nanomedicine 2017;12:7225-37. [PMID: 29042771 DOI: 10.2147/IJN.S148908] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
52 Abreu TR, Biscaia M, Gonçalves N, Fonseca NA, Moreira JN. In Vitro and In Vivo Tumor Models for the Evaluation of Anticancer Nanoparticles. Adv Exp Med Biol 2021;1295:271-99. [PMID: 33543464 DOI: 10.1007/978-3-030-58174-9_12] [Reference Citation Analysis]
53 Jiang M, Lin Y, Fang X, Liu M, Ma L, Liu J, Chen M, Yang Y, Wang C. Enhancement of gold-nanocluster-mediated chemotherapeutic efficiency of cisplatin in lung cancer. J Mater Chem B 2021;9:4895-905. [PMID: 34095942 DOI: 10.1039/d1tb00276g] [Reference Citation Analysis]
54 Flores-Carbajal J, Sousa-Escandón A, Sousa-Gonzalez D, Rodriguez Gomez S, Lopez Saavedra M, Fernandez Martinez ME. Recirculating chemohyperthermia as a treatment for non-muscle invasive bladder cancer: Current and future perspectives. World J Clin Urol 2017; 6(2): 34-39 [DOI: 10.5410/wjcu.v6.i2.34] [Reference Citation Analysis]
55 Wang Y, Xie H, Ying K, Xie B, Chen X, Yang B, Jin J, Wan J, Li T, Han W, Fang S, Wang H. Tuning the efficacy of esterase-activatable prodrug nanoparticles for the treatment of colorectal malignancies. Biomaterials 2021;270:120705. [PMID: 33581609 DOI: 10.1016/j.biomaterials.2021.120705] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
56 Liu G, Liu W, Dong C. UV- and NIR-responsive polymeric nanomedicines for on-demand drug delivery. Polym Chem 2013;4:3431. [DOI: 10.1039/c3py21121e] [Cited by in Crossref: 145] [Cited by in F6Publishing: 106] [Article Influence: 16.1] [Reference Citation Analysis]
57 Yang C, Fu ZX. Liposomal delivery and polyethylene glycol-liposomal oxaliplatin for the treatment of colorectal cancer (Review). Biomed Rep 2014;2:335-9. [PMID: 24748970 DOI: 10.3892/br.2014.249] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
58 Rodríguez-nogales C, Noguera R, Couvreur P, Blanco-prieto MJ. Therapeutic Opportunities in Neuroblastoma Using Nanotechnology. J Pharmacol Exp Ther 2019;370:625-35. [DOI: 10.1124/jpet.118.255067] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
59 Sanaei M, Pourbagheri-sigaroodi A, Kaveh V, Sheikholeslami SA, Salari S, Bashash D. The application of nano-medicine to overcome the challenges related to immune checkpoint blockades in cancer immunotherapy: Recent advances and opportunities. Critical Reviews in Oncology/Hematology 2021;157:103160. [DOI: 10.1016/j.critrevonc.2020.103160] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
60 Parodi A, Quattrocchi N, van de Ven AL, Chiappini C, Evangelopoulos M, Martinez JO, Brown BS, Khaled SZ, Yazdi IK, Enzo MV, Isenhart L, Ferrari M, Tasciotti E. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol 2013;8:61-8. [PMID: 23241654 DOI: 10.1038/nnano.2012.212] [Cited by in Crossref: 602] [Cited by in F6Publishing: 571] [Article Influence: 60.2] [Reference Citation Analysis]
61 Hoang B, Ernsting MJ, Murakami M, Undzys E, Li SD. Docetaxel-carboxymethylcellulose nanoparticles display enhanced anti-tumor activity in murine models of castration-resistant prostate cancer. Int J Pharm 2014;471:224-33. [PMID: 24853460 DOI: 10.1016/j.ijpharm.2014.05.021] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 3.1] [Reference Citation Analysis]
62 Bawa KK, Jazani AM, Shetty C, Oh JK. PLA-Based Triblock Copolymer Micelles Exhibiting Dual Acidic pH/Reduction Responses at Dual Core and Core/Corona Interface Locations. Macromol Rapid Commun 2018;39:1800477. [DOI: 10.1002/marc.201800477] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
63 Studenovsky M, Sivak L, Sedlacek O, Konefal R, Horkova V, Etrych T, Kovar M, Rihova B, Sirova M. Polymer nitric oxide donors potentiate the treatment of experimental solid tumours by increasing drug accumulation in the tumour tissue. Journal of Controlled Release 2018;269:214-24. [DOI: 10.1016/j.jconrel.2017.11.017] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 3.8] [Reference Citation Analysis]
64 Mandal D, Shaw TK, Dey G, Pal MM, Mukherjee B, Bandyopadhyay AK, Mandal M. Preferential hepatic uptake of paclitaxel-loaded poly-(d-l-lactide-co-glycolide) nanoparticles — A possibility for hepatic drug targeting: Pharmacokinetics and biodistribution. International Journal of Biological Macromolecules 2018;112:818-30. [DOI: 10.1016/j.ijbiomac.2018.02.021] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 4.8] [Reference Citation Analysis]
65 Cheng Z, Yan X, Sun X, Shen B, Gambhir SS. Tumor Molecular Imaging with Nanoparticles. Engineering 2016;2:132-40. [DOI: 10.1016/j.eng.2016.01.027] [Cited by in Crossref: 21] [Article Influence: 3.5] [Reference Citation Analysis]
66 Xiang D, Shigdar S, Qiao G, Wang T, Kouzani AZ, Zhou SF, Kong L, Li Y, Pu C, Duan W. Nucleic acid aptamer-guided cancer therapeutics and diagnostics: the next generation of cancer medicine. Theranostics 2015;5:23-42. [PMID: 25553096 DOI: 10.7150/thno.10202] [Cited by in Crossref: 135] [Cited by in F6Publishing: 138] [Article Influence: 19.3] [Reference Citation Analysis]
67 Choi J, Ko E, Chung HK, Lee JH, Ju EJ, Lim HK, Park I, Kim KS, Lee JH, Son WC, Lee JS, Jung J, Jeong SY, Song SY, Choi EK. Nanoparticulated docetaxel exerts enhanced anticancer efficacy and overcomes existing limitations of traditional drugs. Int J Nanomedicine 2015;10:6121-32. [PMID: 26457052 DOI: 10.2147/IJN.S88375] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
68 Yin J, Liu D, Bao L, Wang Q, Chen Y, Hou S, Yue Y, Yao W, Gao X. Tumor targeting and microenvironment-responsive multifunctional fusion protein for pro-apoptotic peptide delivery. Cancer Lett 2019;452:38-50. [PMID: 30904618 DOI: 10.1016/j.canlet.2019.03.016] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
69 Shim G, Ko S, Kim D, Le QV, Park GT, Lee J, Kwon T, Choi HG, Kim YB, Oh YK. Light-switchable systems for remotely controlled drug delivery. J Control Release 2017;267:67-79. [PMID: 28888917 DOI: 10.1016/j.jconrel.2017.09.009] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 6.8] [Reference Citation Analysis]
70 Hahnenkamp A, Alsibai W, Bremer C, Höltke C. Optimizing the bioavailability of small molecular optical imaging probes by conjugation to an albumin affinity tag. Journal of Controlled Release 2014;186:32-40. [DOI: 10.1016/j.jconrel.2014.04.053] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
71 Jazani AM, Arezi N, Shetty C, Hong SH, Li H, Wang X, Oh JK. Tumor-targeting intracellular drug delivery based on dual acid/reduction-degradable nanoassemblies with ketal interface and disulfide core locations. Polym Chem 2019;10:2840-53. [DOI: 10.1039/c9py00352e] [Cited by in Crossref: 9] [Article Influence: 3.0] [Reference Citation Analysis]
