1 |
Wang C, Pang Y. Nano-based eye drop: Topical and noninvasive therapy for ocular diseases. Adv Drug Deliv Rev 2023;194:114721. [PMID: 36773886 DOI: 10.1016/j.addr.2023.114721] [Reference Citation Analysis]
|
2 |
Logesh K, Raj B, Bhaskaran M, Thirumaleshwar S, Gangadharappa H, Osmani R, Asha Spandana K. Nanoparticulate drug delivery systems for the treatment of rheumatoid arthritis: A comprehensive review. Journal of Drug Delivery Science and Technology 2023. [DOI: 10.1016/j.jddst.2023.104241] [Reference Citation Analysis]
|
3 |
Biri-Kovács B, Bánóczi Z, Tummalapally A, Szabó I. Peptide Vaccines in Melanoma: Chemical Approaches towards Improved Immunotherapeutic Efficacy. Pharmaceutics 2023;15. [PMID: 36839774 DOI: 10.3390/pharmaceutics15020452] [Reference Citation Analysis]
|
4 |
Li J, Zhu L, Kwok HF. Nanotechnology-based approaches overcome lung cancer drug resistance through diagnosis and treatment. Drug Resist Updat 2023;66:100904. [PMID: 36462375 DOI: 10.1016/j.drup.2022.100904] [Reference Citation Analysis]
|
5 |
Pandita D, Vakar, Poonia N, Chaudhary G, Jain GK, Lather V, Khar RK. pH-sensitive polymeric nanocarriers for enhanced intracellular drug delivery. Smart Polymeric Nano-Constructs in Drug Delivery 2023. [DOI: 10.1016/b978-0-323-91248-8.00004-0] [Reference Citation Analysis]
|
6 |
Wang J, Chen H. Biomedical Applications of Alginate in the Delivery System for Natural Products. Alginate Biomaterial 2023. [DOI: 10.1007/978-981-19-6937-9_10] [Reference Citation Analysis]
|
7 |
Guzmán Rodríguez A, Sablón Carrazana M, Rodríguez Tanty C, Malessy MJA, Fuentes G, Cruz LJ. Smart Polymeric Micelles for Anticancer Hydrophobic Drugs. Cancers (Basel) 2022;15. [PMID: 36612002 DOI: 10.3390/cancers15010004] [Reference Citation Analysis]
|
8 |
Nagai N, Otake H. Novel drug delivery systems for the management of dry eye. Adv Drug Deliv Rev 2022;191:114582. [PMID: 36283491 DOI: 10.1016/j.addr.2022.114582] [Reference Citation Analysis]
|
9 |
Alasen Sembiring Milala. Sistem Penghantaran Obat Dengan Misel Polimer. MEDICINUS 2022;35:20-31. [DOI: 10.56951/medicinus.v35i3.104] [Reference Citation Analysis]
|
10 |
Wani FA, Behera K, Patel R. Amphiphilic Micelles as Superior Nanocarriers in Drug Delivery: from Current Preclinical Surveys to Structural Frameworks. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202201928] [Reference Citation Analysis]
|
11 |
Mahdieh A, Motasadizadeh H, Yeganeh H, Nyström B, Dinarvand R. Redox-responsive waterborne polyurethane nanocarriers for targeted doxorubicin delivery. International Journal of Pharmaceutics 2022;628:122275. [DOI: 10.1016/j.ijpharm.2022.122275] [Reference Citation Analysis]
|
12 |
Stepanova DA, Pigareva VA, Berkovich AK, Bolshakova AV, Spiridonov VV, Grozdova ID, Sybachin AV. Ultrasonic Film Rehydration Synthesis of Mixed Polylactide Micelles for Enzyme-Resistant Drug Delivery Nanovehicles. Polymers 2022;14:4013. [DOI: 10.3390/polym14194013] [Reference Citation Analysis]
|
13 |
Zhao J, Zhang C, Wang W, Li C, Mu X, Hu K. Current progress of nanomedicine for prostate cancer diagnosis and treatment. Biomed Pharmacother 2022;155:113714. [PMID: 36150309 DOI: 10.1016/j.biopha.2022.113714] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
14 |
Ghasemi S, Ahmadi L, Farjadian F. Thermo-responsive PNIPAAm-b-PLA amphiphilic block copolymer micelle as nanoplatform for docetaxel drug release. J Mater Sci. [DOI: 10.1007/s10853-022-07711-w] [Reference Citation Analysis]
|
15 |
Simonova MA, Ilgach DM, Kaskevich KI, Nepomnyashaya MI, Litvinova LS, Filippov AP, Yakimansky AV. Self-assembly of Polyfluorene Molecular Brushes with Poly(methacrylic acid) Side Chains in Ethanol and Water. Polym Sci Ser C 2022. [DOI: 10.1134/s181123822270014x] [Reference Citation Analysis]
|
16 |
