BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Peralta ME, Jadhav SA, Magnacca G, Scalarone D, Mártire DO, Parolo ME, Carlos L. Synthesis and in vitro testing of thermoresponsive polymer-grafted core-shell magnetic mesoporous silica nanoparticles for efficient controlled and targeted drug delivery. Journal of Colloid and Interface Science 2019;544:198-205. [DOI: 10.1016/j.jcis.2019.02.086] [Cited by in Crossref: 82] [Cited by in F6Publishing: 65] [Article Influence: 27.3] [Reference Citation Analysis]
Number Citing Articles
1 Philip J. Magnetic nanofluids: Recent advances, applications, challenges, and future directions. Advances in Colloid and Interface Science 2022. [DOI: 10.1016/j.cis.2022.102810] [Reference Citation Analysis]
2 Shah IU, Jadhav SA, Belekar VM, Patil PS. Smart polymer grafted silica based drug delivery systems. Polymers for Advanced Techs. [DOI: 10.1002/pat.5890] [Reference Citation Analysis]
3 Voycheva C, Slavkova M, Popova T, Tzankova D, Tosheva A, Aluani D, Tzankova V, Ivanova I, Tzankov S, Spassova I, Kovacheva D, Tzankov B. Synthesis and characterization of PnVCL grafted agar with potential temperature-sensitive delivery of Doxorubicin. Journal of Drug Delivery Science and Technology 2022;76:103725. [DOI: 10.1016/j.jddst.2022.103725] [Reference Citation Analysis]
4 Raj R, Pinto SN, Crucho CIC, Das S, Baleizão C, Farinha JPS. Optically traceable PLGA-silica nanoparticles for cell-triggered doxorubicin delivery. Colloids Surf B Biointerfaces 2022;220:112872. [PMID: 36179611 DOI: 10.1016/j.colsurfb.2022.112872] [Reference Citation Analysis]
5 Feng H, Li M, Xing Z, Ouyang X, Ling J. Efficient delivery of fucoxanthin using metal–polyphenol network-coated magnetic mesoporous silica. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103842] [Reference Citation Analysis]
6 Neal CA, León V, Quan MC, Chibambo NO, Calabrese MA. Tuning the thermodynamic, optical, and rheological properties of thermoresponsive polymer solutions via silica nanoparticle shape and concentration. Journal of Colloid and Interface Science 2022. [DOI: 10.1016/j.jcis.2022.08.139] [Reference Citation Analysis]
7 Mayol B, Dato V, Rodriguez M, Lucena E, Villalonga A, Díez P, Jimenez-Falcao S, Sancenón F, Sánchez A, Vilela D, Martínez-Ruiz P, Martínez-Máñez R, Villalonga R. An enzyme-controlled mesoporous nanomachine for triple-responsive delivery. J Mater Chem B 2022. [PMID: 36004753 DOI: 10.1039/d2tb01069k] [Reference Citation Analysis]
8 Ansari MJ, Rajendran RR, Mohanto S, Agarwal U, Panda K, Dhotre K, Manne R, Deepak A, Zafar A, Yasir M, Pramanik S. Poly(N-isopropylacrylamide)-Based Hydrogels for Biomedical Applications: A Review of the State-of-the-Art. Gels 2022;8:454. [DOI: 10.3390/gels8070454] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
9 Ezeuko AS, Ojemaye MO, Okoh OO, Okoh AI. The effectiveness of silver nanoparticles as a clean-up material for water polluted with bacteria DNA conveying antibiotics resistance genes: Effect of different molar concentrations and competing ions. OpenNano 2022;7:100060. [DOI: 10.1016/j.onano.2022.100060] [Reference Citation Analysis]
10 Mehta S, Suresh A, Nayak Y, Narayan R, Nayak UY. Hybrid nanostructures: Versatile systems for biomedical applications. Coordination Chemistry Reviews 2022;460:214482. [DOI: 10.1016/j.ccr.2022.214482] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