72 Malliappan SP, Kandasamy P, Chidambaram S, Venkatasubbu D, Perumal SK, Sugumaran A. Breast Cancer Targeted Treatment Strategies: Promising Nanocarrier Approaches. Anticancer Agents Med Chem 2020;20:1300-10. [PMID: 31642415 DOI: 10.2174/1871520619666191022175003] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
73 Ikeda-Imafuku M, Wang LL, Rodrigues D, Shaha S, Zhao Z, Mitragotri S. Strategies to improve the EPR effect: A mechanistic perspective and clinical translation. J Control Release 2022:S0168-3659(22)00169-9. [PMID: 35337939 DOI: 10.1016/j.jconrel.2022.03.043] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
74 Dhas N, Kudarha R, Pandey A, Nikam AN, Sharma S, Singh A, Garkal A, Hariharan K, Singh A, Bangar P, Yadhav D, Parikh D, Sawant K, Mutalik S, Garg N, Mehta T. Stimuli responsive and receptor targeted iron oxide based nanoplatforms for multimodal therapy and imaging of cancer: Conjugation chemistry and alternative therapeutic strategies. Journal of Controlled Release 2021;333:188-245. [DOI: 10.1016/j.jconrel.2021.03.021] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
75 Ni N, Zhang X, Ma Y, Yuan J, Wang D, Ma G, Dong J, Sun X. Biodegradable two-dimensional nanomaterials for cancer theranostics. Coordination Chemistry Reviews 2022;458:214415. [DOI: 10.1016/j.ccr.2022.214415] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
76 Karaosmanoglu S, Zhou M, Shi B, Zhang X, Williams GR, Chen X. Carrier-free nanodrugs for safe and effective cancer treatment. J Control Release 2021;329:805-32. [PMID: 33045313 DOI: 10.1016/j.jconrel.2020.10.014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
77 Kozissnik B, Bohorquez AC, Dobson J, Rinaldi C. Magnetic fluid hyperthermia: Advances, challenges, and opportunity. International Journal of Hyperthermia 2013;29:706-14. [DOI: 10.3109/02656736.2013.837200] [Cited by in Crossref: 159] [Cited by in F6Publishing: 125] [Article Influence: 17.7] [Reference Citation Analysis]
78 He J, Li C, Ding L, Huang Y, Yin X, Zhang J, Zhang J, Yao C, Liang M, Pirraco RP, Chen J, Lu Q, Baldridge R, Zhang Y, Wu M, Reis RL, Wang Y. Tumor Targeting Strategies of Smart Fluorescent Nanoparticles and Their Applications in Cancer Diagnosis and Treatment. Adv Mater 2019;31:e1902409. [PMID: 31369176 DOI: 10.1002/adma.201902409] [Cited by in Crossref: 91] [Cited by in F6Publishing: 78] [Article Influence: 30.3] [Reference Citation Analysis]
79 Greish K, Pittalà V, Taurin S, Taha S, Bahman F, Mathur A, Jasim A, Mohammed F, El-Deeb IM, Fredericks S, Rashid-Doubell F. Curcumin⁻Copper Complex Nanoparticles for the Management of Triple-Negative Breast Cancer. Nanomaterials (Basel) 2018;8:E884. [PMID: 30388728 DOI: 10.3390/nano8110884] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
80 Yamamoto S, Kato A, Sakurai Y, Hada T, Harashima H. Modality of tumor endothelial VEGFR2 silencing-mediated improvement in intratumoral distribution of lipid nanoparticles. J Control Release 2017;251:1-10. [PMID: 28192155 DOI: 10.1016/j.jconrel.2017.02.010] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
81 Jiang S, Wang X, Zhang Z, Sun L, Pu Y, Yao H, Li J, Liu Y, Zhang Y, Zhang W. CD20 monoclonal antibody targeted nanoscale drug delivery system for doxorubicin chemotherapy: an in vitro study of cell lysis of CD20-positive Raji cells. Int J Nanomedicine 2016;11:5505-18. [PMID: 27843311 DOI: 10.2147/IJN.S115428] [Cited by in Crossref: 22] [Cited by in F6Publishing: 5] [Article Influence: 3.7] [Reference Citation Analysis]
82 Noorani L, Stenzel M, Liang R, Pourgholami MH, Morris DL. Albumin nanoparticles increase the anticancer efficacy of albendazole in ovarian cancer xenograft model. J Nanobiotechnology 2015;13:25. [PMID: 25890381 DOI: 10.1186/s12951-015-0082-8] [Cited by in Crossref: 55] [Cited by in F6Publishing: 47] [Article Influence: 7.9] [Reference Citation Analysis]
83 Mosayebi J, Kiyasatfar M, Laurent S. Synthesis, Functionalization, and Design of Magnetic Nanoparticles for Theranostic Applications. Adv Healthc Mater 2017;6. [PMID: 28990364 DOI: 10.1002/adhm.201700306] [Cited by in Crossref: 115] [Cited by in F6Publishing: 99] [Article Influence: 23.0] [Reference Citation Analysis]
84 Yamashita F, Hashida M. Pharmacokinetic considerations for targeted drug delivery. Adv Drug Deliv Rev 2013;65:139-47. [PMID: 23280371 DOI: 10.1016/j.addr.2012.11.006] [Cited by in Crossref: 82] [Cited by in F6Publishing: 70] [Article Influence: 9.1] [Reference Citation Analysis]
85 Fang J, Islam W, Maeda H. Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers. Adv Drug Deliv Rev 2020;157:142-60. [PMID: 32553783 DOI: 10.1016/j.addr.2020.06.005] [Cited by in Crossref: 151] [Cited by in F6Publishing: 125] [Article Influence: 75.5] [Reference Citation Analysis]
86 Alimoradi H, Greish K, Gamble AB, Giles GI. Controlled Delivery of Nitric Oxide for Cancer Therapy. Pharm Nanotechnol 2019;7:279-303. [PMID: 31595847 DOI: 10.2174/2211738507666190429111306] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
87 Kodama H, Shamay Y, Kimura Y, Shah J, Solomon SB, Heller D, Srimathveeravalli G. Electroporation-induced changes in tumor vasculature and microenvironment can promote the delivery and increase the efficacy of sorafenib nanoparticles. Bioelectrochemistry 2019;130:107328. [PMID: 31306879 DOI: 10.1016/j.bioelechem.2019.107328] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
88 Lin C, Gao H, Ouyang L. Advance cardiac nanomedicine by targeting the pathophysiological characteristics of heart failure. J Control Release 2021;337:494-504. [PMID: 34358590 DOI: 10.1016/j.jconrel.2021.08.002] [Reference Citation Analysis]
89 Borges GSM, Silva JO, Fernandes RS, de Souza ÂM, Cassali GD, Yoshida MI, Leite EA, de Barros ALB, Ferreira LAM. Sclareol is a potent enhancer of doxorubicin: Evaluation of the free combination and co-loaded nanostructured lipid carriers against breast cancer. Life Sci 2019;232:116678. [PMID: 31344429 DOI: 10.1016/j.lfs.2019.116678] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
90 Jazani AM, Oh JK. Development and disassembly of single and multiple acid-cleavable block copolymer nanoassemblies for drug delivery. Polym Chem 2020;11:2934-54. [DOI: 10.1039/d0py00234h] [Cited by in Crossref: 12] [Article Influence: 6.0] [Reference Citation Analysis]
91 Li J, Sun L, Liu Y, Yao H, Jiang S, Yunzhupu, Li Y, Zhang Y. To reduce premature drug release while ensuring burst intracellular drug release of solid lipid nanoparticle-based drug delivery system with clathrin modification. Nanomedicine: Nanotechnology, Biology and Medicine 2019;15:108-18. [DOI: 10.1016/j.nano.2018.05.014] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
