BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mattonen SA, Palma DA, Johnson C, Louie AV, Landis M, Rodrigues G, Chan I, Etemad-rezai R, Yeung TP, Senan S, Ward AD. Detection of Local Cancer Recurrence After Stereotactic Ablative Radiation Therapy for Lung Cancer: Physician Performance Versus Radiomic Assessment. International Journal of Radiation Oncology*Biology*Physics 2016;94:1121-8. [DOI: 10.1016/j.ijrobp.2015.12.369] [Cited by in Crossref: 94] [Cited by in F6Publishing: 102] [Article Influence: 15.7] [Reference Citation Analysis]
Number Citing Articles
1 Zanca F, Brusasco C, Pesapane F, Kwade Z, Beckers R, Avanzo M. Regulatory Aspects of the Use of Artificial Intelligence Medical Software. Seminars in Radiation Oncology 2022;32:432-441. [DOI: 10.1016/j.semradonc.2022.06.012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Zhang Q, Wang K, Zhou Z, Qin G, Wang L, Li P, Sher D, Jiang S, Wang J. Predicting local persistence/recurrence after radiation therapy for head and neck cancer from PET/CT using a multi-objective, multi-classifier radiomics model. Front Oncol 2022;12:955712. [DOI: 10.3389/fonc.2022.955712] [Reference Citation Analysis]
3 Mancosu P, Lambri N, Castiglioni I, Dei D, Iori M, Loiacono D, Russo S, Talamonti C, Villaggi E, Scorsetti M, Avanzo M. Applications of artificial intelligence in stereotactic body radiation therapy. Phys Med Biol 2022;67:16TR01. [DOI: 10.1088/1361-6560/ac7e18] [Reference Citation Analysis]
4 Abdollahi H, Chin E, Clark H, Hyde DE, Thomas S, Wu J, Uribe CF, Rahmim A. Radiomics-guided radiation therapy: opportunities and challenges. Phys Med Biol 2022;67:12TR02. [DOI: 10.1088/1361-6560/ac6fab] [Reference Citation Analysis]
5 Kodama T, Arimura H, Shirakawa Y, Ninomiya K, Yoshitake T, Shioyama Y. Relapse predictability of topological signature on pretreatment planning CT images of stage I non-small cell lung cancer patients before treatment with stereotactic ablative radiotherapy. Thorac Cancer 2022. [PMID: 35711108 DOI: 10.1111/1759-7714.14483] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Luo L, Huang B, Chen C, Wang Y, Su C, Peng G, Zeng C, Wu Y, Wang R, Huang K, Qiu Z. A Combined Model to Improve the Prediction of Local Control for Lung Cancer Patients Undergoing Stereotactic Body Radiotherapy Based on Radiomic Signature Plus Clinical and Dosimetric Parameters. Front Oncol 2022;11:819047. [DOI: 10.3389/fonc.2021.819047] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
7 祝 筱. Development and Clinical Application of Radiomics in Pulmonary Nodules and Lung Cancer. ACM 2022;12:183-188. [DOI: 10.12677/acm.2022.121029] [Reference Citation Analysis]
8 Veeraraghavan H, Deasy JO. Artificial Intelligence in Radiation Oncology: A Rapidly Evolving Picture. Image-Guided High-Precision Radiotherapy 2022. [DOI: 10.1007/978-3-031-08601-4_11] [Reference Citation Analysis]
9 Lee K, Le T, Hau E, Hanna GG, Gee H, Vinod S, Dammak S, Palma D, Ong A, Yeghiaian-Alvandi R, Buck J, Lim R. A systematic review into the radiological features predicting local recurrence after stereotactic ablative body radiotherapy (SABR) in patients with non-small cell lung cancer (NSCLC): Local recurrence features of NSCLC post-SABR. Int J Radiat Oncol Biol Phys 2021:S0360-3016(21)03235-1. [PMID: 34879247 DOI: 10.1016/j.ijrobp.2021.11.027] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Jaberipour M, Soliman H, Sahgal A, Sadeghi-Naini A. A priori prediction of local failure in brain metastasis after hypo-fractionated stereotactic radiotherapy using quantitative MRI and machine learning. Sci Rep 2021;11:21620. [PMID: 34732781 DOI: 10.1038/s41598-021-01024-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Hsu W, Sohn JH. Using Radiomics for Risk Stratification: Where We Need to Go. Radiology 2021;:212085. [PMID: 34726541 DOI: 10.1148/radiol.2021212085] [Reference Citation Analysis]
12 Reginelli A, Nardone V, Giacobbe G, Belfiore MP, Grassi R, Schettino F, Del Canto M, Grassi R, Cappabianca S. Radiomics as a New Frontier of Imaging for Cancer Prognosis: A Narrative Review. Diagnostics (Basel) 2021;11:1796. [PMID: 34679494 DOI: 10.3390/diagnostics11101796] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