11 Arabzadeh A, Akhlaghi N, Najafpour-darzi G. Quercetin loading on mesoporous magnetic MnFe2O4@ hydroxyapatite core-shell nanoparticles for treating cancer cells. Advanced Powder Technology 2022;33:103609. [DOI: 10.1016/j.apt.2022.103609] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Zhu Y, Zhang M, Wei S, Wang B, He J, Qiu X. Temperature-responsive P(NIPAM-co-NHMA)-grafted organic-inorganic hybrid hollow mesoporous silica nanoparticles for controlled drug delivery. Journal of Drug Delivery Science and Technology 2022;70:103197. [DOI: 10.1016/j.jddst.2022.103197] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Zohreh N, Karimi N, Hosseini SH, Istrate C, Busuioc C. Fabrication of a magnetic nanocarrier for doxorubicin delivery based on hyperbranched polyglycerol and carboxymethyl cellulose: An investigation on the effect of borax cross-linker on pH-sensitivity. Int J Biol Macromol 2022;203:80-92. [PMID: 35092736 DOI: 10.1016/j.ijbiomac.2022.01.150] [Reference Citation Analysis]
14 Forouzandehmehr M, Ghoytasi I, Shamloo A, Ghosi S. Particles in coronary circulation: A review on modelling for drug carrier design. Materials & Design 2022;216:110511. [DOI: 10.1016/j.matdes.2022.110511] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
15 Fatimah I, Fadillah G, Purwiandono G, Sahroni I, Purwaningsih D, Riantana H, Avif AN, Sagadevan S. Magnetic-silica nanocomposites and the functionalized forms for environment and medical applications: A review. Inorganic Chemistry Communications 2022;137:109213. [DOI: 10.1016/j.inoche.2022.109213] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
16 Stanicki D, Vangijzegem T, Ternad I, Laurent S. An update on the applications and characteristics of magnetic iron oxide nanoparticles for drug delivery. Expert Opin Drug Deliv 2022. [PMID: 35202551 DOI: 10.1080/17425247.2022.2047020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 López Ruiz A, Ramirez A, Mcennis K. Single and Multiple Stimuli-Responsive Polymer Particles for Controlled Drug Delivery. Pharmaceutics 2022;14:421. [DOI: 10.3390/pharmaceutics14020421] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
18 Shariatinia Z. Inorganic Material‐Based Nanocarriers for Delivery of Biomolecules. In: Jana S, Jana S, editors. Nanoengineering of Biomaterials. Wiley; 2022. pp. 245-93. [DOI: 10.1002/9783527832095.ch26] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Sankareswaran M, Vanitha M, Periakaruppan R, Anbukumaran A. Phyllanthus emblica Mediated Silica Nanomaterials: Biosynthesis, Structural and Stability Analysis. Silicon. [DOI: 10.1007/s12633-022-01724-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
20 Ejderyan N, Sanyal R, Sanyal A. Stimuli-responsive polymer-coated iron oxide nanoparticles as drug delivery platforms. Stimuli-Responsive Nanocarriers 2022. [DOI: 10.1016/b978-0-12-824456-2.00009-6] [Reference Citation Analysis]
21 Shah S, Famta P, Raghuvanshi RS, Singh SB, Srivastava S. Lipid polymer hybrid nanocarriers: Insights into synthesis aspects, characterization, release mechanisms, surface functionalization and potential implications. Colloid and Interface Science Communications 2022;46:100570. [DOI: 10.1016/j.colcom.2021.100570] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
22 Tan N, Ding Z, Chen C, Yang Y, He L, Liao S, Liu L, Wang D, Ye Q. A new pH/redox dual stimulus-responsive formononetin imprinting material. Reactive and Functional Polymers 2022;170:105141. [DOI: 10.1016/j.reactfunctpolym.2021.105141] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Patra R, Ghosal K, Saha R, Sarkar P, Chattopadhyay S, Sarkar K. Advances in the Development of Biodegradable Polymeric Materials for Biomedical Applications with respect to their synthesis procedures, degradation properties, toxicity, stability and applications. Encyclopedia of Materials: Plastics and Polymers 2022. [DOI: 10.1016/b978-0-12-820352-1.00252-2] [Reference Citation Analysis]