92 Lei Z, Ding L, Yao C, Mo F, Li C, Huang Y, Yin X, Li M, Liu J, Zhang Y, Ling C, Wang Y. A Highly Efficient Tumor-Targeting Nanoprobe with a Novel Cell Membrane Permeability Mechanism. Adv Mater 2019;31:e1807456. [PMID: 30680812 DOI: 10.1002/adma.201807456] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 5.7] [Reference Citation Analysis]
93 Moghimi SM, Simberg D. Nanoparticle transport pathways into tumors. J Nanopart Res 2018;20:169. [PMID: 29950922 DOI: 10.1007/s11051-018-4273-8] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 8.0] [Reference Citation Analysis]
94 Yildirim T, Traeger A, Preussger E, Stumpf S, Fritzsche C, Hoeppener S, Schubert S, Schubert US. Dual Responsive Nanoparticles from a RAFT Copolymer Library for the Controlled Delivery of Doxorubicin. Macromolecules 2016;49:3856-68. [DOI: 10.1021/acs.macromol.5b02603] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 4.3] [Reference Citation Analysis]
95 Sun J, Tian Q, Liu M, Su Y, Liu X, Deng Y, Song Y. Evaluation of the Antitumor Effect and Immune Response of Micelles Modified with a Polysialic Acid-D-α-Tocopheryl Polyethylene Glycol 1000 Succinate Conjugate. AAPS PharmSciTech 2021;22:223. [PMID: 34409520 DOI: 10.1208/s12249-021-02047-1] [Reference Citation Analysis]
96 Valetti S, Mura S, Stella B, Couvreur P. Rational design for multifunctional non-liposomal lipid-based nanocarriers for cancer management: theory to practice. J Nanobiotechnology 2013;11 Suppl 1:S6. [PMID: 24564841 DOI: 10.1186/1477-3155-11-S1-S6] [Cited by in Crossref: 19] [Cited by in F6Publishing: 3] [Article Influence: 2.1] [Reference Citation Analysis]
97 Moghimi SM, Farhangrazi ZS. Just so stories: the random acts of anti-cancer nanomedicine performance. Nanomedicine 2014;10:1661-6. [PMID: 24832960 DOI: 10.1016/j.nano.2014.04.011] [Cited by in Crossref: 58] [Cited by in F6Publishing: 50] [Article Influence: 8.3] [Reference Citation Analysis]
98 Grainger DW. Connecting drug delivery reality to smart materials design. International Journal of Pharmaceutics 2013;454:521-4. [DOI: 10.1016/j.ijpharm.2013.04.061] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
99 Zoabi N, Golani-armon A, Zinger A, Reshef M, Yaari Z, Vardi-oknin D, Shatsberg Z, Shomar A, Shainsky-roitman J, Schroeder A. The Evolution of Tumor-Targeted Drug Delivery: From the EPR Effect to Nanoswimmers. Isr J Chem 2013. [DOI: 10.1002/ijch.201300061] [Reference Citation Analysis]
100 Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev 2015;91:3-6. [PMID: 25579058 DOI: 10.1016/j.addr.2015.01.002] [Cited by in Crossref: 707] [Cited by in F6Publishing: 649] [Article Influence: 101.0] [Reference Citation Analysis]
101 Schleich N, Po C, Jacobs D, Ucakar B, Gallez B, Danhier F, Préat V. Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy. Journal of Controlled Release 2014;194:82-91. [DOI: 10.1016/j.jconrel.2014.07.059] [Cited by in Crossref: 141] [Cited by in F6Publishing: 121] [Article Influence: 17.6] [Reference Citation Analysis]
102 Hauert S, Bhatia SN. Mechanisms of cooperation in cancer nanomedicine: towards systems nanotechnology. Trends Biotechnol 2014;32:448-55. [PMID: 25086728 DOI: 10.1016/j.tibtech.2014.06.010] [Cited by in Crossref: 56] [Cited by in F6Publishing: 36] [Article Influence: 7.0] [Reference Citation Analysis]
103 Zheng L, Sun Z, Li C, Wei Z, Jain P, Wu K. Progress in biodegradable zwitterionic materials. Polymer Degradation and Stability 2017;139:1-19. [DOI: 10.1016/j.polymdegradstab.2017.03.015] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 2.4] [Reference Citation Analysis]
104 Huang Y, Tang Z, Zhang X, Yu H, Sun H, Pang X, Chen X. pH-Triggered Charge-Reversal Polypeptide Nanoparticles for Cisplatin Delivery: Preparation and In Vitro Evaluation. Biomacromolecules 2013;14:2023-32. [DOI: 10.1021/bm400358z] [Cited by in Crossref: 139] [Cited by in F6Publishing: 128] [Article Influence: 15.4] [Reference Citation Analysis]
105 Safwat S, Ishak RA, Hathout RM, Mortada ND. Statins anticancer targeted delivery systems: re-purposing an old molecule. J Pharm Pharmacol 2017;69:613-24. [PMID: 28271498 DOI: 10.1111/jphp.12707] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
106 Karra N, Nassar T, Ripin AN, Schwob O, Borlak J, Benita S. Antibody conjugated PLGA nanoparticles for targeted delivery of paclitaxel palmitate: efficacy and biofate in a lung cancer mouse model. Small 2013;9:4221-36. [PMID: 23873835 DOI: 10.1002/smll.201301417] [Cited by in Crossref: 79] [Cited by in F6Publishing: 70] [Article Influence: 8.8] [Reference Citation Analysis]
107 Garrier J, Reshetov V, Gräfe S, Guillemin F, Zorin V, Bezdetnaya L. Factors affecting the selectivity of nanoparticle-based photoinduced damage in free and xenografted chorioallantoïc membrane model. J Drug Target 2014;22:220-31. [PMID: 24286254 DOI: 10.3109/1061186X.2013.860981] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
108 Gu Z, Chang M, Fan Y, Shi Y, Lin G. NGR-modified pH-sensitive liposomes for controlled release and tumor target delivery of docetaxel. Colloids and Surfaces B: Biointerfaces 2017;160:395-405. [DOI: 10.1016/j.colsurfb.2017.09.052] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
109 Wei G, Wang Y, Huang X, Yang G, Zhao J, Zhou S. Enhancing the Accumulation of Polymer Micelles by Selectively Dilating Tumor Blood Vessels with NO for Highly Effective Cancer Treatment. Adv Healthc Mater 2018;7:e1801094. [PMID: 30565900 DOI: 10.1002/adhm.201801094] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
110 Jiang Y, Liu S, Zhang Y, Li H, He H, Dai J, Jiang T, Ji W, Geng D, Elzatahry AA, Alghamdi A, Fu D, Deng Y, Zhao D. Magnetic mesoporous nanospheres anchored with LyP-1 as an efficient pancreatic cancer probe. Biomaterials 2017;115:9-18. [PMID: 27871003 DOI: 10.1016/j.biomaterials.2016.11.006] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 5.7] [Reference Citation Analysis]
111 Zhang J, Huang J, Huang K, Zhang J, Li Z, Zhao T, Wu J. Egg white coated alginate nanoparticles with electron sprayer for potential anticancer application. International Journal of Pharmaceutics 2019;564:188-96. [DOI: 10.1016/j.ijpharm.2019.04.045] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
112 Archibald M, Pritchard T, Nehoff H, Rosengren RJ, Greish K, Taurin S. A combination of sorafenib and nilotinib reduces the growth of castrate-resistant prostate cancer. Int J Nanomedicine 2016;11:179-200. [PMID: 26811677 DOI: 10.2147/IJN.S97286] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 0.2] [Reference Citation Analysis]