13 Litvin AA, Burkin DA, Kropinov AA, Paramzin FN. Radiomics and Digital Image Texture Analysis in Oncology (Review). Sovrem Tekhnologii Med 2021;13:97-104. [PMID: 34513082 DOI: 10.17691/stm2021.13.2.11] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
14 Tunali I, Tan Y, Gray JE, Katsoulakis E, Eschrich SA, Saller J, Aerts HJWL, Boyle T, Qi J, Guvenis A, Gillies RJ, Schabath MB. Hypoxia-Related Radiomics and Immunotherapy Response: A Multicohort Study of Non-Small Cell Lung Cancer. JNCI Cancer Spectr 2021;5:pkab048. [PMID: 34409252 DOI: 10.1093/jncics/pkab048] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
15 Tunali I, Gillies RJ, Schabath MB. Application of Radiomics and Artificial Intelligence for Lung Cancer Precision Medicine. Cold Spring Harb Perspect Med 2021;11:a039537. [PMID: 33431509 DOI: 10.1101/cshperspect.a039537] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 19.0] [Reference Citation Analysis]
16 Guerreiro NFC, Araujo-Filho JAB, Horvat N, Lee HJ, Oliveira BSP, Ynoe de Moraes F, Castro I, Miranda Degrande FA, Abreu CEV, Giassi KS. Interobserver Variability in the Computed Tomography Assessment of Pulmonary Injury and Tumor Recurrence After Stereotactic Body Radiotherapy. J Thorac Imaging 2020;35:302-8. [PMID: 32168165 DOI: 10.1097/RTI.0000000000000495] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Frix AN, Cousin F, Refaee T, Bottari F, Vaidyanathan A, Desir C, Vos W, Walsh S, Occhipinti M, Lovinfosse P, Leijenaar RTH, Hustinx R, Meunier P, Louis R, Lambin P, Guiot J. Radiomics in Lung Diseases Imaging: State-of-the-Art for Clinicians. J Pers Med 2021;11:602. [PMID: 34202096 DOI: 10.3390/jpm11070602] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
18 Lu L, Sun SH, Yang H, E L, Guo P, Schwartz LH, Zhao B. Radiomics Prediction of EGFR Status in Lung Cancer-Our Experience in Using Multiple Feature Extractors and The Cancer Imaging Archive Data. Tomography 2020;6:223-30. [PMID: 32548300 DOI: 10.18383/j.tom.2020.00017] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 17.0] [Reference Citation Analysis]
19 Michalet M, Azria D, Tardieu M, Tibermacine H, Nougaret S. Radiomics in radiation oncology for gynecological malignancies: a review of literature. Br J Radiol 2021;94:20210032. [PMID: 33882246 DOI: 10.1259/bjr.20210032] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 El Ayachy R, Giraud N, Giraud P, Durdux C, Giraud P, Burgun A, Bibault JE. The Role of Radiomics in Lung Cancer: From Screening to Treatment and Follow-Up. Front Oncol 2021;11:603595. [PMID: 34026602 DOI: 10.3389/fonc.2021.603595] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
21 Cucchiara F, Petrini I, Romei C, Crucitta S, Lucchesi M, Valleggi S, Scavone C, Capuano A, De Liperi A, Chella A, Danesi R, Del Re M. Combining liquid biopsy and radiomics for personalized treatment of lung cancer patients. State of the art and new perspectives. Pharmacol Res 2021;169:105643. [PMID: 33940185 DOI: 10.1016/j.phrs.2021.105643] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
22 Zhang Y, Fan Q, Guo Y, Zhu K. Eight-gene signature predicts recurrence in lung adenocarcinoma. Cancer Biomark 2020;28:447-57. [PMID: 32508318 DOI: 10.3233/CBM-190329] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
23 Vlaskou Badra E, Baumgartl M, Fabiano S, Jongen A, Guckenberger M. Stereotactic radiotherapy for early stage non-small cell lung cancer: current standards and ongoing research. Transl Lung Cancer Res 2021;10:1930-49. [PMID: 34012804 DOI: 10.21037/tlcr-20-860] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
24 Gao L, Li Y, Zhai Z, Liang T, Zhang Q, Xie S, Chen H. Radiomics study on pulmonary infarction mimicking community-acquired pneumonia. Clin Respir J 2021;15:661-9. [PMID: 33686798 DOI: 10.1111/crj.13341] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Cui S, Tseng HH, Pakela J, Ten Haken RK, El Naqa I. Introduction to machine and deep learning for medical physicists. Med Phys 2020;47:e127-47. [PMID: 32418339 DOI: 10.1002/mp.14140] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 35.0] [Reference Citation Analysis]
26 Avanzo M, Wei L, Stancanello J, Vallières M, Rao A, Morin O, Mattonen SA, El Naqa I. Machine and deep learning methods for radiomics. Med Phys 2020;47:e185-202. [PMID: 32418336 DOI: 10.1002/mp.13678] [Cited by in Crossref: 76] [Cited by in F6Publishing: 93] [Article Influence: 76.0] [Reference Citation Analysis]