Tao J, Wei Z, Cheng Y, Xu M, Li Q, Lee SM, Ge W, Luo KQ, Wang X, Zheng Y. Apoptosis-Sensing Xenograft Zebrafish Tumor Model for Anticancer Evaluation of Redox-Responsive Cross-Linked Pluronic Micelles. ACS Appl Mater Interfaces 2022. [PMID: 36006680 DOI: 10.1021/acsami.2c09005] [Reference Citation Analysis]
|
17 |
Kotta S, Aldawsari HM, Badr-Eldin SM, Nair AB, Yt K. Progress in Polymeric Micelles for Drug Delivery Applications. Pharmaceutics 2022;14:1636. [PMID: 36015262 DOI: 10.3390/pharmaceutics14081636] [Reference Citation Analysis]
|
18 |
Sun Z, Li Y, Gu X, Wang L, Yu B, Yang X, Xu H. Development of icariside II loaded polymeric micelles and evaluation of anticancer activity in vitro and in vivo. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103652] [Reference Citation Analysis]
|
19 |
Xu H, Li S, Liu YS. Nanoparticles in the diagnosis and treatment of vascular aging and related diseases. Signal Transduct Target Ther 2022;7:231. [PMID: 35817770 DOI: 10.1038/s41392-022-01082-z] [Reference Citation Analysis]
|
20 |
Fatfat Z, Fatfat M, Gali-Muhtasib H. Micelles as potential drug delivery systems for colorectal cancer treatment. World J Gastroenterol 2022; 28(25): 2867-2880 [DOI: 10.3748/wjg.v28.i25.2867] [Cited by in CrossRef: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
21 |
Nooreen R, Nene S, Jain H, Prasannanjaneyulu V, Chitlangya P, Otavi S, Khatri DK, Raghuvanshi RS, Singh SB, Srivastava S. Polymer nanotherapeutics: A versatile platform for effective rheumatoid arthritis therapy. J Control Release 2022;348:397-419. [PMID: 35660632 DOI: 10.1016/j.jconrel.2022.05.054] [Reference Citation Analysis]
|
22 |
Mehta S, Suresh A, Nayak Y, Narayan R, Nayak UY. Hybrid nanostructures: Versatile systems for biomedical applications. Coordination Chemistry Reviews 2022;460:214482. [DOI: 10.1016/j.ccr.2022.214482] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
|
23 |
Sipos B, Csóka I, Ambrus R, Schelz Z, Zupkó I, Balogh GT, Katona G. Spray-dried indomethacin-loaded polymeric micelles for the improvement of intestinal drug release and permeability. European Journal of Pharmaceutical Sciences 2022. [DOI: 10.1016/j.ejps.2022.106200] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
24 |
Huang Y, Cao L, Parakhonskiy BV, Skirtach AG. Hard, Soft, and Hard-and-Soft Drug Delivery Carriers Based on CaCO3 and Alginate Biomaterials: Synthesis, Properties, Pharmaceutical Applications. Pharmaceutics 2022;14:909. [DOI: 10.3390/pharmaceutics14050909] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 15.0] [Reference Citation Analysis]
|
25 |
Hussein A. Abdul Hussein, Nidhal K. Maraie. Highlights on polymeric micelles as versatile nanocarriers for drug transporting. AJPS 2022;21:21-30. [DOI: 10.32947/ajps.v21i2.806] [Reference Citation Analysis]
|
26 |
Huang T, Gao J, Cai L, Xie H, Wang Y, Wang Y, Zhou Q. Treating Pulmonary Fibrosis with Non-Viral Gene Therapy: From Bench to Bedside. Pharmaceutics 2022;14:813. [DOI: 10.3390/pharmaceutics14040813] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
27 |
Nejati K, Rastegar M, Fathi F, Dadashpour M, Arabzadeh A. Nanoparticle-based drug delivery systems to overcome gastric cancer drug resistance. Journal of Drug Delivery Science and Technology 2022;70:103231. [DOI: 10.1016/j.jddst.2022.103231] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
28 |
Tagde P, Najda A, Nagpal K, Kulkarni GT, Shah M, Ullah O, Balant S, Rahman MH. Nanomedicine-Based Delivery Strategies for Breast Cancer Treatment and Management. IJMS 2022;23:2856. [DOI: 10.3390/ijms23052856] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
29 |
Adeli F, Abbasi F, Babazadeh M, Davaran S. Thermo/pH dual-responsive micelles based on the host-guest interaction between benzimidazole-terminated graft copolymer and β-cyclodextrin-functionalized star block copolymer for smart drug delivery. J Nanobiotechnology 2022;20:91. [PMID: 35193612 DOI: 10.1186/s12951-022-01290-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
30 |