113 Greish K, Jasim A, Parayath N, Abdelghany S, Alkhateeb A, Taurin S, Nehoff H. Micellar formulations of Crizotinib and Dasatinib in the management of glioblastoma multiforme. J Drug Target 2018;26:692-708. [PMID: 29251531 DOI: 10.1080/1061186X.2017.1419357] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
114 Wamel AV, Healey A, Sontum PC, Kvåle S, Bush N, Bamber J, de Lange Davies C. Acoustic Cluster Therapy (ACT) — pre-clinical proof of principle for local drug delivery and enhanced uptake. Journal of Controlled Release 2016;224:158-64. [DOI: 10.1016/j.jconrel.2016.01.023] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 4.8] [Reference Citation Analysis]
115 Mohamed S, Parayath NN, Taurin S, Greish K. Polymeric nano-micelles: versatile platform for targeted delivery in cancer. Therapeutic Delivery 2014;5:1101-21. [DOI: 10.4155/tde.14.69] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 4.1] [Reference Citation Analysis]
116 Torres-Lugo M, Rinaldi C. Thermal potentiation of chemotherapy by magnetic nanoparticles. Nanomedicine (Lond) 2013;8:1689-707. [PMID: 24074390 DOI: 10.2217/nnm.13.146] [Cited by in Crossref: 89] [Cited by in F6Publishing: 71] [Article Influence: 11.1] [Reference Citation Analysis]
117 Greish K, Mathur A, Al Zahrani R, Elkaissi S, Al Jishi M, Nazzal O, Taha S, Pittalà V, Taurin S. Synthetic cannabinoids nano-micelles for the management of triple negative breast cancer. J Control Release 2018;291:184-95. [PMID: 30367922 DOI: 10.1016/j.jconrel.2018.10.030] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
118 Kim J, Park Y. High paclitaxel-loaded and tumor cell-targeting hyaluronan-coated nanoemulsions. Colloids and Surfaces B: Biointerfaces 2017;150:362-72. [DOI: 10.1016/j.colsurfb.2016.10.050] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 3.2] [Reference Citation Analysis]
119 Reshetov V, Lassalle HP, François A, Dumas D, Hupont S, Gräfe S, Filipe V, Jiskoot W, Guillemin F, Zorin V, Bezdetnaya L. Photodynamic therapy with conventional and PEGylated liposomal formulations of mTHPC (temoporfin): comparison of treatment efficacy and distribution characteristics in vivo. Int J Nanomedicine 2013;8:3817-31. [PMID: 24143087 DOI: 10.2147/IJN.S51002] [Cited by in Crossref: 40] [Cited by in F6Publishing: 13] [Article Influence: 4.4] [Reference Citation Analysis]
120 Luna AC, Saraiva GK, Filho OM, Chierice GO, Neto SC, Cuccovia IM, Maria DA. Potential antitumor activity of novel DODAC/PHO-S liposomes. Int J Nanomedicine 2016;11:1577-91. [PMID: 27143880 DOI: 10.2147/IJN.S90850] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
121 Yu S, Zhang Y, Wang X, Zhen X, Zhang Z, Wu W, Jiang X. Synthesis of Paclitaxel-Conjugated β-Cyclodextrin Polyrotaxane and Its Antitumor Activity. Angew Chem Int Ed 2013;52:7272-7. [DOI: 10.1002/anie.201301397] [Cited by in Crossref: 64] [Cited by in F6Publishing: 58] [Article Influence: 7.1] [Reference Citation Analysis]
122 Bao Y, Guo Y, Zhuang X, Li D, Cheng B, Tan S, Zhang Z. d -α-Tocopherol Polyethylene Glycol Succinate-Based Redox-Sensitive Paclitaxel Prodrug for Overcoming Multidrug Resistance in Cancer Cells. Mol Pharmaceutics 2014;11:3196-209. [DOI: 10.1021/mp500384d] [Cited by in Crossref: 105] [Cited by in F6Publishing: 106] [Article Influence: 13.1] [Reference Citation Analysis]
123 Schiener M, Hossann M, Viola JR, Ortega-Gomez A, Weber C, Lauber K, Lindner LH, Soehnlein O. Nanomedicine-based strategies for treatment of atherosclerosis. Trends Mol Med 2014;20:271-81. [PMID: 24594264 DOI: 10.1016/j.molmed.2013.12.001] [Cited by in Crossref: 64] [Cited by in F6Publishing: 54] [Article Influence: 8.0] [Reference Citation Analysis]
124 Ma S, Li M, Liu N, Li Y, Li Z, Yang Y, Yu F, Hu X, Liu C, Mei X. Vincristine liposomes with smaller particle size have stronger diffusion ability in tumor and improve tumor accumulation of vincristine significantly. Oncotarget 2017;8:87276-91. [PMID: 29152080 DOI: 10.18632/oncotarget.20162] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
125 Li M, Tang Z, Zhang D, Sun H, Liu H, Zhang Y, Zhang Y, Chen X. Doxorubicin-loaded polysaccharide nanoparticles suppress the growth of murine colorectal carcinoma and inhibit the metastasis of murine mammary carcinoma in rodent models. Biomaterials 2015;51:161-72. [DOI: 10.1016/j.biomaterials.2015.02.002] [Cited by in Crossref: 60] [Cited by in F6Publishing: 57] [Article Influence: 8.6] [Reference Citation Analysis]
126 Methachan B, Thanapprapasr K. Polymer-Based Materials in Cancer Treatment: From Therapeutic Carrier and Ultrasound Contrast Agent to Theranostic Applications. Ultrasound Med Biol 2017;43:69-82. [PMID: 27751594 DOI: 10.1016/j.ultrasmedbio.2016.09.009] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
127 Saraswathy M, Knight GT, Pilla S, Ashton RS, Gong S. Multifunctional drug nanocarriers formed by cRGD-conjugated βCD-PAMAM-PEG for targeted cancer therapy. Colloids Surf B Biointerfaces 2015;126:590-7. [PMID: 25591850 DOI: 10.1016/j.colsurfb.2014.12.042] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 3.9] [Reference Citation Analysis]
128 Nayak R, Meerovich I, Dash AK. Translational Multi-Disciplinary Approach for the Drug and Gene Delivery Systems for Cancer Treatment. AAPS PharmSciTech 2019;20:160. [PMID: 30968269 DOI: 10.1208/s12249-019-1367-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
129 Kim HJ, Kim A, Miyata K, Kataoka K. Recent progress in development of siRNA delivery vehicles for cancer therapy. Adv Drug Deliv Rev 2016;104:61-77. [PMID: 27352638 DOI: 10.1016/j.addr.2016.06.011] [Cited by in Crossref: 271] [Cited by in F6Publishing: 253] [Article Influence: 45.2] [Reference Citation Analysis]
130 Grafström J, Stone-Elander S. Comparison of methods for evaluating radiolabelled Annexin A5 uptake in pre-clinical PET oncological studies. Nucl Med Biol 2014;41:793-800. [PMID: 25156038 DOI: 10.1016/j.nucmedbio.2014.07.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
131 Jiang C, Wang H, Zhang X, Sun Z, Wang F, Cheng J, Xie H, Yu B, Zhou L. Deoxycholic acid-modified chitooligosaccharide/mPEG-PDLLA mixed micelles loaded with paclitaxel for enhanced antitumor efficacy. Int J Pharm. 2014;475:60-68. [PMID: 25152167 DOI: 10.1016/j.ijpharm.2014.08.037] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 3.1] [Reference Citation Analysis]
132 Caminade A, Turrin C. Dendrimers for drug delivery. J Mater Chem B 2014;2:4055-66. [DOI: 10.1039/c4tb00171k] [Cited by in Crossref: 145] [Cited by in F6Publishing: 29] [Article Influence: 18.1] [Reference Citation Analysis]
