BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Liu Y, Yang T, Wei S, Zhou C, Lan Y, Cao A, Yang J, Wang W. Mucus adhesion- and penetration-enhanced liposomes for paclitaxel oral delivery. International Journal of Pharmaceutics 2018;537:245-56. [DOI: 10.1016/j.ijpharm.2017.12.044] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 8.2] [Reference Citation Analysis]
Number Citing Articles
1 Warren MR, Bajpayee AG. Modeling Electrostatic Charge Shielding Induced by Cationic Drug Carriers in Articular Cartilage Using Donnan Osmotic Theory. Bioelectricity 2022;4:248-58. [PMID: 36644714 DOI: 10.1089/bioe.2021.0026] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
2 Wu Y, Geng J, Cheng X, Yang Y, Yu Y, Wang L, Dong Q, Chi Z, Liu C. Cosmetic-Derived Mannosylerythritol Lipid-B-Phospholipid Nanoliposome: An Acid-Stabilized Carrier for Efficient Gastromucosal Delivery of Amoxicillin for In Vivo Treatment of Helicobacter pylori. ACS Omega 2022;7:29086-99. [PMID: 36033659 DOI: 10.1021/acsomega.2c02953] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
3 Guo C, Zhu X, Yuan H, Liu H, Zhang Y, Yin T, He H, Gou J, Tang X. Chitosan-Coated Liposomes: The Strategy to Reduce Intestinal Toxicity and Improve Bioavailability of Oral Vinorelbine. AAPS PharmSciTech 2022;23:163. [PMID: 35680728 DOI: 10.1208/s12249-022-02308-7] [Reference Citation Analysis]
4 Lu R, Zhou Y, Ma J, Wang Y, Miao X. Strategies and Mechanism in Reversing Intestinal Drug Efflux in Oral Drug Delivery. Pharmaceutics 2022;14:1131. [DOI: 10.3390/pharmaceutics14061131] [Reference Citation Analysis]
5 Yalcin TE, Tuncel E, Yucel C, Tirnaksiz F. Nanoemulsions Containing Megestrol Acetate: Development, Characterization, and Stability Evaluation. AAPS PharmSciTech 2022;23:142. [PMID: 35538251 DOI: 10.1208/s12249-022-02289-7] [Reference Citation Analysis]
6 Jin Z, Hu G, Zhao K. Mannose-anchored quaternized chitosan/thiolated carboxymethyl chitosan composite NPs as mucoadhesive carrier for drug delivery. Carbohydrate Polymers 2022;283:119174. [DOI: 10.1016/j.carbpol.2022.119174] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
7 Wu Y, Wang W, Yu Z, Yang K, Huang Z, Chen Z, Yan X, Hu H, Wang Z. Mushroom-brush transitional conformation of mucus-inert PEG coating improves co-delivery of oral liposome for intestinal metaplasia therapy. Biomaterials Advances 2022;136:212798. [DOI: 10.1016/j.bioadv.2022.212798] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Sahatsapan N, Pamornpathomkul B, Rojanarata T, Ngawhirunpat T, Poonkhum R, Opanasopit P, Patrojanasophon P. Feasibility of mucoadhesive chitosan maleimide-coated liposomes for improved buccal delivery of a protein drug. Journal of Drug Delivery Science and Technology 2022;69:103173. [DOI: 10.1016/j.jddst.2022.103173] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
9 Sharma N, Bietar K, Stochaj U. Targeting nanoparticles to malignant tumors. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2022. [DOI: 10.1016/j.bbcan.2022.188703] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
10 Das B, Basu A, Hasnain MS, Nayak AK. Liposomes as efficient lipid nanovesicular systems for drug delivery. Systems of Nanovesicular Drug Delivery 2022. [DOI: 10.1016/b978-0-323-91864-0.00024-3] [Reference Citation Analysis]
11 Hock N, Racaniello GF, Aspinall S, Denora N, Khutoryanskiy VV, Bernkop-Schnürch A. Thiolated Nanoparticles for Biomedical Applications: Mimicking the Workhorses of Our Body. Adv Sci (Weinh) 2022;9:e2102451. [PMID: 34773391 DOI: 10.1002/advs.202102451] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Shah MR, Imran M, Ullah S. Designing of nanocarriers for enhancing drugs absorption through gastrointestinal tract. Nanocarriers for Organ-Specific and Localized Drug Delivery 2022. [DOI: 10.1016/b978-0-12-821093-2.00010-4] [Reference Citation Analysis]
13 Bukhari SZ, Zeth K, Iftikhar M, Rehman M, Usman Munir M, Khan WS, Ihsan A. Supramolecular lipid nanoparticles as delivery carriers for non-invasive cancer theranostics. Curr Res Pharmacol Drug Discov 2021;2:100067. [PMID: 34909685 DOI: 10.1016/j.crphar.2021.100067] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
14 Miao YB, Lin YJ, Chen KH, Luo PK, Chuang SH, Yu YT, Tai HM, Chen CT, Lin KJ, Sung HW. Engineering Nano- and Microparticles as Oral Delivery Vehicles to Promote Intestinal Lymphatic Drug Transport. Adv Mater 2021;33:e2104139. [PMID: 34596293 DOI: 10.1002/adma.202104139] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
