BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Poudel K, Gautam M, Jin SG, Choi HG, Yong CS, Kim JO. Copper sulfide: An emerging adaptable nanoplatform in cancer theranostics. Int J Pharm 2019;562:135-50. [PMID: 30904728 DOI: 10.1016/j.ijpharm.2019.03.043] [Cited by in Crossref: 26] [Cited by in F6Publishing: 32] [Article Influence: 8.7] [Reference Citation Analysis]
Number Citing Articles
1 Qin J, Yang T, Li J, Zhan G, Li X, Wei Z, Chen Z, Zheng W, Chen H, Yang X, Gan L. Bacterial outer membrane vesicle-templated biomimetic nanoparticles for synergistic photothermo-immunotherapy. Nano Today 2022;46:101591. [DOI: 10.1016/j.nantod.2022.101591] [Reference Citation Analysis]
2 Zhong X, Dai X, Wang Y, Wang H, Qian H, Wang X. Copper-based nanomaterials for cancer theranostics. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2022;14:e1797. [PMID: 35419993 DOI: 10.1002/wnan.1797] [Reference Citation Analysis]
3 Antonova OY, Kochetkova OY, Kanev IL. Light-to-Heat Converting ECM-Mimetic Nanofiber Scaffolds for Neuronal Differentiation and Neurite Outgrowth Guidance. Nanomaterials 2022;12:2166. [DOI: 10.3390/nano12132166] [Reference Citation Analysis]
4 Shetty A, Mishra SK, De A, Chandra S. Smart releasing CuS/ZnS nanocomposite dual drug carrier and photothermal agent for use as a theranostic tool for cancer therapy. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103252] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Tang L, Zhang A, Zhang Z, Zhao Q, Li J, Mei Y, Yin Y, Wang W. Multifunctional inorganic nanomaterials for cancer photoimmunotherapy. Cancer Commun (Lond) 2022;42:141-63. [PMID: 35001556 DOI: 10.1002/cac2.12255] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
6 Farinha P, Coelho JMP, Reis CP, Gaspar MM. A Comprehensive Updated Review on Magnetic Nanoparticles in Diagnostics. Nanomaterials (Basel) 2021;11:3432. [PMID: 34947781 DOI: 10.3390/nano11123432] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
7 Du Y, Liu D, Sun M, Shu G, Qi J, You Y, Xu Y, Fan K, Xu X, Jin F, Wang J, Shen Q, Zhu L, Ying X, Ji J, Wu L, Liu D, Du Y. Multifunctional Gd-CuS loaded UCST polymeric micelles for MR/PA imaging-guided chemo-photothermal tumor treatment. Nano Res 2022;15:2288-99. [DOI: 10.1007/s12274-021-3812-2] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
8 Zhang L, Fan Y, Yang Z, Yang M, Wong CY. NIR-II-driven and glutathione depletion-enhanced hypoxia-irrelevant free radical nanogenerator for combined cancer therapy. J Nanobiotechnology 2021;19:265. [PMID: 34488803 DOI: 10.1186/s12951-021-01003-2] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
9 Zhu X, Huang S, Li L, Wang S, Chen J, Guan Y, Wang B, Jia Y. Glycyrrhetinic acid-decorated and docetaxel-loaded thermosensitive liposomes for combination therapy against hepatocellular carcinoma. J Nanopart Res 2021;23. [DOI: 10.1007/s11051-021-05273-7] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Li Q, Wang W, Feng H, Cao L, Wang H, Wang D, Chen S. NIR-triggered photocatalytic and photothermal performance for sterilization based on copper sulfide nanoparticles anchored on Ti3C2Tx MXene. J Colloid Interface Sci 2021;604:810-22. [PMID: 34303174 DOI: 10.1016/j.jcis.2021.07.048] [Cited by in Crossref: 1] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
11 Pandey A, Nikam AN, Padya BS, Kulkarni S, Fernandes G, Shreya AB, García MC, Caro C, Páez-muñoz JM, Dhas N, García-martín ML, Mehta T, Mutalik S. Surface architectured black phosphorous nanoconstructs based smart and versatile platform for cancer theranostics. Coordination Chemistry Reviews 2021;435:213826. [DOI: 10.1016/j.ccr.2021.213826] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