133 Borges GSM, Lima FA, Carneiro G, Goulart GAC, Ferreira LAM. All-trans retinoic acid in anticancer therapy: how nanotechnology can enhance its efficacy and resolve its drawbacks. Expert Opin Drug Deliv 2021;:1-20. [PMID: 33896323 DOI: 10.1080/17425247.2021.1919619] [Reference Citation Analysis]
134 Greish K, Mathur A, Bakhiet M, Taurin S. Nanomedicine: is it lost in translation? Ther Deliv 2018;9:269-85. [PMID: 29495928 DOI: 10.4155/tde-2017-0118] [Cited by in Crossref: 34] [Cited by in F6Publishing: 28] [Article Influence: 8.5] [Reference Citation Analysis]
135 Popilski H, Stepensky D. Mathematical modeling analysis of intratumoral disposition of anticancer agents and drug delivery systems. Expert Opinion on Drug Metabolism & Toxicology 2015;11:767-84. [DOI: 10.1517/17425255.2015.1030391] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
136 Kim J, Park Y. Hyaluronan self-agglomerating nanoparticles for non-small cell lung cancer targeting. Cancer Nano 2022;13. [DOI: 10.1186/s12645-022-00115-0] [Reference Citation Analysis]
137 Jirátová M, Pospíšilová A, Rabyk M, Pařízek M, Kovář J, Gálisová A, Hrubý M, Jirák D. Biological characterization of a novel hybrid copolymer carrier system based on glycogen. Drug Deliv and Transl Res 2018;8:73-82. [DOI: 10.1007/s13346-017-0436-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
138 Little RA, Barjat H, Hare JI, Jenner M, Watson Y, Cheung S, Holliday K, Zhang W, O'Connor JPB, Barry ST, Puri S, Parker GJM, Waterton JC. Evaluation of dynamic contrast-enhanced MRI biomarkers for stratified cancer medicine: How do permeability and perfusion vary between human tumours? Magn Reson Imaging 2018;46:98-105. [PMID: 29154898 DOI: 10.1016/j.mri.2017.11.008] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
139 Moscatelli D, Sponchioni M. Bioresorbable polymer nanoparticles in the medical and pharmaceutical fields. Bioresorbable Polymers for Biomedical Applications. Elsevier; 2017. pp. 265-83. [DOI: 10.1016/b978-0-08-100262-9.00012-4] [Cited by in Crossref: 9] [Article Influence: 1.8] [Reference Citation Analysis]
140 Tsunoi Y, Sato S, Kawauchi S, Akutsu Y, Miyagawa Y, Araki K, Shiotani A, Terakawa M. Theranostic system for drug delivery and pharmacokinetic imaging based on nanosecond pulsed light-induced photomechanical and photoacoustic effects. Jpn J Appl Phys 2015;54:116601. [DOI: 10.7567/jjap.54.116601] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 0.9] [Reference Citation Analysis]
141 Snipstad S, Westrøm S, Mørch Y, Afadzi M, Åslund AK, de Lange Davies C. Contact-mediated intracellular delivery of hydrophobic drugs from polymeric nanoparticles. Cancer Nanotechnol 2014;5:8. [PMID: 25774230 DOI: 10.1186/s12645-014-0008-4] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 3.0] [Reference Citation Analysis]
142 Gill KK, Kaddoumi A, Nazzal S. PEG–lipid micelles as drug carriers: physiochemical attributes, formulation principles and biological implication. Journal of Drug Targeting 2014;23:222-31. [DOI: 10.3109/1061186x.2014.997735] [Cited by in Crossref: 47] [Cited by in F6Publishing: 18] [Article Influence: 5.9] [Reference Citation Analysis]
143 Li M, Qi S, Jin Y, Dong J. Self-assembled drug delivery systems. Part 8: In vitro / in vivo studies of the nanoassemblies of cholesteryl-phosphonyl gemcitabine. International Journal of Pharmaceutics 2015;478:124-30. [DOI: 10.1016/j.ijpharm.2014.11.033] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
144 Huang Y, Yuan J, Ding H, Song Y, Qian G, Wang J, Ji M, Zhang Y. Design, synthesis and antitumor activity of a novel PEG-A6-conjugated irinotecan derivative. Bioorganic & Medicinal Chemistry Letters 2020;30:126847. [DOI: 10.1016/j.bmcl.2019.126847] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
145 Nehoff H, Parayath NN, McConnell MJ, Taurin S, Greish K. A combination of tyrosine kinase inhibitors, crizotinib and dasatinib for the treatment of glioblastoma multiforme. Oncotarget 2015;6:37948-64. [PMID: 26517812 DOI: 10.18632/oncotarget.5698] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
146 Jirátová M, Gálisová A, Rabyk M, Sticová E, Hrubý M, Jirák D. Mannan-Based Nanodiagnostic Agents for Targeting Sentinel Lymph Nodes and Tumors. Molecules 2020;26:E146. [PMID: 33396204 DOI: 10.3390/molecules26010146] [Reference Citation Analysis]
147 Du H, Yu J, Guo D, Yang W, Wang J, Zhang B. Improving the MR Imaging Sensitivity of Upconversion Nanoparticles by an Internal and External Incorporation of the Gd 3+ Strategy for in Vivo Tumor-Targeted Imaging. Langmuir 2016;32:1155-65. [DOI: 10.1021/acs.langmuir.5b04186] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 4.7] [Reference Citation Analysis]
148 Bawa KK, Oh JK. Stimulus-Responsive Degradable Polylactide-Based Block Copolymer Nanoassemblies for Controlled/Enhanced Drug Delivery. Mol Pharmaceutics 2017;14:2460-74. [DOI: 10.1021/acs.molpharmaceut.7b00284] [Cited by in Crossref: 45] [Cited by in F6Publishing: 35] [Article Influence: 9.0] [Reference Citation Analysis]
149 Conte C, Fotticchia I, Tirino P, Moret F, Pagano B, Gref R, Ungaro F, Reddi E, Giancola C, Quaglia F. Cyclodextrin-assisted assembly of PEGylated polyester nanoparticles decorated with folate. Colloids and Surfaces B: Biointerfaces 2016;141:148-57. [DOI: 10.1016/j.colsurfb.2016.01.035] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
150 Klauber TCB, Laursen JM, Zucker D, Brix S, Jensen SS, Andresen TL. Delivery of TLR7 agonist to monocytes and dendritic cells by DCIR targeted liposomes induces robust production of anti-cancer cytokines. Acta Biomater 2017;53:367-77. [PMID: 28153581 DOI: 10.1016/j.actbio.2017.01.072] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 5.8] [Reference Citation Analysis]
151 Xu C, Wang Y, Guo Z, Chen J, Lin L, Wu J, Tian H, Chen X. Pulmonary delivery by exploiting doxorubicin and cisplatin co-loaded nanoparticles for metastatic lung cancer therapy. J Control Release 2019;295:153-63. [PMID: 30586598 DOI: 10.1016/j.jconrel.2018.12.013] [Cited by in Crossref: 44] [Cited by in F6Publishing: 35] [Article Influence: 11.0] [Reference Citation Analysis]
152 Øverbye A, Torgersen ML, Sønstevold T, Iversen TG, Mørch Ý, Skotland T, Sandvig K. Cabazitaxel-loaded poly(alkyl cyanoacrylate) nanoparticles: toxicity and changes in the proteome of breast, colon and prostate cancer cells. Nanotoxicology 2021;15:865-84. [PMID: 34047629 DOI: 10.1080/17435390.2021.1924888] [Reference Citation Analysis]
153 Ferrari R, Sponchioni M, Morbidelli M, Moscatelli D. Polymer nanoparticles for the intravenous delivery of anticancer drugs: the checkpoints on the road from the synthesis to clinical translation. Nanoscale 2018;10:22701-19. [PMID: 30512025 DOI: 10.1039/c8nr05933k] [Cited by in Crossref: 66] [Cited by in F6Publishing: 18] [Article Influence: 16.5] [Reference Citation Analysis]