24 Kannan K. Using Smart Mesoporous Silica in Designing Drug Delivery Systems. Handbook of Smart Materials, Technologies, and Devices 2022. [DOI: 10.1007/978-3-030-84205-5_111] [Reference Citation Analysis]
25 Bagheri E, Naserifar M, Ramezani P, Ramezani M, Alibolandi M. Silica−polymer hybrid nanoparticles for drug delivery and bioimaging. Hybrid Nanomaterials for Drug Delivery 2022. [DOI: 10.1016/b978-0-323-85754-3.00002-2] [Reference Citation Analysis]
26 Saputra OA, Lestari WA, Safitriono WN, Handayani M, Lestari WW, Wibowo FR. β-Amino alcohol-based organosilane tailored magnetite embedded mesoporous silica nanoparticles exhibit controlled-release of curcumin triggered by pH. Materials Letters 2021;305:130804. [DOI: 10.1016/j.matlet.2021.130804] [Reference Citation Analysis]
27 Zhou Y, Wan Y, He M, Li Y, Wu Q, Yao H. Determination of EGFR-overexpressing tumor cells by magnetic gold-decorated graphene oxide nanocomposites based impedance sensor. Analytical Biochemistry 2021. [DOI: 10.1016/j.ab.2021.114544] [Reference Citation Analysis]
28 Kalyane D, Kumar N, Anup N, Rajpoot K, Maheshwari R, Sengupta P, Kalia K, Tekade RK. Recent advancements and future submissions of silica core-shell nanoparticles. Int J Pharm 2021;609:121173. [PMID: 34627997 DOI: 10.1016/j.ijpharm.2021.121173] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
29 Zhang H, Cai C, Hu T, Zhang Z, Dai L, Fei H, Bai H, Wu C, Gong X, Zheng X. Magnetically separable and efficient platinum catalyst: Amino ligand enhanced loading and Fe 2+ facilitated Pt 0 formation. Applied Organom Chemis 2022;36. [DOI: 10.1002/aoc.6513] [Reference Citation Analysis]
30 Yang M, Wang H, Jiang Y, Lai S, Shang H, Sun X, Qiao N, Zhang X. Synthesis and performance of temperature/pH dual stimulus responsive drug carriers based on core-shell structure. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;629:127396. [DOI: 10.1016/j.colsurfa.2021.127396] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Fuentes-garcía JA, Alavarse AC, de Castro CE, Giacomelli FC, Ibarra MR, Bonvent J, Goya GF. Sonochemical route for mesoporous silica-coated magnetic nanoparticles towards pH-triggered drug delivery system. Journal of Materials Research and Technology 2021;15:52-67. [DOI: 10.1016/j.jmrt.2021.08.014] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
32 Wei H, Hu Y, Wang J, Gao X, Qian X, Tang M. Superparamagnetic Iron Oxide Nanoparticles: Cytotoxicity, Metabolism, and Cellular Behavior in Biomedicine Applications. Int J Nanomedicine 2021;16:6097-113. [PMID: 34511908 DOI: 10.2147/IJN.S321984] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 14.0] [Reference Citation Analysis]
33 Porrang S, Rahemi N, Davaran S, Mahdavi M, Hassanzadeh B. Synthesis of temperature/pH dual-responsive mesoporous silica nanoparticles by surface modification and radical polymerization for anti-cancer drug delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;623:126719. [DOI: 10.1016/j.colsurfa.2021.126719] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
34 Peter J, Nechikkattu R, Mohan A, Maria Thomas A, Ha C. Stimuli-responsive organic-inorganic mesoporous silica hybrids: A comprehensive review on synthesis and recent advances. Materials Science and Engineering: B 2021;270:115232. [DOI: 10.1016/j.mseb.2021.115232] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
35 Huang Q, Yu H, Wang L, Shen D, Chen X, Wang N. Synthesis and testing of polymer grafted mesoporous silica as glucose-responsive insulin release drug delivery systems. European Polymer Journal 2021;157:110651. [DOI: 10.1016/j.eurpolymj.2021.110651] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