15 Mühlberg E, Burtscher M, Umstätter F, Fricker G, Mier W, Uhl P. Trends in liposomal nanocarrier strategies for the oral delivery of biologics. Nanomedicine (Lond) 2021;16:1813-32. [PMID: 34269068 DOI: 10.2217/nnm-2021-0177] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Iacob AT, Lupascu FG, Apotrosoaei M, Vasincu IM, Tauser RG, Lupascu D, Giusca SE, Caruntu ID, Profire L. Recent Biomedical Approaches for Chitosan Based Materials as Drug Delivery Nanocarriers. Pharmaceutics 2021;13:587. [PMID: 33924046 DOI: 10.3390/pharmaceutics13040587] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
17 Wu H, Cui Z, Huo Y, Sun Y, Zhang X, Guan J, Mao S. Influence of drug-carrier compatibility and preparation method on the properties of paclitaxel-loaded lipid liquid crystalline nanoparticles. J Pharm Sci 2021;110:2800-7. [PMID: 33785353 DOI: 10.1016/j.xphs.2021.03.016] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
18 De Leo V, Milano F, Agostiano A, Catucci L. Recent Advancements in Polymer/Liposome Assembly for Drug Delivery: From Surface Modifications to Hybrid Vesicles. Polymers (Basel) 2021;13:1027. [PMID: 33810273 DOI: 10.3390/polym13071027] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 19.5] [Reference Citation Analysis]
19 Mohyeldin SM, Samy WM, Ragab D, Abdelmonsif DA, Aly RG, Elgindy NA. Precisely Fabricated Sulpiride-Loaded Nanolipospheres with Ameliorated Oral Bioavailability and Antidepressant Activity. Int J Nanomedicine 2021;16:2013-44. [PMID: 33727812 DOI: 10.2147/IJN.S296726] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
20 Liu L, Tian C, Dong B, Xia M, Cai Y, Hu R, Chu X. Models to evaluate the barrier properties of mucus during drug diffusion. Int J Pharm 2021;599:120415. [PMID: 33647411 DOI: 10.1016/j.ijpharm.2021.120415] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
21 das Neves J, Sverdlov Arzi R, Sosnik A. Molecular and cellular cues governing nanomaterial-mucosae interactions: from nanomedicine to nanotoxicology. Chem Soc Rev 2020;49:5058-100. [PMID: 32538405 DOI: 10.1039/c8cs00948a] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 13.5] [Reference Citation Analysis]
22 Liu Y, Xie X, Chen H, Hou X, He Y, Shen J, Shi J, Feng N. Advances in next-generation lipid-polymer hybrid nanocarriers with emphasis on polymer-modified functional liposomes and cell-based-biomimetic nanocarriers for active ingredients and fractions from Chinese medicine delivery. Nanomedicine: Nanotechnology, Biology and Medicine 2020;29:102237. [DOI: 10.1016/j.nano.2020.102237] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
23 Wang W, Yan X, Li Q, Chen Z, Wang Z, Hu H. Adapted nano-carriers for gastrointestinal defense components: surface strategies and challenges. Nanomedicine: Nanotechnology, Biology and Medicine 2020;29:102277. [DOI: 10.1016/j.nano.2020.102277] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
24 Liu W, Li D, Dong Z, Liu K, He H, Lu Y, Wu W, Li Q, Gan L, Qi J. Insight into the in vivo translocation of oral liposomes by fluorescence resonance energy transfer effect. Int J Pharm 2020;587:119682. [PMID: 32717284 DOI: 10.1016/j.ijpharm.2020.119682] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
25 Chen Y, Wang L, Luo S, Hu J, Huang X, Li PW, Zhang Y, Wu C, Tian BL. Enhancement of Antitumor Efficacy of Paclitaxel-Loaded PEGylated Liposomes by N,N-Dimethyl Tertiary Amino Moiety in Pancreatic Cancer. Drug Des Devel Ther 2020;14:2945-57. [PMID: 32801636 DOI: 10.2147/DDDT.S261017] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
26 Xie X, Li Y, Zhao D, Fang C, He D, Yang Q, Yang L, Chen R, Tan Q, Zhang J. Oral administration of natural polyphenol-loaded natural polysaccharide-cloaked lipidic nanocarriers to improve efficacy against small-cell lung cancer. Nanomedicine 2020;29:102261. [PMID: 32621880 DOI: 10.1016/j.nano.2020.102261] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
27 Vedadghavami A, Zhang C, Bajpayee AG. Overcoming negatively charged tissue barriers: Drug delivery using cationic peptides and proteins. Nano Today 2020;34:100898. [PMID: 32802145 DOI: 10.1016/j.nantod.2020.100898] [Cited by in Crossref: 48] [Cited by in F6Publishing: 40] [Article Influence: 16.0] [Reference Citation Analysis]