154 Eetezadi S, Ekdawi SN, Allen C. The challenges facing block copolymer micelles for cancer therapy: In vivo barriers and clinical translation. Adv Drug Deliv Rev 2015;91:7-22. [PMID: 25308250 DOI: 10.1016/j.addr.2014.10.001] [Cited by in Crossref: 119] [Cited by in F6Publishing: 107] [Article Influence: 17.0] [Reference Citation Analysis]
155 Upponi JR, Torchilin VP. Passive vs. Active Targeting: An Update of the EPR Role in Drug Delivery to Tumors. In: Alonso MJ, Garcia-fuentes M, editors. Nano-Oncologicals. Cham: Springer International Publishing; 2014. pp. 3-45. [DOI: 10.1007/978-3-319-08084-0_1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
156 Taurin S, Nehoff H, van Aswegen T, Rosengren RJ, Greish K. A novel role for raloxifene nanomicelles in management of castrate resistant prostate cancer. Biomed Res Int 2014;2014:323594. [PMID: 24689036 DOI: 10.1155/2014/323594] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 1.3] [Reference Citation Analysis]
157 Najer A, Wu D, Vasquez D, Palivan CG, Meier W. Polymer nanocompartments in broad-spectrum medical applications. Nanomedicine 2013;8:425-47. [DOI: 10.2217/nnm.13.11] [Cited by in Crossref: 44] [Cited by in F6Publishing: 39] [Article Influence: 4.9] [Reference Citation Analysis]
158 Stephens RW, Knox KJ, Philip LA, Debono KM, Bell JL, King DW, Parish CR, Senden TJ, Tanudji MR, Winter JG, Bickley SA, Tapner MJ, Pang JH, Jones SK. The uptake of soluble and nanoparticulate imaging isotope in model liver tumours after intra-venous and intra-arterial administration. Biomaterials 2015;39:218-24. [PMID: 25468373 DOI: 10.1016/j.biomaterials.2014.11.001] [Reference Citation Analysis]
159 Theek B, Gremse F, Kunjachan S, Fokong S, Pola R, Pechar M, Deckers R, Storm G, Ehling J, Kiessling F, Lammers T. Characterizing EPR-mediated passive drug targeting using contrast-enhanced functional ultrasound imaging. J Control Release 2014;182:83-9. [PMID: 24631862 DOI: 10.1016/j.jconrel.2014.03.007] [Cited by in Crossref: 53] [Cited by in F6Publishing: 58] [Article Influence: 6.6] [Reference Citation Analysis]
160 Byun JH, Han DG, Cho HJ, Yoon IS, Jung IH. Recent advances in physiologically based pharmacokinetic and pharmacodynamic models for anticancer nanomedicines. Arch Pharm Res 2020;43:80-99. [PMID: 31975317 DOI: 10.1007/s12272-020-01209-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
161 Zhen Z, Tang W, Chuang YJ, Todd T, Zhang W, Lin X, Niu G, Liu G, Wang L, Pan Z, Chen X, Xie J. Tumor vasculature targeted photodynamic therapy for enhanced delivery of nanoparticles. ACS Nano 2014;8:6004-13. [PMID: 24806291 DOI: 10.1021/nn501134q] [Cited by in Crossref: 164] [Cited by in F6Publishing: 166] [Article Influence: 20.5] [Reference Citation Analysis]
162 Zhou Y, Kopeček J. Biological rationale for the design of polymeric anti-cancer nanomedicines. J Drug Target 2013;21:1-26. [PMID: 23009337 DOI: 10.3109/1061186X.2012.723213] [Cited by in Crossref: 47] [Cited by in F6Publishing: 19] [Article Influence: 4.7] [Reference Citation Analysis]
163 Zhang Y, Zhou Q, Jia S, Lin K, Fan G, Yuan J, Yu S, Shi J. Specific Modification with TPGS and Drug Loading of Cyclodextrin Polyrotaxanes and the Enhanced Antitumor Activity Study in Vitro and in Vivo. ACS Appl Mater Interfaces 2019;11:46427-36. [DOI: 10.1021/acsami.9b14075] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
164 Bazylińska U, Pietkiewicz J, Rossowska J, Chodaczek G, Gamian A, Wilk KA. Polyelectrolyte Oil-Core Nanocarriers for Localized and Sustained Delivery of Daunorubicin to Colon Carcinoma MC38 Cells: The Case of Polysaccharide Multilayer Film in Relation to PEG-ylated Shell. Macromol Biosci 2017;17:1600356. [DOI: 10.1002/mabi.201600356] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
165 Qi B, Crawford AJ, Wojtynek NE, Talmon GA, Hollingsworth MA, Ly QP, Mohs AM. Tuned near infrared fluorescent hyaluronic acid conjugates for delivery to pancreatic cancer for intraoperative imaging. Theranostics 2020;10:3413-29. [PMID: 32206099 DOI: 10.7150/thno.40688] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
166 Kozlovskaya L, Stepensky D. Quantitative analysis of the brain-targeted delivery of drugs and model compounds using nano-delivery systems. Journal of Controlled Release 2013;171:17-23. [DOI: 10.1016/j.jconrel.2013.06.028] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 2.9] [Reference Citation Analysis]
167 Lakkireddy HR, Bazile D. Building the design, translation and development principles of polymeric nanomedicines using the case of clinically advanced poly(lactide(glycolide))-poly(ethylene glycol) nanotechnology as a model: An industrial viewpoint. Adv Drug Deliv Rev 2016;107:289-332. [PMID: 27593265 DOI: 10.1016/j.addr.2016.08.012] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 4.3] [Reference Citation Analysis]
168 Zhang P, Li Y, Tang W, Zhao J, Jing L, Mchugh KJ. Theranostic nanoparticles with disease-specific administration strategies. Nano Today 2022;42:101335. [DOI: 10.1016/j.nantod.2021.101335] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
169 Qiu Q, Li C, Song Y, Shi T, Luo X, Zhang H, Hu L, Yan X, Zheng H, Liu M, Liu M, Liu M, Yang S, Liu X, Chen G, Deng Y. Targeted delivery of ibrutinib to tumor-associated macrophages by sialic acid-stearic acid conjugate modified nanocomplexes for cancer immunotherapy. Acta Biomater 2019;92:184-95. [PMID: 31108259 DOI: 10.1016/j.actbio.2019.05.030] [Cited by in Crossref: 37] [Cited by in F6Publishing: 29] [Article Influence: 12.3] [Reference Citation Analysis]
170 Haeckel A, Appler F, Ariza de Schellenberger A, Schellenberger E. XTEN as Biological Alternative to PEGylation Allows Complete Expression of a Protease-Activatable Killin-Based Cytostatic. PLoS One 2016;11:e0157193. [PMID: 27295081 DOI: 10.1371/journal.pone.0157193] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
171 Chen H, Zhang W, Zhu G, Xie J, Chen X. Rethinking cancer nanotheranostics. Nat Rev Mater 2017;2:17024. [PMID: 29075517 DOI: 10.1038/natrevmats.2017.24] [Cited by in Crossref: 516] [Cited by in F6Publishing: 490] [Article Influence: 103.2] [Reference Citation Analysis]
172 Greish KF, Salerno L, Al Zahrani R, Amata E, Modica MN, Romeo G, Marrazzo A, Prezzavento O, Sorrenti V, Rescifina A, Floresta G, Intagliata S, Pittalà V. Novel Structural Insight into Inhibitors of Heme Oxygenase-1 (HO-1) by New Imidazole-Based Compounds: Biochemical and In Vitro Anticancer Activity Evaluation. Molecules 2018;23:E1209. [PMID: 29783634 DOI: 10.3390/molecules23051209] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 7.8] [Reference Citation Analysis]