Vardaxi A, Kafetzi M, Pispas S. Polymeric Nanostructures Containing Proteins and Peptides for Pharmaceutical Applications. Polymers 2022;14:777. [DOI: 10.3390/polym14040777] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
31 |
Marques SM, Kumar L. Mechanism of polymeric micelles for drug targeting to brain tumors. Nanocarriers for Drug-Targeting Brain Tumors 2022. [DOI: 10.1016/b978-0-323-90773-6.00022-1] [Reference Citation Analysis]
|
32 |
Khatun S, Bonala S, Pogu SV, Rengan AK. Functional Biomaterials: Drug Delivery and Biomedical Applications Polymeric Micelle in Drug Delivery Applications. Functional Biomaterials 2022. [DOI: 10.1007/978-981-16-7152-4_1] [Reference Citation Analysis]
|
33 |
Gautam L, Thakur PS, Goel I, Sankar M, Jain A, Shrivastava P, Vyas S, Vyas SP. Polymeric Nanoparticles as Theranostics for Targeting Solid Tumors. Environmental Chemistry for a Sustainable World 2022. [DOI: 10.1007/978-3-031-14848-4_10] [Reference Citation Analysis]
|
34 |
Ali MA, Gould ML. Polymeric micelles in dermal and transdermal drug delivery. Polymeric Micelles for Drug Delivery 2022. [DOI: 10.1016/b978-0-323-89868-3.00009-4] [Reference Citation Analysis]
|
35 |
Pérez SE, Haidar ZS. Polymeric micelles: précis for past, present and future. Polymeric Micelles for Drug Delivery 2022. [DOI: 10.1016/b978-0-323-89868-3.00019-7] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
36 |
Fang J, Chen Z, Song J, Li J, Han Y, Hou W, Wang W, Ruan BH. Biodegradable self-assembly micelles significantly enhanced the solubility, biological stability and in vivo antitumor efficacy of Hexylselen. RSC Chem Biol 2021;2:1669-81. [PMID: 34977582 DOI: 10.1039/d1cb00089f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
37 |
Jarak I, Pereira-silva M, Santos AC, Veiga F, Cabral H, Figueiras A. Multifunctional polymeric micelle-based nucleic acid delivery: Current advances and future perspectives. Applied Materials Today 2021;25:101217. [DOI: 10.1016/j.apmt.2021.101217] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
38 |
Hu J, Fang Y, Huang X, Qiao R, Quinn JF, Davis TP. Engineering macromolecular nanocarriers for local delivery of gaseous signaling molecules. Adv Drug Deliv Rev 2021;179:114005. [PMID: 34687822 DOI: 10.1016/j.addr.2021.114005] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
|
39 |
Vaneev A, Tikhomirova V, Chesnokova N, Popova E, Beznos O, Kost O, Klyachko N. Nanotechnology for Topical Drug Delivery to the Anterior Segment of the Eye. Int J Mol Sci 2021;22:12368. [PMID: 34830247 DOI: 10.3390/ijms222212368] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
40 |
Despotopoulou D, Lagopati N, Pispas S, Gazouli M, Demetzos C, Pippa N. The technology of transdermal delivery nanosystems: from design and development to preclinical studies. Int J Pharm 2021;:121290. [PMID: 34788674 DOI: 10.1016/j.ijpharm.2021.121290] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
|
41 |
Bholakant R, Dong B, Zhou X, Huang X, Zhao C, Huang D, Zhong Y, Qian H, Chen W, Feijen J. Multi-functional polymeric micelles for chemotherapy-based combined cancer therapy. J Mater Chem B 2021;9:8718-38. [PMID: 34635905 DOI: 10.1039/d1tb01771c] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
42 |
Xie L, Liu R, Chen X, He M, Zhang Y, Chen S. Micelles Based on Lysine, Histidine, or Arginine: Designing Structures for Enhanced Drug Delivery. Front Bioeng Biotechnol 2021;9:744657. [PMID: 34646819 DOI: 10.3389/fbioe.2021.744657] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
43 |
Ren J, Cao Y, Li L, Wang X, Lu H, Yang J, Wang S. Self-assembled polymeric micelle as a novel mRNA delivery carrier. J Control Release 2021;338:537-47. [PMID: 34481924 DOI: 10.1016/j.jconrel.2021.08.061] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
|
44 |
Kannappan V, Ali M, Small B, Rajendran G, Elzhenni S, Taj H, Wang W, Dou QP. Recent Advances in Repurposing Disulfiram and Disulfiram Derivatives as Copper-Dependent Anticancer Agents. Front Mol Biosci 2021;8:741316. [PMID: 34604310 DOI: 10.3389/fmolb.2021.741316] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