36 Mahajan R, Suriyanarayanan S, Nicholls IA. Improved Solvothermal Synthesis of γ-Fe2O3 Magnetic Nanoparticles for SiO2 Coating. Nanomaterials (Basel) 2021;11:1889. [PMID: 34443719 DOI: 10.3390/nano11081889] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 11.0] [Reference Citation Analysis]
37 Zhao D, Yang N, Xu L, Du J, Yang Y, Wang D. Hollow structures as drug carriers: Recognition, response, and release. Nano Res 2021;:1-19. [PMID: 34254012 DOI: 10.1007/s12274-021-3595-5] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
38 Trzeciak K, Chotera-Ouda A, Bak-Sypien II, Potrzebowski MJ. Mesoporous Silica Particles as Drug Delivery Systems-The State of the Art in Loading Methods and the Recent Progress in Analytical Techniques for Monitoring These Processes. Pharmaceutics 2021;13:950. [PMID: 34202794 DOI: 10.3390/pharmaceutics13070950] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 17.0] [Reference Citation Analysis]
39 Shrestha B, Wang L, Brey EM, Uribe GR, Tang L. Smart Nanoparticles for Chemo-Based Combinational Therapy. Pharmaceutics 2021;13:853. [PMID: 34201333 DOI: 10.3390/pharmaceutics13060853] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
40 Asgari M, Soleymani M, Miri T, Barati A. Design of thermosensitive polymer‐coated magnetic mesoporous silica nanocomposites with a core‐shell‐shell structure as a magnetic/temperature dual‐responsive drug delivery vehicle. Polym Adv Technol 2021;32:4101-9. [DOI: 10.1002/pat.5417] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
41 Ezeuko AS, Ojemaye MO, Okoh OO, Okoh AI. Potentials of metallic nanoparticles for the removal of antibiotic resistant bacteria and antibiotic resistance genes from wastewater: A critical review. Journal of Water Process Engineering 2021;41:102041. [DOI: 10.1016/j.jwpe.2021.102041] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
42 Frickenstein AN, Hagood JM, Britten CN, Abbott BS, McNally MW, Vopat CA, Patterson EG, MacCuaig WM, Jain A, Walters KB, McNally LR. Mesoporous Silica Nanoparticles: Properties and Strategies for Enhancing Clinical Effect. Pharmaceutics 2021;13:570. [PMID: 33920503 DOI: 10.3390/pharmaceutics13040570] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 16.0] [Reference Citation Analysis]
43 Taleghani AS, Nakhjiri AT, Khakzad MJ, Rezayat SM, Ebrahimnejad P, Heydarinasab A, Akbarzadeh A, Marjani A. Mesoporous silica nanoparticles as a versatile nanocarrier for cancer treatment: A review. Journal of Molecular Liquids 2021;328:115417. [DOI: 10.1016/j.molliq.2021.115417] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 11.0] [Reference Citation Analysis]
44 Lorkowski ME, Atukorale PU, Ghaghada KB, Karathanasis E. Stimuli-Responsive Iron Oxide Nanotheranostics: A Versatile and Powerful Approach for Cancer Therapy. Adv Healthc Mater 2021;10:e2001044. [PMID: 33225633 DOI: 10.1002/adhm.202001044] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 15.0] [Reference Citation Analysis]
45 Peralta ME, Mártire DO, Moreno MS, Parolo ME, Carlos L. Versatile nanoadsorbents based on magnetic mesostructured silica nanoparticles with tailored surface properties for organic pollutants removal. Journal of Environmental Chemical Engineering 2021;9:104841. [DOI: 10.1016/j.jece.2020.104841] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 11.0] [Reference Citation Analysis]
46 Anik MI, Hossain MK, Hossain I, Mahfuz AMUB, Rahman MT, Ahmed I. Recent progress of magnetic nanoparticles in biomedical applications: A review. Nano Select 2021;2:1146-86. [DOI: 10.1002/nano.202000162] [Cited by in Crossref: 38] [Cited by in F6Publishing: 41] [Article Influence: 38.0] [Reference Citation Analysis]