28 Taipaleenmäki E, Christensen G, Brodszkij E, Mouritzen SA, Gal N, Madsen S, Hedemann MS, Knudsen TA, Jensen HM, Christiansen SL, Sparsø FV, Städler B. Mucopenetrating polymer – Lipid hybrid nanovesicles as subunits in alginate beads as an oral formulation. Journal of Controlled Release 2020;322:470-85. [DOI: 10.1016/j.jconrel.2020.03.047] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
29 Chen T, Tu L, Wang G, Qi N, Wu W, Zhang W, Feng J. Multi-functional chitosan polymeric micelles as oral paclitaxel delivery systems for enhanced bioavailability and anti-tumor efficacy. Int J Pharm 2020;578:119105. [PMID: 32018019 DOI: 10.1016/j.ijpharm.2020.119105] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 13.3] [Reference Citation Analysis]
30 Shah NK, Torrico Guzmán EA, Wang Z, Meenach SA. Routes of administration for nanocarriers. Nanoparticles for Biomedical Applications 2020. [DOI: 10.1016/b978-0-12-816662-8.00006-0] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
31 Theochari I, Xenakis A, Papadimitriou V. Nanocarriers for effective drug delivery. Smart Nanocontainers 2020. [DOI: 10.1016/b978-0-12-816770-0.00019-8] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
32 A P, Kar S, Vignesh K, Kolhe UD. An Overview of Paclitaxel Delivery Systems. Sustainable Agriculture Reviews 2020. [DOI: 10.1007/978-3-030-41838-0_6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
33 Cao A, Ma P, Yang T, Lan Y, Yu S, Liu L, Sun Y, Liu Y. Multifunctionalized Micelles Facilitate Intracellular Doxorubicin Delivery for Reversing Multidrug Resistance of Breast Cancer. Mol Pharmaceutics 2019;16:2502-10. [DOI: 10.1021/acs.molpharmaceut.9b00094] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
34 Ghosh S, Ghosh S, Sil PC. Role of nanostructures in improvising oral medicine. Toxicol Rep 2019;6:358-68. [PMID: 31080743 DOI: 10.1016/j.toxrep.2019.04.004] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 7.5] [Reference Citation Analysis]
35 Homayun B, Lin X, Choi HJ. Challenges and Recent Progress in Oral Drug Delivery Systems for Biopharmaceuticals. Pharmaceutics 2019;11:E129. [PMID: 30893852 DOI: 10.3390/pharmaceutics11030129] [Cited by in Crossref: 301] [Cited by in F6Publishing: 315] [Article Influence: 75.3] [Reference Citation Analysis]
36 Razi MA, Wakabayashi R, Goto M, Kamiya N. Self-Assembled Reduced Albumin and Glycol Chitosan Nanoparticles for Paclitaxel Delivery. Langmuir 2019;35:2610-8. [PMID: 30673276 DOI: 10.1021/acs.langmuir.8b02809] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
37 Bhatt P, Patel D, Patel A, Patel A, Nagarsheth A. Oral Controlled Release Systems: Current Strategies and Challenges. Novel Drug Delivery Technologies 2019. [DOI: 10.1007/978-981-13-3642-3_4] [Reference Citation Analysis]
38 Das M, Huang L. Liposomal Nanostructures for Drug Delivery in Gastrointestinal Cancers. J Pharmacol Exp Ther 2019;370:647-56. [PMID: 30541917 DOI: 10.1124/jpet.118.254797] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 3.4] [Reference Citation Analysis]
39 Wong CY, Martinez J, Al-Salami H, Dass CR. Quantification of BSA-loaded chitosan/oligonucleotide nanoparticles using reverse-phase high-performance liquid chromatography. Anal Bioanal Chem 2018;410:6991-7006. [PMID: 30206665 DOI: 10.1007/s00216-018-1319-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
40 Han S, Baek J, Kim M, Hwang S, Cho C. Surface modification of paclitaxel-loaded liposomes using d-α-tocopheryl polyethylene glycol 1000 succinate: Enhanced cellular uptake and cytotoxicity in multidrug resistant breast cancer cells. Chemistry and Physics of Lipids 2018;213:39-47. [DOI: 10.1016/j.chemphyslip.2018.03.005] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 3.8] [Reference Citation Analysis]
41 Liu J, Cao J, Cao J, Han S, Liang Y, Bai M, Sun Y. Mechanistic insight into the interaction of gastrointestinal mucus with oral diblock copolymers synthesized via ATRP method. Int J Nanomedicine 2018;13:2839-56. [PMID: 29805260 DOI: 10.2147/IJN.S160651] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
42 Du X, Khan AR, Fu M, Ji J, Yu A, Zhai G. Current development in the formulations of non-injection administration of paclitaxel. Int J Pharm 2018;542:242-52. [PMID: 29555439 DOI: 10.1016/j.ijpharm.2018.03.030] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 6.8] [Reference Citation Analysis]