12 Das A, Arunagiri V, Tsai HC, Prasannan A, Lai JY, Da-Hong P, Moirangthem RS. Investigation of dual plasmonic core-shell Ag@CuS nanoparticles for potential surface-enhanced Raman spectroscopy-guided photothermal therapy. Nanomedicine (Lond) 2021;16:909-23. [PMID: 33928793 DOI: 10.2217/nnm-2020-0385] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Bekhit M, Abo El Naga AO, El Saied M, Abdel Maksoud MIA. Radiation-induced synthesis of copper sulfide nanotubes with improved catalytic and antibacterial activities. Environ Sci Pollut Res Int 2021;28:44467-78. [PMID: 33851295 DOI: 10.1007/s11356-021-13482-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
14 Mohamed SH, Awad MA, Hafez MI, Hadia NMA. Change in properties upon thermal treatment of copper sulphide powder and thin films. Bull Mater Sci 2021;44. [DOI: 10.1007/s12034-021-02379-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
15 Yun B, Zhu H, Yuan J, Sun Q, Li Z. Synthesis, modification and bioapplications of nanoscale copper chalcogenides. J Mater Chem B 2020;8:4778-812. [PMID: 32226981 DOI: 10.1039/d0tb00182a] [Cited by in Crossref: 8] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
16 Aflori M. Smart Nanomaterials for Biomedical Applications-A Review. Nanomaterials (Basel) 2021;11:396. [PMID: 33557177 DOI: 10.3390/nano11020396] [Cited by in Crossref: 7] [Cited by in F6Publishing: 26] [Article Influence: 7.0] [Reference Citation Analysis]
17 Wu X, Liu K, Huang Q, Zhang Q, Yang X, Liu X, Wang R. Photothermal Therapy Based on CuS Nanoparticles for Alleviating Arterial Restenosis Induced by Mechanical Injury of Endovascular Treatment. Front Mater 2021;7:591281. [DOI: 10.3389/fmats.2020.591281] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Banstola A, Poudel K, Emami F, Ku SK, Jeong JH, Kim JO, Yook S. Localized therapy using anti-PD-L1 anchored and NIR-responsive hollow gold nanoshell (HGNS) loaded with doxorubicin (DOX) for the treatment of locally advanced melanoma. Nanomedicine 2021;33:102349. [PMID: 33359414 DOI: 10.1016/j.nano.2020.102349] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
19 Poudel K, Banstola A, Gautam M, Soe ZC, Pham LM, Jeong J, Choi H, Ku SK, Yong CS, Tran TH, Kim JO. Redox/photo dual-responsive, self-targeted, and photosensitizer-laden bismuth sulfide nanourchins for combination therapy in cancer. Nanoscale 2021;13:1231-47. [DOI: 10.1039/d0nr07736d] [Cited by in Crossref: 7] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
20 Poudel K, Banstola A, Gautam M, Soe Z, Phung CD, Pham LM, Jeong J, Choi H, Ku SK, Tran TH, Yong CS, Kim JO. Macrophage-Membrane-Camouflaged Disintegrable and Excretable Nanoconstruct for Deep Tumor Penetration. ACS Appl Mater Interfaces 2020;12:56767-81. [DOI: 10.1021/acsami.0c17235] [Cited by in Crossref: 7] [Cited by in F6Publishing: 21] [Article Influence: 3.5] [Reference Citation Analysis]
21 Shetty A, Chandra S. Inorganic hybrid nanoparticles in cancer theranostics: understanding their combinations for better clinical translation. Materials Today Chemistry 2020;18:100381. [DOI: 10.1016/j.mtchem.2020.100381] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
22 Banstola A, Duwa R, Emami F, Jeong J, Yook S. Enhanced Caspase-Mediated Abrogation of Autophagy by Temozolomide-Loaded and Panitumumab-Conjugated Poly(lactic- co -glycolic acid) Nanoparticles in Epidermal Growth Factor Receptor Overexpressing Glioblastoma Cells. Mol Pharmaceutics 2020;17:4386-400. [DOI: 10.1021/acs.molpharmaceut.0c00856] [Cited by in Crossref: 7] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