173 Yuan D, He H, Wu Y, Fan J, Cao Y. Physiologically Based Pharmacokinetic Modeling of Nanoparticles. J Pharm Sci 2019;108:58-72. [PMID: 30385282 DOI: 10.1016/j.xphs.2018.10.037] [Cited by in Crossref: 47] [Cited by in F6Publishing: 37] [Article Influence: 11.8] [Reference Citation Analysis]
174 Hare JI, Lammers T, Ashford MB, Puri S, Storm G, Barry ST. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Adv Drug Deliv Rev 2017;108:25-38. [PMID: 27137110 DOI: 10.1016/j.addr.2016.04.025] [Cited by in Crossref: 659] [Cited by in F6Publishing: 587] [Article Influence: 131.8] [Reference Citation Analysis]
175 Jasim A, Abdelghany S, Greish K. Current Update on the Role of Enhanced Permeability and Retention Effect in Cancer Nanomedicine. Nanotechnology-Based Approaches for Targeting and Delivery of Drugs and Genes. Elsevier; 2017. pp. 62-109. [DOI: 10.1016/b978-0-12-809717-5.00002-6] [Cited by in Crossref: 5] [Article Influence: 1.0] [Reference Citation Analysis]
176 Nehoff H, Parayath NN, Domanovitch L, Taurin S, Greish K. Nanomedicine for drug targeting: strategies beyond the enhanced permeability and retention effect. Int J Nanomedicine 2014;9:2539-55. [PMID: 24904213 DOI: 10.2147/IJN.S47129] [Cited by in Crossref: 38] [Cited by in F6Publishing: 50] [Article Influence: 4.8] [Reference Citation Analysis]
177 Liu C, Chen H, Zhou H, Yu S, Zhao Y, Wang N, Yao W, Lu A, Qiao W. MRI-FI-guided superimposed stimulus-responsive co-assembled liposomes for optimizing transmembrane drug delivery pathways and improving cancer efficacy. Applied Materials Today 2022;26:101368. [DOI: 10.1016/j.apmt.2022.101368] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
178 Kunjachan S, Pola R, Gremse F, Theek B, Ehling J, Moeckel D, Hermanns-Sachweh B, Pechar M, Ulbrich K, Hennink WE, Storm G, Lederle W, Kiessling F, Lammers T. Passive versus active tumor targeting using RGD- and NGR-modified polymeric nanomedicines. Nano Lett 2014;14:972-81. [PMID: 24422585 DOI: 10.1021/nl404391r] [Cited by in Crossref: 214] [Cited by in F6Publishing: 215] [Article Influence: 26.8] [Reference Citation Analysis]
179 Lupi M, Colombo C, Frapolli R, Ferrari R, Sitia L, Dragoni L, Bello E, Licandro SA, Falcetta F, Ubezio P, Bigini P, Salmona M, D'Incalci M, Morbidelli M, Moscatelli D. A biodistribution study of PEGylated PCL-based nanoparticles in C57BL/6 mice bearing B16/F10 melanoma. Nanotechnology 2014;25:335706. [PMID: 25074670 DOI: 10.1088/0957-4484/25/33/335706] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
180 Tao L, Huang G, Shi S, Chen L. Bevacizumab improves the antitumor efficacy of adoptive cytokine-induced killer cells therapy in non-small cell lung cancer models. Med Oncol 2014;31. [DOI: 10.1007/s12032-013-0777-3] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 2.2] [Reference Citation Analysis]
181 Radosavljević A, Spasojević J, Krstić J, Kačarević-popović Z. Nanocomposite Hydrogels Obtained by Gamma Irradiation. In: Mondal MIH, editor. Cellulose-Based Superabsorbent Hydrogels. Cham: Springer International Publishing; 2019. pp. 601-23. [DOI: 10.1007/978-3-319-77830-3_21] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
182 Sun Y, Yu B, Wang G, Wu Y, Zhang X, Chen Y, Tang S, Yuan Y, Lee RJ, Teng L, Xu S. Enhanced antitumor efficacy of vitamin E TPGS-emulsified PLGA nanoparticles for delivery of paclitaxel. Colloids and Surfaces B: Biointerfaces 2014;123:716-23. [DOI: 10.1016/j.colsurfb.2014.10.007] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 3.8] [Reference Citation Analysis]
183 Martins P, Jesus J, Santos S, Raposo LR, Roma-Rodrigues C, Baptista PV, Fernandes AR. Heterocyclic Anticancer Compounds: Recent Advances and the Paradigm Shift towards the Use of Nanomedicine's Tool Box. Molecules 2015;20:16852-91. [PMID: 26389876 DOI: 10.3390/molecules200916852] [Cited by in Crossref: 230] [Cited by in F6Publishing: 143] [Article Influence: 32.9] [Reference Citation Analysis]
184 Biswas D, An SY, Li Y, Wang X, Oh JK. Intracellular Delivery of Colloidally Stable Core-Cross-Linked Triblock Copolymer Micelles with Glutathione-Responsive Enhanced Drug Release for Cancer Therapy. Mol Pharmaceutics 2017;14:2518-28. [DOI: 10.1021/acs.molpharmaceut.6b01146] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
185 Yokoe I, Omata D, Unga J, Suzuki R, Maruyama K, Okamoto Y, Osaki T. Lipid bubbles combined with low-intensity ultrasound enhance the intratumoral accumulation and antitumor effect of pegylated liposomal doxorubicin in vivo. Drug Deliv 2021;28:530-41. [PMID: 33685314 DOI: 10.1080/10717544.2021.1895907] [Reference Citation Analysis]
186 Moghimi SM. Cancer nanomedicine and the complement system activation paradigm: anaphylaxis and tumour growth. J Control Release 2014;190:556-62. [PMID: 24746624 DOI: 10.1016/j.jconrel.2014.03.051] [Cited by in Crossref: 64] [Cited by in F6Publishing: 61] [Article Influence: 8.0] [Reference Citation Analysis]
187 Fanciullino R, Mollard S, Correard F, Giacometti S, Serdjebi C, Iliadis A, Ciccolini J. Biodistribution, tumor uptake and efficacy of 5-FU-loaded liposomes: why size matters. Pharm Res 2014;31:2677-84. [PMID: 24752479 DOI: 10.1007/s11095-014-1364-9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
188 Li F, Zhang H, He M, Liao J, Chen N, Li Y, Zhou S, Palmisano M, Yu A, Pai MP, Yuan H, Sun D. Different Nanoformulations Alter the Tissue Distribution of Paclitaxel, Which Aligns with Reported Distinct Efficacy and Safety Profiles. Mol Pharm 2018;15:4505-16. [PMID: 30180593 DOI: 10.1021/acs.molpharmaceut.8b00527] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
189 Hatami E, Bhusetty Nagesh PK, Chowdhury P, Elliot S, Shields D, Chand Chauhan S, Jaggi M, Yallapu MM. Development of Zoledronic Acid-Based Nanoassemblies for Bone-Targeted Anticancer Therapy. ACS Biomater Sci Eng 2019;5:2343-54. [PMID: 33405784 DOI: 10.1021/acsbiomaterials.9b00362] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
190 Guo Z, He B, Yuan L, Dai W, Zhang H, Wang X, Wang J, Zhang X, Zhang Q. Dual targeting for metastatic breast cancer and tumor neovasculature by EphA2-mediated nanocarriers. Int J Pharm 2015;493:380-9. [PMID: 26004003 DOI: 10.1016/j.ijpharm.2015.05.051] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
191 Perche F, Torchilin VP. Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting. J Drug Deliv 2013;2013:705265. [PMID: 23533772 DOI: 10.1155/2013/705265] [Cited by in Crossref: 127] [Cited by in F6Publishing: 122] [Article Influence: 14.1] [Reference Citation Analysis]
