BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Nwoko KC, Raab A, Cheyne L, Dawson D, Krupp E, Feldmann J. Matrix-dependent size modifications of iron oxide nanoparticles (Ferumoxytol) spiked into rat blood cells and plasma: Characterisation with TEM, AF4-UV-MALS-ICP-MS/MS and spICP-MS. Journal of Chromatography B 2019;1124:356-65. [DOI: 10.1016/j.jchromb.2019.06.029] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Shakiba S, Shariati S, Wu H, Astete CE, Cueto R, Fini EH, Rodrigues DF, Sabliov CM, Louie SM. Distinguishing nanoparticle drug release mechanisms by asymmetric flow field–flow fractionation. Journal of Controlled Release 2022;352:485-496. [DOI: 10.1016/j.jconrel.2022.10.034] [Reference Citation Analysis]
2 Clases D, Gonzalez de Vega R. Facets of ICP-MS and their potential in the medical sciences—Part 2: nanomedicine, immunochemistry, mass cytometry, and bioassays. Anal Bioanal Chem. [DOI: 10.1007/s00216-022-04260-8] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Mehrabi K, Dengler M, Nilsson I, Baumgartner M, Mora CA, Günther D, Gundlach-Graham A. Detection of magnetic iron nanoparticles by single-particle ICP-TOFMS: case study for a magnetic filtration medical device. Anal Bioanal Chem 2022. [PMID: 35864268 DOI: 10.1007/s00216-022-04234-w] [Reference Citation Analysis]
4 Laycock A, Clark NJ, Clough R, Smith R, Handy RD. Determination of metallic nanoparticles in biological samples by single particle ICP-MS: a systematic review from sample collection to analysis. Environ Sci Nano 2022;9:420-53. [PMID: 35309016 DOI: 10.1039/d1en00680k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Mansor M, Alarcon H, Xu J, Ranville JF, Montaño MD. Simultaneous Insight into Dissolution and Aggregation of Metal Sulfide Nanoparticles through Single-Particle Inductively Coupled Plasma Mass Spectrometry. ACS Earth Space Chem . [DOI: 10.1021/acsearthspacechem.1c00368] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
6 Ventouri IK, Loeber S, Somsen GW, Schoenmakers PJ, Astefanei A. Field-flow fractionation for molecular-interaction studies of labile and complex systems: A critical review. Analytica Chimica Acta 2022;1193:339396. [DOI: 10.1016/j.aca.2021.339396] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
7 Li Y, Wang Z, Liu R. Superparamagnetic α-Fe2O3/Fe3O4 Heterogeneous Nanoparticles with Enhanced Biocompatibility. Nanomaterials (Basel) 2021;11:834. [PMID: 33805140 DOI: 10.3390/nano11040834] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 14.0] [Reference Citation Analysis]
8 Li B, Chua SL, Yu D, Chan SH, Li A. Separation and size characterization of highly polydisperse titanium dioxide nanoparticles (E171) in powdered beverages by using Asymmetric Flow Field-Flow Fractionation hyphenated with Multi-Angle Light Scattering and Inductively Coupled Plasma Mass Spectrometry. J Chromatogr A 2021;1643:462059. [PMID: 33780882 DOI: 10.1016/j.chroma.2021.462059] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
9 Nwoko KC, Liang X, Perez MA, Krupp E, Gadd GM, Feldmann J. Characterisation of selenium and tellurium nanoparticles produced by Aureobasidium pullulans using a multi-method approach. J Chromatogr A 2021;1642:462022. [PMID: 33714080 DOI: 10.1016/j.chroma.2021.462022] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
10 Quattrini F, Berrecoso G, Crecente-Campo J, Alonso MJ. Asymmetric flow field-flow fractionation as a multifunctional technique for the characterization of polymeric nanocarriers. Drug Deliv Transl Res 2021;11:373-95. [PMID: 33521866 DOI: 10.1007/s13346-021-00918-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
11 Labied L, Rocchi P, Doussineau T, Randon J, Tillement O, Lux F, Hagège A. Taylor Dispersion Analysis Coupled to Inductively Coupled Plasma-Mass Spectrometry for Ultrasmall Nanoparticle Size Measurement: From Drug Product to Biological Media Studies. Anal Chem 2021;93:1254-9. [PMID: 33372768 DOI: 10.1021/acs.analchem.0c03988] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
12 Vidmar J. Detection and characterization of metal-based nanoparticles in environmental, biological and food samples by single particle inductively coupled plasma mass spectrometry. Analysis and Characterisation of Metal-Based Nanomaterials 2021. [DOI: 10.1016/bs.coac.2021.02.008] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Nelson J, Saunders A, Poirier L, Rogel E, Ovalles C, Rea T, Lopez-linares F. Detection of iron oxide nanoparticles in petroleum hydrocarbon media by single-particle inductively coupled plasma mass spectrometry (spICP-MS). J Nanopart Res 2020;22. [DOI: 10.1007/s11051-020-05033-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
14 Kruszewska J, Sikorski J, Samsonowicz-Górski J, Matczuk M. A CE-ICP-MS/MS method for the determination of superparamagnetic iron oxide nanoparticles under simulated physiological conditions. Anal Bioanal Chem 2020;412:8145-53. [PMID: 32968852 DOI: 10.1007/s00216-020-02948-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
15 Crist RM, Dasa SSK, Liu CH, Clogston JD, Dobrovolskaia MA, Stern ST. Challenges in the development of nanoparticle-based imaging agents: Characterization and biology. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;13:e1665. [PMID: 32830448 DOI: 10.1002/wnan.1665] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
16 Clough R, Harrington CF, Hill SJ, Madrid Y, Tyson JF. Atomic spectrometry update: review of advances in elemental speciation. J Anal At Spectrom 2020;35:1236-78. [DOI: 10.1039/d0ja90026e] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
17 Sandler SE, Fellows B, Mefford OT. Best Practices for Characterization of Magnetic Nanoparticles for Biomedical Applications. Anal Chem 2019;91:14159-69. [DOI: 10.1021/acs.analchem.9b03518] [Cited by in Crossref: 49] [Cited by in F6Publishing: 51] [Article Influence: 16.3] [Reference Citation Analysis]