47 Yadav R, Kumar S, Narang P, Venkatesu P. How does the addition of shape distinct gold nanoparticles influence on the conformational transition of poly(N-isopropylacrylamide)? J Colloid Interface Sci 2021;582:478-87. [PMID: 32911396 DOI: 10.1016/j.jcis.2020.08.074] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
48 Jayawardena HSN, Liyanage SH, Rathnayake K, Patel U, Yan M. Analytical Methods for Characterization of Nanomaterial Surfaces. Anal Chem 2021;93:1889-911. [DOI: 10.1021/acs.analchem.0c05208] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
49 Kannan K. Using Smart Mesoporous Silica in Designing Drug Delivery Systems. Handbook of Smart Materials, Technologies, and Devices 2021. [DOI: 10.1007/978-3-030-58675-1_111-1] [Reference Citation Analysis]
50 Seba V, Silva G, Chee BS, Henn JG, de Lima GG, Cao Z, Marins M, Nugent M. Stimuli-responsive biopolymeric systems for drug delivery to cancer cells. Tailor-Made and Functionalized Biopolymer Systems 2021. [DOI: 10.1016/b978-0-12-821437-4.00014-1] [Reference Citation Analysis]
51 Zou Y, Huang B, Cao L, Deng Y, Su J. Tailored Mesoporous Inorganic Biomaterials: Assembly, Functionalization, and Drug Delivery Engineering. Adv Mater 2021;33:e2005215. [PMID: 33251635 DOI: 10.1002/adma.202005215] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 36.0] [Reference Citation Analysis]
52 Tancredi P, Rivas-rojas PC, Veiga LS, Garate O, Socolovsky LM, Muraca D, Ybarra G. Magnetic mesoporous silica nanospheres with dual probe & release fluorescent functionality. Nanotechnology 2020;31:495603. [DOI: 10.1088/1361-6528/abb2c1] [Reference Citation Analysis]
53 Morfin-gutierrez A, Sánchez-orozco JL, García-cerda LA, Puente-urbina B, Meléndez-ortiz HI. Preparation and characterization of nanocomposites based on poly(N-vinycaprolactam) and magnetic nanoparticles for using as drug delivery system. Journal of Drug Delivery Science and Technology 2020;60:102028. [DOI: 10.1016/j.jddst.2020.102028] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
54 Goulis P, Kartsonakis IA, Charitidis CA. Synthesis and Characterization of a Core-Shell Copolymer with Different Glass Transition Temperatures. Fibers 2020;8:71. [DOI: 10.3390/fib8110071] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
55 Beagan A, Lahmadi S, Alghamdi A, Halwani M, Almeataq M, Alhazaa A, Alotaibi K, Alswieleh A. Glucosamine Modified the Surface of pH-Responsive Poly(2-(diethylamino)ethyl Methacrylate) Brushes Grafted on Hollow Mesoporous Silica Nanoparticles as Smart Nanocarrier. Polymers (Basel) 2020;12:E2749. [PMID: 33233772 DOI: 10.3390/polym12112749] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
56 Johnson M, Gaffney C, White V, Bechelli J, Balaraman R, Trad T. Non-hydrolytic synthesis of caprylate capped cobalt ferrite nanoparticles and their application against Erwinia carotovora and Stenotrophomonas maltophilia. J Mater Chem B 2020;8:10845-53. [PMID: 33180891 DOI: 10.1039/d0tb02283g] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
57 Popova M, Koseva N, Trendafilova I, Lazarova H, Mitova V, Mihály J, Momekova D, Momekov G, Koleva IZ, Aleksandrov HA, Vayssilov GN, Szegedi Á. Tamoxifen Delivery System Based on PEGylated Magnetic MCM-41 Silica. Molecules 2020;25:E5129. [PMID: 33158297 DOI: 10.3390/molecules25215129] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
58 Wang Y, Shi Z, Sun Y, Wu X, Li S, Dong S, Lan T. Preparation of amphiphilic magnetic polyvinyl alcohol targeted drug carrier and drug delivery research. Des Monomers Polym 2020;23:197-206. [PMID: 33177950 DOI: 10.1080/15685551.2020.1837442] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