27 Fusco R, Granata V, Mazzei MA, Meglio ND, Roscio DD, Moroni C, Monti R, Cappabianca C, Picone C, Neri E, Coppola F, Montanino A, Grassi R, Petrillo A, Miele V. Quantitative imaging decision support (QIDSTM) tool consistency evaluation and radiomic analysis by means of 594 metrics in lung carcinoma on chest CT scan. Cancer Control 2021;28:1073274820985786. [PMID: 33567876 DOI: 10.1177/1073274820985786] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 21.0] [Reference Citation Analysis]
28 Jiao Z, Li H, Xiao Y, Aggarwal C, Galperin-Aizenberg M, Pryma D, Simone CB 2nd, Feigenberg SJ, Kao GD, Fan Y. Integration of Risk Survival Measures Estimated From Pre- and Posttreatment Computed Tomography Scans Improves Stratification of Patients With Early-Stage Non-small Cell Lung Cancer Treated With Stereotactic Body Radiation Therapy. Int J Radiat Oncol Biol Phys 2021;109:1647-56. [PMID: 33333202 DOI: 10.1016/j.ijrobp.2020.12.014] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
29 Vaugier L, Mirabel X, Martel-Lafay I, Racadot S, Carrie C, Vendrely V, Mahé MA, Senellart H, Raoul JL, Campion L, Rio E. Radiosensitizing Chemotherapy (Irinotecan) with Stereotactic Body Radiation Therapy for the Treatment of Inoperable Liver and/or Lung Metastases of Colorectal Cancer. Cancers (Basel) 2021;13:E248. [PMID: 33440832 DOI: 10.3390/cancers13020248] [Reference Citation Analysis]
30 Tian J, Dong D, Liu Z, Wei J. Treatment evaluation and prognosis prediction using radiomics in clinical practice. Radiomics and Its Clinical Application 2021. [DOI: 10.1016/b978-0-12-818101-0.00002-1] [Reference Citation Analysis]
31 Dağdelen M, Akovalı ES, Barlas C, Can G, Dinçbaş FÖ. Interobserver agreement between interpretations of acute changes after lung stereotactic body radiotherapy. Strahlenther Onkol 2021;197:423-8. [PMID: 33231713 DOI: 10.1007/s00066-020-01711-y] [Reference Citation Analysis]
32 Vaugier L, Ferrer L, Mengue L, Jouglar E. Radiomics for radiation oncologists: are we ready to go? BJR|Open 2020;2:20190046. [DOI: 10.1259/bjro.20190046] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
33 Shen JX, Zhou Q, Chen ZH, Chen QF, Chen SL, Feng ST, Li X, Wu TF, Peng S, Kuang M. Longitudinal radiomics algorithm of posttreatment computed tomography images for early detecting recurrence of hepatocellular carcinoma after resection or ablation. Transl Oncol 2021;14:100866. [PMID: 33074127 DOI: 10.1016/j.tranon.2020.100866] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
34 Martini K, Baessler B, Bogowicz M, Blüthgen C, Mannil M, Tanadini-Lang S, Schniering J, Maurer B, Frauenfelder T. Applicability of radiomics in interstitial lung disease associated with systemic sclerosis: proof of concept. Eur Radiol 2021;31:1987-98. [PMID: 33025174 DOI: 10.1007/s00330-020-07293-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
35 Schick U, Lucia F, Bourbonne V, Dissaux G, Pradier O, Jaouen V, Tixier F, Visvikis D, Hatt M. Use of radiomics in the radiation oncology setting: Where do we stand and what do we need? Cancer/Radiothérapie 2020;24:755-61. [DOI: 10.1016/j.canrad.2020.07.005] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
36 Oriuchi N, Sugawara S, Shiga T. Positron Emission Tomography for Response Evaluation in Microenvironment-Targeted Anti-Cancer Therapy. Biomedicines 2020;8:E371. [PMID: 32972006 DOI: 10.3390/biomedicines8090371] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
37 Qiu Q, Duan J, Deng H, Han Z, Gu J, Yue NJ, Yin Y. Development and Validation of a Radiomics Nomogram Model for Predicting Postoperative Recurrence in Patients With Esophageal Squamous Cell Cancer Who Achieved pCR After Neoadjuvant Chemoradiotherapy Followed by Surgery.Front Oncol. 2020;10:1398. [PMID: 32850451 DOI: 10.3389/fonc.2020.01398] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
38 Christie JR, Lang P, Zelko LM, Palma DA, Abdelrazek M, Mattonen SA. Artificial Intelligence in Lung Cancer: Bridging the Gap Between Computational Power and Clinical Decision-Making. Can Assoc Radiol J. 2021;72:86-97. [PMID: 32735493 DOI: 10.1177/0846537120941434] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
