1 |
Salem Ghahfarrokhi S, Khodadadi H, Ghadiri H, Fattahi F. Malignant melanoma diagnosis applying a machine learning method based on the combination of nonlinear and texture features. Biomedical Signal Processing and Control 2023;80:104300. [DOI: 10.1016/j.bspc.2022.104300] [Reference Citation Analysis]
|
2 |
Derevianko A, Pizzoli SFM, Pesapane F, Rotili A, Monzani D, Grasso R, Cassano E, Pravettoni G. The Use of Artificial Intelligence (AI) in the Radiology Field: What Is the State of Doctor-Patient Communication in Cancer Diagnosis? Cancers (Basel) 2023;15. [PMID: 36672417 DOI: 10.3390/cancers15020470] [Reference Citation Analysis]
|
3 |
Goldberg JE, Reig B, Lewin AA, Gao Y, Heacock L, Heller SL, Moy L. New Horizons: Artificial Intelligence for Digital Breast Tomosynthesis. RadioGraphics 2023;43. [DOI: 10.1148/rg.220060] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
4 |
Pesapane F, Rotili A, Valconi E, Agazzi GM, Montesano M, Penco S, Nicosia L, Bozzini A, Meneghetti L, Latronico A, Pizzamiglio M, Rossero E, Gaeta A, Raimondi S, Pizzoli SFM, Grasso R, Carrafiello G, Pravettoni G, Cassano E. Women’s perceptions and attitudes to the use of AI in breast cancer screening: a survey in a cancer referral centre. BJR 2022. [DOI: 10.1259/bjr.20220569] [Reference Citation Analysis]
|
5 |
Nichol BA, Hurlbert AC, Read JC. Predicting attitudes towards screening for neurodegenerative diseases using OCT and artificial intelligence: Findings from a literature review. J Public Health Res 2022;11:22799036221127627. [PMID: 36310821 DOI: 10.1177/22799036221127627] [Reference Citation Analysis]
|
6 |
Hendrix N, Lowry KP, Elmore JG, Lotter W, Sorensen G, Hsu W, Liao GJ, Parsian S, Kolb S, Naeim A, Lee CI. Radiologist Preferences for Artificial Intelligence-Based Decision Support During Screening Mammography Interpretation. J Am Coll Radiol 2022;19:1098-110. [PMID: 35970474 DOI: 10.1016/j.jacr.2022.06.019] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
7 |
Bahl M. Artificial Intelligence in Clinical Practice: Implementation Considerations and Barriers. Journal of Breast Imaging 2022. [DOI: 10.1093/jbi/wbac065] [Reference Citation Analysis]
|
8 |
Jenkinson G, Houghton N, van Zalk N, Waller J, Bello F, Tzemanaki A. Acceptability of Automated Robotic Clinical Breast Examination: A Survey (Preprint). Journal of Participatory Medicine 2022. [DOI: 10.2196/42704] [Reference Citation Analysis]
|
9 |
Scharf JL, Dracopoulos C, Gembicki M, Welp A, Weichert J. Aktuelle Aspekte zur künstlichen Intelligenz in der gynäkologischen Diagnostik. Gynäkologie 2022. [DOI: 10.1007/s00129-022-04993-8] [Reference Citation Analysis]
|
10 |
Dang LA, Chazard E, Poncelet E, Serb T, Rusu A, Pauwels X, Parsy C, Poclet T, Cauliez H, Engelaere C, Ramette G, Brienne C, Dujardin S, Laurent N. Impact of artificial intelligence in breast cancer screening with mammography. Breast Cancer 2022. [PMID: 35763243 DOI: 10.1007/s12282-022-01375-9] [Reference Citation Analysis]
|
11 |
Ng AY, Glocker B, Oberije C, Fox G, Nash J, Karpati E, Kerruish S, Kecskemethy PD. A novel workflow for the safe and effective integration of AI as supporting reader in double reading breast cancer screening: A large-scale retrospective evaluation.. [DOI: 10.1101/2022.06.22.22276751] [Reference Citation Analysis]
|
12 |
Formosa P, Rogers W, Bankins S, Griep Y, Richards D. Medical AI and human dignity: Contrasting perceptions of human and artificially intelligent (AI) decision making in diagnostic and medical resource allocation contexts. Computers in Human Behavior 2022. [DOI: 10.1016/j.chb.2022.107296] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
|
13 |
Grimm LJ, Plichta JK, Hwang ES. More Than Incremental: Harnessing Machine Learning to Predict Breast Cancer Risk. J Clin Oncol 2022;:JCO2102733. [PMID: 35245093 DOI: 10.1200/JCO.21.02733] [Reference Citation Analysis]
|
14 |
Birch J, Creel KA, Jha AK, Plutynski A. Clinical decisions using AI must consider patient values. Nat Med 2022;28:229-32. [PMID: 35102337 DOI: 10.1038/s41591-021-01624-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
15 |
Ploug T, Sundby A, Moeslund TB, Holm S. Population Preferences for Performance and Explainability of Artificial Intelligence in Health Care: Choice-Based Conjoint Survey. J Med Internet Res 2021;23:e26611. [PMID: 34898454 DOI: 10.2196/26611] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
16 |
Ram S, Campbell T, Lourenco AP. Online or Offline: Does It Matter? A Review of Existing Interpretation Approaches and Their Effect on Screening Mammography Metrics, Patient Satisfaction, and Cost. Journal of Breast Imaging 2022;4:3-9. [DOI: 10.1093/jbi/wbab086] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
17 |
Tareq Mutar M, Majid Hameed M, Saleh Goyani M, Shakir Mahmood A, Hammed Obaid A. Breast Cancer Screening. Breast Cancer - Evolving Challenges and Next Frontiers 2021. [DOI: 10.5772/intechopen.97570] [Reference Citation Analysis]
|
18 |
Yakar D, Ongena YP, Kwee TC, Haan M. Do People Favor Artificial Intelligence Over Physicians? A Survey Among the General Population and Their View on Artificial Intelligence in Medicine. Value in Health 2021. [DOI: 10.1016/j.jval.2021.09.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
19 |
Weisberg EM, Chu LC, Fishman EK. Using Artificial Intelligence to Interpret CT Scans: Getting Closer to Standard of Care. J Am Coll Radiol 2021;18:1569-71. [PMID: 34147504 DOI: 10.1016/j.jacr.2021.05.008] [Reference Citation Analysis]
|
20 |
Strand F, Patel BK, Allen B. A Call for Controlled Validation Data Sets: Promoting the Safe Introduction of Artificial Intelligence in Breast Imaging. J Am Coll Radiol 2021:S1546-1440(21)00463-4. [PMID: 34147505 DOI: 10.1016/j.jacr.2021.06.001] [Reference Citation Analysis]
|
21 |
Lennox-Chhugani N, Chen Y, Pearson V, Trzcinski B, James J. Women's attitudes to the use of AI image readers: a case study from a national breast screening programme. BMJ Health Care Inform 2021;28:e100293. [PMID: 33795236 DOI: 10.1136/bmjhci-2020-100293] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
22 |
Ploug T, Sundby A, Moeslund TB, Holm S. Population Preferences for Performance and Explainability of Artificial Intelligence in Health Care: Choice-Based Conjoint Survey (Preprint).. [DOI: 10.2196/preprints.26611] [Reference Citation Analysis]
|