192 Pannerec-varna M, Ratajczak P, Bousquet G, Ferreira I, Leboeuf C, Boisgard R, Gapihan G, Verine J, Palpant B, Bossy E, Doris E, Poupon J, Fort E, Janin A. In vivo uptake and cellular distribution of gold nanoshells in a preclinical model of xenografted human renal cancer. Gold Bull 2013;46:257-65. [DOI: 10.1007/s13404-013-0115-8] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
193 Oh JK. Disassembly and tumor-targeting drug delivery of reduction-responsive degradable block copolymer nanoassemblies. Polym Chem 2019;10:1554-68. [DOI: 10.1039/c8py01808a] [Cited by in Crossref: 25] [Article Influence: 8.3] [Reference Citation Analysis]
194 Song Y, Kang YJ, Jung H, Kim H, Kang S, Cho H. Lumazine Synthase Protein Nanoparticle-Gd(III)-DOTA Conjugate as a T1 contrast agent for high-field MRI. Sci Rep 2015;5:15656. [PMID: 26493381 DOI: 10.1038/srep15656] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 2.9] [Reference Citation Analysis]
195 Li W, Xie X, Wu T, Lin H, Luo L, Yang H, Li J, Xin Y, Lin X, Chen Y. Loading Auristatin PE onto boron nitride nanotubes and their effects on the apoptosis of Hep G2 cells. Colloids Surf B Biointerfaces 2019;181:305-14. [PMID: 31154141 DOI: 10.1016/j.colsurfb.2019.05.047] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
196 Bellary A, Villarreal A, Eslami R, Undseth QJ, Lec B, Defnet AM, Bagrodia N, Kandel JJ, Borden MA, Shaikh S, Chopra R, Laetsch TW, Delaney LJ, Shaw CM, Eisenbrey JR, Hernandez SL, Sirsi SR. Perfusion-guided sonopermeation of neuroblastoma: a novel strategy for monitoring and predicting liposomal doxorubicin uptake in vivo. Theranostics 2020;10:8143-61. [PMID: 32724463 DOI: 10.7150/thno.45903] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
197 Chiang CS, Shen YS, Liu JJ, Shyu WC, Chen SY. Synergistic Combination of Multistage Magnetic Guidance and Optimized Ligand Density in Targeting a Nanoplatform for Enhanced Cancer Therapy. Adv Healthc Mater 2016;5:2131-41. [PMID: 27337051 DOI: 10.1002/adhm.201600479] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
198 Ngoune R, Peters A, von Elverfeldt D, Winkler K, Pütz G. Accumulating nanoparticles by EPR: A route of no return. J Control Release 2016;238:58-70. [PMID: 27448444 DOI: 10.1016/j.jconrel.2016.07.028] [Cited by in Crossref: 104] [Cited by in F6Publishing: 99] [Article Influence: 17.3] [Reference Citation Analysis]
199 Rammelkamp D, Li W, Meng Y. Intracellular Delivery of Fluorescently Labeled Polysaccharide Nanoparticles to Cultured Breast Cancer Cells. Methods Mol Biol 2016;1406:289-302. [PMID: 26820964 DOI: 10.1007/978-1-4939-3444-7_24] [Reference Citation Analysis]
200 Yu T, Li Y, Gu X, Li Q. Development of a Hyaluronic Acid-Based Nanocarrier Incorporating Doxorubicin and Cisplatin as a pH-Sensitive and CD44-Targeted Anti-Breast Cancer Drug Delivery System. Front Pharmacol 2020;11:532457. [PMID: 32982750 DOI: 10.3389/fphar.2020.532457] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
201 Jin X, Yang Q, Cai N. Preparation of ginsenoside compound-K mixed micelles with improved retention and antitumor efficacy. Int J Nanomedicine 2018;13:3827-38. [PMID: 30013338 DOI: 10.2147/IJN.S167529] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
202 Ding Y, Xu Y, Yang W, Niu P, Li X, Chen Y, Li Z, Liu Y, An Y, Liu Y, Shen W, Shi L. Investigating the EPR effect of nanomedicines in human renal tumors via ex vivo perfusion strategy. Nano Today 2020;35:100970. [DOI: 10.1016/j.nantod.2020.100970] [Cited by in Crossref: 22] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
203 Liu Q, Zhao D, Zhu X, Chen H, Yang Y, Xu J, Zhang Q, Fan A, Li N, Guo C, Kong Y, Lu Y, Chen X. Coloaded Nanoparticles of Paclitaxel and Piperlongumine for Enhancing Synergistic Antitumor Activities and Reducing Toxicity. J Pharm Sci 2017;106:3066-75. [PMID: 28552690 DOI: 10.1016/j.xphs.2017.05.027] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
204 Pritchard T, Rosengren RJ, Greish K, Taurin S. Raloxifene nanomicelles reduce the growth of castrate-resistant prostate cancer. J Drug Target 2016;24:441-9. [PMID: 26373825 DOI: 10.3109/1061186X.2015.1086360] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
205 Li D, Wei X, Xue W, Xu L, Xiang Z, Liu S, Yang T, Chen S. Size Effect of Zwitterionic Peptide-Based Nanoscale Micelles on Cancer Therapy. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c01665] [Reference Citation Analysis]
206 Zou J, Zhang F, Zhang S, Pollack SF, Elsabahy M, Fan J, Wooley KL. Poly(ethylene oxide)-block-polyphosphoester-graft-paclitaxel conjugates with acid-labile linkages as a pH-sensitive and functional nanoscopic platform for paclitaxel delivery. Adv Healthc Mater 2014;3:441-8. [PMID: 23997013 DOI: 10.1002/adhm.201300235] [Cited by in Crossref: 104] [Cited by in F6Publishing: 102] [Article Influence: 13.0] [Reference Citation Analysis]
207 Wu W, Driessen W, Jiang X. Oligo(ethylene glycol)-Based Thermosensitive Dendrimers and Their Tumor Accumulation and Penetration. J Am Chem Soc 2014;136:3145-55. [DOI: 10.1021/ja411457r] [Cited by in Crossref: 73] [Cited by in F6Publishing: 63] [Article Influence: 9.1] [Reference Citation Analysis]
208 Snipstad S, Berg S, Mørch Ý, Bjørkøy A, Sulheim E, Hansen R, Grimstad I, van Wamel A, Maaland AF, Torp SH, Davies CDL. Ultrasound Improves the Delivery and Therapeutic Effect of Nanoparticle-Stabilized Microbubbles in Breast Cancer Xenografts. Ultrasound in Medicine & Biology 2017;43:2651-69. [DOI: 10.1016/j.ultrasmedbio.2017.06.029] [Cited by in Crossref: 45] [Cited by in F6Publishing: 42] [Article Influence: 9.0] [Reference Citation Analysis]
209 Shao K, Singha S, Clemente-Casares X, Tsai S, Yang Y, Santamaria P. Nanoparticle-based immunotherapy for cancer. ACS Nano 2015;9:16-30. [PMID: 25469470 DOI: 10.1021/nn5062029] [Cited by in Crossref: 300] [Cited by in F6Publishing: 283] [Article Influence: 42.9] [Reference Citation Analysis]
210 Sukhatme V, Bouche G, Meheus L, Sukhatme VP, Pantziarka P. Repurposing Drugs in Oncology (ReDO)-nitroglycerin as an anti-cancer agent. Ecancermedicalscience 2015;9:568. [PMID: 26435741 DOI: 10.3332/ecancer.2015.568] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 3.1] [Reference Citation Analysis]
211 Wang Y, Grainger DW. Barriers to advancing nanotechnology to better improve and translate nanomedicines. Front Chem Sci Eng 2014;8:265-75. [DOI: 10.1007/s11705-014-1442-x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
212 Sun D, Zhou S, Gao W. What Went Wrong with Anticancer Nanomedicine Design and How to Make It Right. ACS Nano 2020;14:12281-90. [PMID: 33021091 DOI: 10.1021/acsnano.9b09713] [Cited by in Crossref: 60] [Cited by in F6Publishing: 49] [Article Influence: 30.0] [Reference Citation Analysis]