39 Yang WC, Hsu FM, Yang PC. Precision radiotherapy for non-small cell lung cancer. J Biomed Sci 2020;27:82. [PMID: 32693792 DOI: 10.1186/s12929-020-00676-5] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
40 Plodkowski AJ, Araujo-Filho JAB, Simmers CDA, Girshman J, Raj M, Zheng J, Rimner A, Ginsberg MS. Pre-treatment CT imaging in stage IIIA lung cancer: Can we predict local recurrence after definitive chemoradiotherapy? Clin Imaging 2021;69:133-8. [PMID: 32721848 DOI: 10.1016/j.clinimag.2020.07.005] [Reference Citation Analysis]
41 Cheng Z, Nakatsugawa M, Zhou XC, Hu C, Greco S, Kiess A, Page B, Alcorn S, Haller J, Utsunomiya K, Sugiyama S, Fu W, Wong J, Lee J, McNutt T, Quon H. Utility of a Clinical Decision Support System in Weight Loss Prediction After Head and Neck Cancer Radiotherapy. JCO Clin Cancer Inform 2019;3:1-11. [PMID: 30860866 DOI: 10.1200/CCI.18.00058] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
42 Fornacon-Wood I, Faivre-Finn C, O'Connor JPB, Price GJ. Radiomics as a personalized medicine tool in lung cancer: Separating the hope from the hype. Lung Cancer 2020;146:197-208. [PMID: 32563015 DOI: 10.1016/j.lungcan.2020.05.028] [Cited by in Crossref: 43] [Cited by in F6Publishing: 50] [Article Influence: 21.5] [Reference Citation Analysis]
43 Frerker B, Hildebrandt G. Distinguishing Radiation Pneumonitis from Local Tumour Recurrence Following SBRT for Lung Cancer

]]>. RMI 2020;Volume 13:1-23. [DOI: 10.2147/rmi.s176901] [Reference Citation Analysis]
44 Khawaja A, Bartholmai BJ, Rajagopalan S, Karwoski RA, Varghese C, Maldonado F, Peikert T. Do we need to see to believe?-radiomics for lung nodule classification and lung cancer risk stratification. J Thorac Dis 2020;12:3303-16. [PMID: 32642254 DOI: 10.21037/jtd.2020.03.105] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
45 Avanzo M, Stancanello J, Pirrone G, Sartor G. Radiomics and deep learning in lung cancer. Strahlenther Onkol 2020;196:879-87. [PMID: 32367456 DOI: 10.1007/s00066-020-01625-9] [Cited by in Crossref: 45] [Cited by in F6Publishing: 39] [Article Influence: 22.5] [Reference Citation Analysis]
46 Tunali I, Tan Y, Gray JE, Katsoulakis E, Eschrich SA, Saller J, Boyle T, Qi J, Guvenis A, Gillies RJ, Schabath MB. Hypoxia-related radiomics predict immunotherapy response: A multi-cohort study of NSCLC.. [DOI: 10.1101/2020.04.02.020859] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
47 Yossi S, Nguyen D, Krhili S, Lizée T, Khodri M. [Prognosis factors after lung stereotactic body radiotherapy for non-small cell lung carcinoma]. Cancer Radiother 2020;24:267-74. [PMID: 32192839 DOI: 10.1016/j.canrad.2019.11.002] [Reference Citation Analysis]
48 Kadoya N, Tanaka S, Kajikawa T, Tanabe S, Abe K, Nakajima Y, Yamamoto T, Takahashi N, Takeda K, Dobashi S, Takeda K, Nakane K, Jingu K. Homology-based radiomic features for prediction of the prognosis of lung cancer based on CT-based radiomics. Med Phys 2020;47:2197-205. [PMID: 32096876 DOI: 10.1002/mp.14104] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
49 Qiu Q, Duan J, Yin Y. Radiomics in radiotherapy: Applications and future challenges. Prec Radiat Oncol 2020;4:29-33. [DOI: 10.1002/pro6.1087] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
50 Rogers W, Thulasi Seetha S, Refaee TAG, Lieverse RIY, Granzier RWY, Ibrahim A, Keek SA, Sanduleanu S, Primakov SP, Beuque MPL, Marcus D, van der Wiel AMA, Zerka F, Oberije CJG, van Timmeren JE, Woodruff HC, Lambin P. Radiomics: from qualitative to quantitative imaging. Br J Radiol. 2020;93:20190948. [PMID: 32101448 DOI: 10.1259/bjr.20190948] [Cited by in Crossref: 78] [Cited by in F6Publishing: 80] [Article Influence: 39.0] [Reference Citation Analysis]
51 Shi L, Rong Y, Daly M, Dyer B, Benedict S, Qiu J, Yamamoto T. Cone-beam computed tomography-based delta-radiomics for early response assessment in radiotherapy for locally advanced lung cancer. Phys Med Biol 2020;65:015009. [DOI: 10.1088/1361-6560/ab3247] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 11.0] [Reference Citation Analysis]