59 Murugan B, Sagadevan S, J AL, Fatimah I, Fatema KN, Oh W, Mohammad F, Johan MR. Role of mesoporous silica nanoparticles for the drug delivery applications. Mater Res Express 2020;7:102002. [DOI: 10.1088/2053-1591/abbf7e] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
60 Naghizadeh A, Mohammadi-Aghdam S, Mortazavi-Derazkola S. Novel CoFe2O4@ZnO-CeO2 ternary nanocomposite: Sonochemical green synthesis using Crataegus microphylla extract, characterization and their application in catalytic and antibacterial activities. Bioorg Chem 2020;103:104194. [PMID: 32890997 DOI: 10.1016/j.bioorg.2020.104194] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
61 Zhang S, Zhu P, He J, Dong S, Li P, Zhang CY, Ma T. TME-Responsive Polyprodrug Micelles for Multistage Delivery of Doxorubicin with Improved Cancer Therapeutic Efficacy in Rodents. Adv Healthc Mater 2020;9:e2000387. [PMID: 32815646 DOI: 10.1002/adhm.202000387] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
62 Zhang B, Li X, Wang W, Hao M, Tian M, Zou H, Zhang L. Preparation of Silver-Coated Silica Microspheres with High Electrical Conductivity Through Pyrogallol-Fe(Ш) Coordinated Surface Functionalization. J Inorg Organomet Polym 2020;30:3369-3377. [DOI: 10.1007/s10904-020-01658-8] [Reference Citation Analysis]
63 Lai Y, Li M, Zhang M, Li X, Yuan J, Wang W, Zhou Q, Huang M, Yin P. Confinement Effect on the Surface of a Metal–Organic Polyhedron: Tunable Thermoresponsiveness and Water Permeability. Macromolecules 2020;53:7178-86. [DOI: 10.1021/acs.macromol.0c00295] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
64 Bhattacharjee A, Purkait MK, Gumma S. Loading and release of doxorubicin hydrochloride from iron(iii) trimesate MOF and zinc oxide nanoparticle composites. Dalton Trans 2020;49:8755-63. [PMID: 32555814 DOI: 10.1039/d0dt01730b] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
65 Ranoo S, Lahiri BB, Nandy M, Philip J. Enhanced magnetic heating efficiency at acidic pH for magnetic nanoemulsions stabilized with a weak polyelectrolyte. J Colloid Interface Sci 2020;579:582-97. [PMID: 32623124 DOI: 10.1016/j.jcis.2020.06.093] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
66 Laksee S, Sansanaphongpricha K, Puthong S, Sangphech N, Palaga T, Muangsin N. New organic/inorganic nanohybrids of targeted pullulan derivative/gold nanoparticles for effective drug delivery systems. Int J Biol Macromol 2020;162:561-77. [PMID: 32553955 DOI: 10.1016/j.ijbiomac.2020.06.089] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
67 Gisbert-Garzarán M, Vallet-Regí M. Influence of the Surface Functionalization on the Fate and Performance of Mesoporous Silica Nanoparticles. Nanomaterials (Basel) 2020;10:E916. [PMID: 32397449 DOI: 10.3390/nano10050916] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 13.5] [Reference Citation Analysis]
68 Ke J, Wang Y, Wang L, Yang B, Gou K, Qin Y, Li S, Li H. Synthesis and characterization of core-shell mesoporous silica nanoparticles with various shell thickness as indomethacin carriers: In vitro and in vivo evaluation. Microporous and Mesoporous Materials 2020;297:110043. [DOI: 10.1016/j.micromeso.2020.110043] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
69 Sugawara R, Nakamura A, Murakami K. Synthesis of temperature-responsive magnetic mesoporous silica and temperature dependence of its physical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020;591:124465. [DOI: 10.1016/j.colsurfa.2020.124465] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