|
45 |
Hashemzadeh N, Aghanejad A, Dalir Abdolahinia E, Dolatkhah M, Barzegar-Jalali M, Omidi Y, Barar J, Adibkia K. Targeted combined therapy in 2D and 3D cultured MCF-7 cells using metformin and erlotinib-loaded mesoporous silica magnetic nanoparticles. J Microencapsul 2021;:1-14. [PMID: 34511038 DOI: 10.1080/02652048.2021.1979672] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
46 |
Pereira P, Serra AC, Coelho JF. Vinyl Polymer-based technologies towards the efficient delivery of chemotherapeutic drugs. Progress in Polymer Science 2021;121:101432. [DOI: 10.1016/j.progpolymsci.2021.101432] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
47 |
Zhang B, Zhang L, Duan E, Zhang R, Liu J, Shi P, Mei Y, Li R, Zhang L. pH and charge reversal-driven nanoplatform for efficient delivery of therapeutics. Colloids Surf B Biointerfaces 2021;208:112106. [PMID: 34534915 DOI: 10.1016/j.colsurfb.2021.112106] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
48 |
Tehrani Fateh S, Moradi L, Kohan E, Hamblin MR, Shiralizadeh Dezfuli A. Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications. Beilstein J Nanotechnol 2021;12:808-62. [PMID: 34476167 DOI: 10.3762/bjnano.12.64] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
|
49 |
Jiang W, Fan Q, Wang J, Zhang B, Hao T, Chen Q, Li L, Chen L, Cui H, Li Z. PEGylated phospholipid micelles containing D-α-tocopheryl succinate as multifunctional nanocarriers for enhancing the antitumor efficacy of doxorubicin. Int J Pharm 2021;607:120979. [PMID: 34371151 DOI: 10.1016/j.ijpharm.2021.120979] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
50 |
Dai Y, Li Q, Zhang S, Shi S, Li Y, Zhao X, Zhou L, Wang X, Zhu Y, Li W. Smart GSH/pH dual-bioresponsive degradable nanosponges based on β-CD-appended hyper-cross-linked polymer for triggered intracellular anticancer drug delivery. Journal of Drug Delivery Science and Technology 2021;64:102650. [DOI: 10.1016/j.jddst.2021.102650] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
51 |
Karayianni M, Pispas S. Block copolymer solution self‐assembly: Recent advances, emerging trends, and applications. Journal of Polymer Science 2021;59:1874-98. [DOI: 10.1002/pol.20210430] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
|
52 |
Han Y, Pan J, Liang N, Gong X, Sun S. A pH-Sensitive Polymeric Micellar System Based on Chitosan Derivative for Efficient Delivery of Paclitaxel. Int J Mol Sci 2021;22:6659. [PMID: 34206347 DOI: 10.3390/ijms22136659] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
53 |
Zhang Y, Sun M, Jian S, Huang J, Xiao C, Zhang X, Hu R, Si L. mPEG2k-PCLx Polymeric Micelles Influence Pharmacokinetics and Hypoglycemic Efficacy of Metformin through Inhibition of Organic Cation Transporters in Rats. Mol Pharm 2021;18:2586-99. [PMID: 34102842 DOI: 10.1021/acs.molpharmaceut.1c00078] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
54 |
Boztepe T, Castro GR, León IE. Lipid, polymeric, inorganic-based drug delivery applications for platinum-based anticancer drugs. Int J Pharm 2021;605:120788. [PMID: 34116182 DOI: 10.1016/j.ijpharm.2021.120788] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
55 |
Raval N, Maheshwari R, Shukla H, Kalia K, Torchilin VP, Tekade RK. Multifunctional polymeric micellar nanomedicine in the diagnosis and treatment of cancer. Mater Sci Eng C Mater Biol Appl 2021;126:112186. [PMID: 34082985 DOI: 10.1016/j.msec.2021.112186] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
|
56 |
Reddy MVK, Rao KY, Anusha G, Kumar GM, Damu AG, Reddy KR, Shetti NP, Aminabhavi TM, Reddy PVG. In-vitro evaluation of antioxidant and anticholinesterase activities of novel pyridine, quinoxaline and s-triazine derivatives. Environ Res 2021;199:111320. [PMID: 33991570 DOI: 10.1016/j.envres.2021.111320] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