52 Mat Radzi SF, Abdul Karim MK, Saripan MI, Abd Rahman MA, Osman NH, Dalah EZ, Mohd Noor N. Impact of Image Contrast Enhancement on Stability of Radiomics Feature Quantification on a 2D Mammogram Radiograph. IEEE Access 2020;8:127720-31. [DOI: 10.1109/access.2020.3008927] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
53 Larici AR, Farchione A, Cicchetti G, del Ciello A, Mantini G, Calapaquí Terán AK, Delgado Bolton RC. Response Assessment and Follow-Up by Imaging in Lung Tumours. Imaging and Interventional Radiology for Radiation Oncology 2020. [DOI: 10.1007/978-3-030-38261-2_23] [Reference Citation Analysis]
54 Karami E, Soliman H, Ruschin M, Sahgal A, Myrehaug S, Tseng CL, Czarnota GJ, Jabehdar-Maralani P, Chugh B, Lau A, Stanisz GJ, Sadeghi-Naini A. Quantitative MRI Biomarkers of Stereotactic Radiotherapy Outcome in Brain Metastasis. Sci Rep 2019;9:19830. [PMID: 31882597 DOI: 10.1038/s41598-019-56185-5] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 9.7] [Reference Citation Analysis]
55 Chang Y, Lafata K, Sun W, Wang C, Chang Z, Kirkpatrick JP, Yin FF. An investigation of machine learning methods in delta-radiomics feature analysis. PLoS One 2019;14:e0226348. [PMID: 31834910 DOI: 10.1371/journal.pone.0226348] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 7.3] [Reference Citation Analysis]
56 Munoz-schuffenegger P, Kandel S, Alibhai Z, Hope A, Bezjak A, Sun A, Simeonov A, Cho B, Giuliani M. A Prospective Study of Magnetic Resonance Imaging Assessment of Post-radiation Changes Following Stereotactic Body Radiation Therapy for Non-small Cell Lung Cancer. Clinical Oncology 2019;31:720-7. [DOI: 10.1016/j.clon.2019.05.014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
57 Khorrami M, Jain P, Bera K, Alilou M, Thawani R, Patil P, Ahmad U, Murthy S, Stephans K, Fu P, Velcheti V, Madabhushi A. Predicting pathologic response to neoadjuvant chemoradiation in resectable stage III non-small cell lung cancer patients using computed tomography radiomic features. Lung Cancer 2019;135:1-9. [PMID: 31446979 DOI: 10.1016/j.lungcan.2019.06.020] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 9.0] [Reference Citation Analysis]
58 Sollini M, Antunovic L, Chiti A, Kirienko M. Towards clinical application of image mining: a systematic review on artificial intelligence and radiomics. Eur J Nucl Med Mol Imaging 2019;46:2656-72. [PMID: 31214791 DOI: 10.1007/s00259-019-04372-x] [Cited by in Crossref: 108] [Cited by in F6Publishing: 84] [Article Influence: 36.0] [Reference Citation Analysis]
59 Peeken JC, Bernhofer M, Spraker MB, Pfeiffer D, Devecka M, Thamer A, Shouman MA, Ott A, Nüsslin F, Mayr NA, Rost B, Nyflot MJ, Combs SE. CT-based radiomic features predict tumor grading and have prognostic value in patients with soft tissue sarcomas treated with neoadjuvant radiation therapy. Radiotherapy and Oncology 2019;135:187-96. [DOI: 10.1016/j.radonc.2019.01.004] [Cited by in Crossref: 38] [Cited by in F6Publishing: 34] [Article Influence: 12.7] [Reference Citation Analysis]
60 Huang L, Chen J, Hu W, Xu X, Liu D, Wen J, Lu J, Cao J, Zhang J, Gu Y, Wang J, Fan M. Assessment of a Radiomic Signature Developed in a General NSCLC Cohort for Predicting Overall Survival of ALK-Positive Patients With Different Treatment Types. Clin Lung Cancer 2019;20:e638-51. [PMID: 31375452 DOI: 10.1016/j.cllc.2019.05.005] [Cited by in Crossref: 8] [Cited by in F6Publishing: 14] [Article Influence: 2.7] [Reference Citation Analysis]
61 Du Q, Baine M, Bavitz K, McAllister J, Liang X, Yu H, Ryckman J, Yu L, Jiang H, Zhou S, Zhang C, Zheng D. Radiomic feature stability across 4D respiratory phases and its impact on lung tumor prognosis prediction. PLoS One 2019;14:e0216480. [PMID: 31063500 DOI: 10.1371/journal.pone.0216480] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 8.3] [Reference Citation Analysis]
62 Mutsaers A, Chen H, Louie AV. Stereotactic ablative radiation therapy in lung cancer: an emerging standard. Curr Opin Pulm Med 2018;24:335-42. [PMID: 29521657 DOI: 10.1097/MCP.0000000000000482] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
63 Gardin I, Grégoire V, Gibon D, Kirisli H, Pasquier D, Thariat J, Vera P. Radiomics: Principles and radiotherapy applications. Crit Rev Oncol Hematol 2019;138:44-50. [PMID: 31092384 DOI: 10.1016/j.critrevonc.2019.03.015] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