70 Peralta ME, Ocampo S, Funes IG, Onaga Medina F, Parolo ME, Carlos L. Nanomaterials with Tailored Magnetic Properties as Adsorbents of Organic Pollutants from Wastewaters. Inorganics 2020;8:24. [DOI: 10.3390/inorganics8040024] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
71 Du R, Gao B, Men J, An F. Characteristics and advantages of surface-initiated graft-polymerization as a way of “grafting from” method for graft-polymerization of functional monomers on solid particles. European Polymer Journal 2020;127:109479. [DOI: 10.1016/j.eurpolymj.2020.109479] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
72 Bhattacharjee A, Purkait MK, Gumma S. Doxorubicin Loading Capacity of MIL-100(Fe): Effect of Synthesis Conditions. J Inorg Organomet Polym 2020;30:2366-75. [DOI: 10.1007/s10904-020-01456-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
73 Bansal KK, Mishra DK, Rosling A, Rosenholm JM. Therapeutic Potential of Polymer-Coated Mesoporous Silica Nanoparticles. Applied Sciences 2020;10:289. [DOI: 10.3390/app10010289] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
74 Popescu RC, Andronescu E, Vasile BS. Recent Advances in Magnetite Nanoparticle Functionalization for Nanomedicine. Nanomaterials (Basel) 2019;9:E1791. [PMID: 31888236 DOI: 10.3390/nano9121791] [Cited by in Crossref: 55] [Cited by in F6Publishing: 57] [Article Influence: 18.3] [Reference Citation Analysis]
75 Pereira Gomes I, Aparecida Duarte J, Chaves Maia AL, Rubello D, Townsend DM, Branco de Barros AL, Leite EA. Thermosensitive Nanosystems Associated with Hyperthermia for Cancer Treatment. Pharmaceuticals (Basel) 2019;12:E171. [PMID: 31775273 DOI: 10.3390/ph12040171] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
76 Liu Y, Luo J, Chen X, Liu W, Chen T. Cell Membrane Coating Technology: A Promising Strategy for Biomedical Applications. Nanomicro Lett 2019;11:100. [PMID: 34138027 DOI: 10.1007/s40820-019-0330-9] [Cited by in Crossref: 92] [Cited by in F6Publishing: 75] [Article Influence: 30.7] [Reference Citation Analysis]
77 Alejo T, Uson L, Arruebo M. Reversible stimuli-responsive nanomaterials with on-off switching ability for biomedical applications. Journal of Controlled Release 2019;314:162-76. [DOI: 10.1016/j.jconrel.2019.10.036] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 8.7] [Reference Citation Analysis]
78 Yuan X, Peng S, Lin W, Wang J, Zhang L. Multistage pH-responsive mesoporous silica nanohybrids with charge reversal and intracellular release for efficient anticancer drug delivery. Journal of Colloid and Interface Science 2019;555:82-93. [DOI: 10.1016/j.jcis.2019.07.061] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 8.7] [Reference Citation Analysis]
79 Matsuyama T, Hayashi H, Komatsu S, Asoh T, Kikuchi A. Preparation of thermoresponsive nanoparticles exhibiting biomolecule recognition ability via atom transfer radical dispersion polymerization. Colloids and Surfaces B: Biointerfaces 2019;183:110370. [DOI: 10.1016/j.colsurfb.2019.110370] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
80 Grumezescu V, Gherasim O, Negut I, Banita S, Holban AM, Florian P, Icriverzi M, Socol G. Nanomagnetite-embedded PLGA Spheres for Multipurpose Medical Applications. Materials (Basel) 2019;12:E2521. [PMID: 31398805 DOI: 10.3390/ma12162521] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
81 Madkour M, Bumajdad A, Al-Sagheer F. To what extent do polymeric stabilizers affect nanoparticles characteristics? Adv Colloid Interface Sci 2019;270:38-53. [PMID: 31174003 DOI: 10.1016/j.cis.2019.05.004] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 9.3] [Reference Citation Analysis]