23 Gautam M, Gupta B, Soe ZC, Poudel K, Maharjan S, Jeong JH, Choi HG, Ku SK, Yong CS, Kim JO. Stealth Polymer-Coated Graphene Oxide Decorated Mesoporous Titania Nanoplatforms for In Vivo Chemo-Photodynamic Cancer Therapy. Pharm Res 2020;37:162. [PMID: 32749542 DOI: 10.1007/s11095-020-02900-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
24 Poudel K, Banstola A, Tran TH, Thapa RK, Gautam M, Ou W, Pham LM, Maharjan S, Jeong JH, Ku SK, Choi HG, Yong CS, Kim JO. Hyaluronic acid wreathed, trio-stimuli receptive and on-demand triggerable nanoconstruct for anchored combinatorial cancer therapy. Carbohydr Polym 2020;249:116815. [PMID: 32933663 DOI: 10.1016/j.carbpol.2020.116815] [Cited by in Crossref: 16] [Cited by in F6Publishing: 26] [Article Influence: 8.0] [Reference Citation Analysis]
25 Huynh T. Chemical and biological sensing with nanocomposites prepared from nanostructured copper sulfides. Nano Futures 2020;4:032001. [DOI: 10.1088/2399-1984/ab9a28] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
26 Pham SH, Choi Y, Choi J. Stimuli-Responsive Nanomaterials for Application in Antitumor Therapy and Drug Delivery. Pharmaceutics 2020;12:E630. [PMID: 32635539 DOI: 10.3390/pharmaceutics12070630] [Cited by in Crossref: 16] [Cited by in F6Publishing: 34] [Article Influence: 8.0] [Reference Citation Analysis]
27 Poudel K, Gautam M, Maharjan S, Jeong JH, Choi HG, Khan GM, Yong CS, Kim JO. Dual stimuli-responsive ursolic acid-embedded nanophytoliposome for targeted antitumor therapy. Int J Pharm 2020;582:119330. [PMID: 32298743 DOI: 10.1016/j.ijpharm.2020.119330] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
28 Wong XY, Sena-Torralba A, Álvarez-Diduk R, Muthoosamy K, Merkoçi A. Nanomaterials for Nanotheranostics: Tuning Their Properties According to Disease Needs. ACS Nano 2020;14:2585-627. [PMID: 32031781 DOI: 10.1021/acsnano.9b08133] [Cited by in Crossref: 124] [Cited by in F6Publishing: 124] [Article Influence: 62.0] [Reference Citation Analysis]
29 Shi S, Vissapragada R, Abi Jaoude J, Huang C, Mittal A, Liu E, Zhong J, Kumar V. Evolving role of biomaterials in diagnostic and therapeutic radiation oncology. Bioact Mater 2020;5:233-40. [PMID: 32123777 DOI: 10.1016/j.bioactmat.2020.01.011] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
30 Banstola A, Pham TT, Jeong JH, Yook S. Polydopamine-tailored paclitaxel-loaded polymeric microspheres with adhered NIR-controllable gold nanoparticles for chemo-phototherapy of pancreatic cancer. Drug Deliv. 2019;26:629-640. [PMID: 31237149 DOI: 10.1080/10717544.2019.1628118] [Cited by in Crossref: 21] [Cited by in F6Publishing: 32] [Article Influence: 7.0] [Reference Citation Analysis]
31 Poudel K, Thapa RK, Gautam M, Ou W, Soe ZC, Gupta B, Ruttala HB, Thuy HN, Dai PC, Jeong J, Ku SK, Choi H, Yong CS, Kim JO. Multifaceted NIR-responsive polymer-peptide-enveloped drug-loaded copper sulfide nanoplatform for chemo-phototherapy against highly tumorigenic prostate cancer. Nanomedicine: Nanotechnology, Biology and Medicine 2019;21:102042. [DOI: 10.1016/j.nano.2019.102042] [Cited by in Crossref: 15] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
32 He Z, Zhu JJ. Near-infrared photothermally activated nanomachines for cancer theragnosis. Dalton Trans 2019;48:13120-4. [PMID: 31348472 DOI: 10.1039/c9dt02623a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]