64 Bousabarah K, Temming S, Hoevels M, Borggrefe J, Baus WW, Ruess D, Visser-Vandewalle V, Ruge M, Kocher M, Treuer H. Radiomic analysis of planning computed tomograms for predicting radiation-induced lung injury and outcome in lung cancer patients treated with robotic stereotactic body radiation therapy. Strahlenther Onkol 2019;195:830-42. [PMID: 30874846 DOI: 10.1007/s00066-019-01452-7] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
65 Hassani C, Varghese BA, Nieva J, Duddalwar V. Radiomics in Pulmonary Lesion Imaging. American Journal of Roentgenology 2019;212:497-504. [DOI: 10.2214/ajr.18.20623] [Cited by in Crossref: 37] [Cited by in F6Publishing: 41] [Article Influence: 12.3] [Reference Citation Analysis]
66 Shi L, He Y, Yuan Z, Benedict S, Valicenti R, Qiu J, Rong Y. Radiomics for Response and Outcome Assessment for Non-Small Cell Lung Cancer. Technol Cancer Res Treat 2018;17:1533033818782788. [PMID: 29940810 DOI: 10.1177/1533033818782788] [Cited by in Crossref: 43] [Cited by in F6Publishing: 50] [Article Influence: 10.8] [Reference Citation Analysis]
67 Bera K, Velcheti V, Madabhushi A. Novel Quantitative Imaging for Predicting Response to Therapy: Techniques and Clinical Applications. Am Soc Clin Oncol Educ Book 2018;38:1008-18. [PMID: 30231314 DOI: 10.1200/EDBK_199747] [Cited by in Crossref: 36] [Cited by in F6Publishing: 40] [Article Influence: 9.0] [Reference Citation Analysis]
68 Yin P, Mao N, Zhao C, Wu J, Chen L, Hong N. A Triple-Classification Radiomics Model for the Differentiation of Primary Chordoma, Giant Cell Tumor, and Metastatic Tumor of Sacrum Based on T2-Weighted and Contrast-Enhanced T1-Weighted MRI: A Triple-Classification Radiomics Model for the Differentiation of Primary Chordoma, Giant Cell Tumor, and Metastatic Tumor of Sacrum. J Magn Reson Imaging 2019;49:752-9. [DOI: 10.1002/jmri.26238] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 7.5] [Reference Citation Analysis]
69 Lee J, Li B, Cui Y, Sun X, Wu J, Zhu H, Yu J, Gensheimer MF, Loo BW, Diehn M, Li R. A Quantitative CT Imaging Signature Predicts Survival and Complements Established Prognosticators in Stage I Non-Small Cell Lung Cancer. International Journal of Radiation Oncology*Biology*Physics 2018;102:1098-106. [DOI: 10.1016/j.ijrobp.2018.01.006] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
70 Chandarana H, Wang H, Tijssen RHN, Das IJ. Emerging role of MRI in radiation therapy. J Magn Reson Imaging 2018;48:1468-78. [PMID: 30194794 DOI: 10.1002/jmri.26271] [Cited by in Crossref: 51] [Cited by in F6Publishing: 52] [Article Influence: 12.8] [Reference Citation Analysis]
71 Febbo JA, Gaddikeri RS, Shah PN. Stereotactic Body Radiation Therapy for Early-Stage Non–Small Cell Lung Cancer: A Primer for Radiologists. RadioGraphics 2018;38:1312-36. [DOI: 10.1148/rg.2018170155] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
72 Morin O, Vallières M, Jochems A, Woodruff HC, Valdes G, Braunstein SE, Wildberger JE, Villanueva-Meyer JE, Kearney V, Yom SS, Solberg TD, Lambin P. A Deep Look Into the Future of Quantitative Imaging in Oncology: A Statement of Working Principles and Proposal for Change. Int J Radiat Oncol Biol Phys 2018;102:1074-82. [PMID: 30170101 DOI: 10.1016/j.ijrobp.2018.08.032] [Cited by in Crossref: 58] [Cited by in F6Publishing: 47] [Article Influence: 14.5] [Reference Citation Analysis]
73 Acharya UR, Hagiwara Y, Sudarshan VK, Chan WY, Ng KH. Towards precision medicine: from quantitative imaging to radiomics. J Zhejiang Univ Sci B 2018;19:6-24. [PMID: 29308604 DOI: 10.1631/jzus.B1700260] [Cited by in Crossref: 44] [Cited by in F6Publishing: 47] [Article Influence: 11.0] [Reference Citation Analysis]
74 Chen H, Tikkanen J, Boldt RG, Louie AV. Stereotactic ablative radiotherapy for early-stage lung cancer following double lung transplantation. Radiat Oncol 2018;13:142. [PMID: 30086765 DOI: 10.1186/s13014-018-1089-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
75 Dickhoff C, Rodriguez Schaap PM, Otten RHJ, Heymans MW, Heineman DJ, Dahele M. Salvage surgery for local recurrence after stereotactic body radiotherapy for early stage non-small cell lung cancer: a systematic review. Ther Adv Med Oncol 2018;10:1758835918787989. [PMID: 30023008 DOI: 10.1177/1758835918787989] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
76 Keek SA, Leijenaar RT, Jochems A, Woodruff HC. A review on radiomics and the future of theranostics for patient selection in precision medicine. Br J Radiol 2018;91:20170926. [PMID: 29947266 DOI: 10.1259/bjr.20170926] [Cited by in Crossref: 43] [Cited by in F6Publishing: 46] [Article Influence: 10.8] [Reference Citation Analysis]
77 Peeken JC, Bernhofer M, Wiestler B, Goldberg T, Cremers D, Rost B, Wilkens JJ, Combs SE, Nüsslin F. Radiomics in radiooncology - Challenging the medical physicist. Phys Med 2018;48:27-36. [PMID: 29728226 DOI: 10.1016/j.ejmp.2018.03.012] [Cited by in Crossref: 46] [Cited by in F6Publishing: 56] [Article Influence: 11.5] [Reference Citation Analysis]
78 Johnson C, Landis M, Inculet R, Malthaner R, Fortin D, Rodrigues GB, Yaremko BP, Palma DA, Mattonen SA, Ward AD, Louie AV, Pentinga S, Kwan K. 3D human lung histology reconstruction and registration to in vivo imaging. Medical Imaging 2018: Digital Pathology 2018. [DOI: 10.1117/12.2292210] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
79 Palma D, Mattonen S, Senan S, Ward AD, Dammak S. Early detection of lung cancer recurrence after stereotactic ablative radiation therapy: radiomics system design. Medical Imaging 2018: Computer-Aided Diagnosis 2018. [DOI: 10.1117/12.2292444] [Reference Citation Analysis]
80 Ronden M, van Sörnsen de Koste J, Johnson C, Slotman B, Spoelstra F, Haasbeek C, Blom G, Bongers E, Warner A, Ward A, Palma D, Senan S. Incidence of High-Risk Radiologic Features in Patients Without Local Recurrence After Stereotactic Ablative Radiation Therapy for Early-Stage Non-Small Cell Lung Cancer. International Journal of Radiation Oncology*Biology*Physics 2018;100:115-21. [DOI: 10.1016/j.ijrobp.2017.09.035] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
81 Abdollahi H, Mostafaei S, Cheraghi S, Shiri I, Rabi Mahdavi S, Kazemnejad A. Cochlea CT radiomics predicts chemoradiotherapy induced sensorineural hearing loss in head and neck cancer patients: A machine learning and multi-variable modelling study. Physica Medica 2018;45:192-7. [DOI: 10.1016/j.ejmp.2017.10.008] [Cited by in Crossref: 53] [Cited by in F6Publishing: 43] [Article Influence: 13.3] [Reference Citation Analysis]
82 El Naqa I, Brock K, Yu Y, Langen K, Klein EE. On the Fuzziness of Machine Learning, Neural Networks, and Artificial Intelligence in Radiation Oncology. International Journal of Radiation Oncology*Biology*Physics 2018;100:1-4. [DOI: 10.1016/j.ijrobp.2017.06.011] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
83 Kalra M, Wang G, Orton CG. Radiomics in lung cancer: Its time is here. Med Phys 2018;45:997-1000. [DOI: 10.1002/mp.12685] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
84 Yu W, Tang C, Hobbs BP, Li X, Koay EJ, Wistuba II, Sepesi B, Behrens C, Rodriguez Canales J, Parra Cuentas ER, Erasmus JJ, Court LE, Chang JY. Development and Validation of a Predictive Radiomics Model for Clinical Outcomes in Stage I Non-small Cell Lung Cancer. Int J Radiat Oncol Biol Phys. 2018;102:1090-1097. [PMID: 29246722 DOI: 10.1016/j.ijrobp.2017.10.046] [Cited by in Crossref: 37] [Cited by in F6Publishing: 36] [Article Influence: 7.4] [Reference Citation Analysis]
85 Weiss E, Newman B, Shah R. Differentiating Radiation Changes from Local Recurrence after SBRT for Lung Cancer: The Need for Better Decision Guidelines. IJRRT 2017;4. [DOI: 10.15406/ijrrt.2017.04.00106] [Reference Citation Analysis]
86 Phillips I, Ajaz M, Ezhil V, Prakash V, Alobaidli S, McQuaid SJ, South C, Scuffham J, Nisbet A, Evans P. Clinical applications of textural analysis in non-small cell lung cancer. Br J Radiol 2018;91:20170267. [PMID: 28869399 DOI: 10.1259/bjr.20170267] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
87 Chen B, Zhang R, Gan Y, Yang L, Li W. Development and clinical application of radiomics in lung cancer. Radiat Oncol 2017;12:154. [PMID: 28915902 DOI: 10.1186/s13014-017-0885-x] [Cited by in Crossref: 53] [Cited by in F6Publishing: 56] [Article Influence: 10.6] [Reference Citation Analysis]
88 Grossmann P, Stringfield O, El-Hachem N, Bui MM, Rios Velazquez E, Parmar C, Leijenaar RT, Haibe-Kains B, Lambin P, Gillies RJ, Aerts HJ. Defining the biological basis of radiomic phenotypes in lung cancer. Elife. 2017;6. [PMID: 28731408 DOI: 10.7554/elife.23421] [Cited by in Crossref: 165] [Cited by in F6Publishing: 188] [Article Influence: 33.0] [Reference Citation Analysis]
89 Peeken JC, Nüsslin F, Combs SE. "Radio-oncomics" : The potential of radiomics in radiation oncology. Strahlenther Onkol 2017;193:767-79. [PMID: 28687979 DOI: 10.1007/s00066-017-1175-0] [Cited by in Crossref: 44] [Cited by in F6Publishing: 48] [Article Influence: 8.8] [Reference Citation Analysis]
90 Avanzo M, Stancanello J, El Naqa I. Beyond imaging: The promise of radiomics. Phys Med. 2017;38:122-139. [PMID: 28595812 DOI: 10.1016/j.ejmp.2017.05.071] [Cited by in Crossref: 244] [Cited by in F6Publishing: 261] [Article Influence: 48.8] [Reference Citation Analysis]
91 Verma V, Simone CB 2nd, Krishnan S, Lin SH, Yang J, Hahn SM. The Rise of Radiomics and Implications for Oncologic Management. J Natl Cancer Inst. 2017;109:djx055. [PMID: 28423406 DOI: 10.1093/jnci/djx055] [Cited by in Crossref: 70] [Cited by in F6Publishing: 83] [Article Influence: 14.0] [Reference Citation Analysis]
92 Arcangeli S, Falcinelli L, Bracci S, Greco A, Monaco A, Dognini J, Chiostrini C, Bellavita R, Aristei C, Donato V. Treatment outcomes and patterns of radiologic appearance after hypofractionated image-guided radiotherapy delivered with helical tomotherapy (HHT) for lung tumours. Br J Radiol. 2017;90:20160853. [PMID: 28256158 DOI: 10.1259/bjr.20160853] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
93 Lee G, Lee HY, Ko ES, Jeong WK. Radiomics and imaging genomics in precision medicine. Precis Future Med 2017;1:10-31. [DOI: 10.23838/pfm.2017.00101] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 4.2] [Reference Citation Analysis]
94 Wilson R, Devaraj A. Radiomics of pulmonary nodules and lung cancer. Transl Lung Cancer Res 2017;6:86-91. [PMID: 28331828 DOI: 10.21037/tlcr.2017.01.04] [Cited by in Crossref: 95] [Cited by in F6Publishing: 112] [Article Influence: 19.0] [Reference Citation Analysis]
95 Guihard S, Thariat J, Clavier JB. [Big data and their perspectives in radiation therapy]. Bull Cancer 2017;104:147-56. [PMID: 27914589 DOI: 10.1016/j.bulcan.2016.10.018] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
96 Scalco E, Rizzo G. Texture analysis of medical images for radiotherapy applications. Br J Radiol 2017;90:20160642. [PMID: 27885836 DOI: 10.1259/bjr.20160642] [Cited by in Crossref: 77] [Cited by in F6Publishing: 83] [Article Influence: 12.8] [Reference Citation Analysis]
97 Verstegen NE, Maat AP, Lagerwaard FJ, Paul MA, Versteegh MI, Joosten JJ, Lastdrager W, Smit EF, Slotman BJ, Nuyttens JJ, Senan S. Salvage surgery for local failures after stereotactic ablative radiotherapy for early stage non-small cell lung cancer. Radiat Oncol 2016;11:131. [PMID: 27716240 DOI: 10.1186/s13014-016-0706-7] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
98 Baker S, Dahele M, Lagerwaard FJ, Senan S. A critical review of recent developments in radiotherapy for non-small cell lung cancer. Radiat Oncol 2016;11:115. [PMID: 27600665 DOI: 10.1186/s13014-016-0693-8] [Cited by in Crossref: 89] [Cited by in F6Publishing: 95] [Article Influence: 14.8] [Reference Citation Analysis]
99 Peulen H, Mantel F, Guckenberger M, Belderbos J, Werner-wasik M, Hope A, Giuliani M, Grills I, Sonke J. Validation of High-Risk Computed Tomography Features for Detection of Local Recurrence After Stereotactic Body Radiation Therapy for Early-Stage Non-Small Cell Lung Cancer. International Journal of Radiation Oncology*Biology*Physics 2016;96:134-41. [DOI: 10.1016/j.ijrobp.2016.04.003] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 4.3] [Reference Citation Analysis]
100 Sun R, Orlhac F, Robert C, Reuzé S, Schernberg A, Buvat I, Deutsch E, Ferté C. In Regard to Mattonen et al. International Journal of Radiation Oncology*Biology*Physics 2016;95:1544-5. [DOI: 10.1016/j.ijrobp.2016.03.038] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
101 Mattonen SA, Ward AD, Palma DA. Pulmonary imaging after stereotactic radiotherapy-does RECIST still apply? Br J Radiol 2016;89:20160113. [PMID: 27245137 DOI: 10.1259/bjr.20160113] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 3.0] [Reference Citation Analysis]