|
57 |
Chen H, He L, Li D, Jin F, Ai Y. Propofol-loaded nanomicelle with improved anesthetic, pharmacokinetic, hemocompatibility, safety, and permeation profiles. Arabian Journal of Chemistry 2021;14:103093. [DOI: 10.1016/j.arabjc.2021.103093] [Reference Citation Analysis]
|
58 |
Kaur J, Mishra V, Singh SK, Gulati M, Kapoor B, Chellappan DK, Gupta G, Dureja H, Anand K, Dua K, Khatik GL, Gowthamarajan K. Harnessing amphiphilic polymeric micelles for diagnostic and therapeutic applications: Breakthroughs and bottlenecks. J Control Release 2021;334:64-95. [PMID: 33887283 DOI: 10.1016/j.jconrel.2021.04.014] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 11.0] [Reference Citation Analysis]
|
59 |
Wei G, Wang Y, Yang G, Wang Y, Ju R. Recent progress in nanomedicine for enhanced cancer chemotherapy. Theranostics 2021;11:6370-92. [PMID: 33995663 DOI: 10.7150/thno.57828] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 18.5] [Reference Citation Analysis]
|
60 |
Mazumdar S, Chitkara D, Mittal A. Exploration and insights into the cellular internalization and intracellular fate of amphiphilic polymeric nanocarriers. Acta Pharm Sin B 2021;11:903-24. [PMID: 33996406 DOI: 10.1016/j.apsb.2021.02.019] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
|
61 |
Huang Y, He Y, Xia X, Quan H, Yu J. Phenylboronic acid-functionalized co-delivery micelles with synergistic effect and down-regulation of HIF-1alpha to overcome multidrug resistance. Journal of Drug Delivery Science and Technology 2021;62:102346. [DOI: 10.1016/j.jddst.2021.102346] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
62 |
Zajdel A, Wilczok A, Jelonek K, Kaps A, Musiał-Kulik M, Kasperczyk J. Cytotoxic effect of targeted biodegradable epothilone B and rapamycin co-loaded nanocarriers on breast cancer cells. J Biomed Mater Res A 2021;109:1693-700. [PMID: 33719211 DOI: 10.1002/jbm.a.37164] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
63 |
Shaikh MS, Kale MA, Shaikh MM, Mahaparale PR. Formulation, characterization and antimicrobial studies of lyophilized luliconazole nanosuspension for enhancing solubility using modified polymer. International Journal of Polymeric Materials and Polymeric Biomaterials. [DOI: 10.1080/00914037.2021.1879077] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
64 |
Norouzi M, Hardy P. Clinical applications of nanomedicines in lung cancer treatment. Acta Biomater 2021;121:134-42. [PMID: 33301981 DOI: 10.1016/j.actbio.2020.12.009] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 10.0] [Reference Citation Analysis]
|
65 |
Thauvin C, Maudens P, Allémann E. Microwave-assisted synthesis of self-assembling bi-functionalizable amphiphilic diblock copolymers. Journal of Drug Delivery Science and Technology 2021;61:102255. [DOI: 10.1016/j.jddst.2020.102255] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
66 |
Chaurawal N, Raza K. Design of Experiments for the Development of Topical Drug Products. Design of Experiments for Pharmaceutical Product Development 2021. [DOI: 10.1007/978-981-33-4351-1_3] [Reference Citation Analysis]
|
67 |
Paprikar A, Soni A, Kaushal N, Lin S. Polymeric Micelles for Drug Delivery. Smart Nanomaterials in Biomedical Applications 2021. [DOI: 10.1007/978-3-030-84262-8_12] [Reference Citation Analysis]
|
68 |
Almeida A, Sarmento B. Chitosan Polymeric Micelles as Oral Delivery Platform of Hydrophobic Anticancer Drugs. Advances in Polymer Science 2021. [DOI: 10.1007/12_2021_94] [Reference Citation Analysis]
|
69 |
Bakr RO, Tawfike A, El-gizawy HA, Tawfik N, Abdelmohsen UR, Abdelwahab MF, Alshareef WA, Fayez SM, El-mancy SMS, El-fishawy AM, Abdelkawy MA, Fayed MAA. The metabolomic analysis of five Mentha species: cytotoxicity, anti- Helicobacter assessment, and the development of polymeric micelles for enhancing the anti- Helicobacter activity. RSC Adv 2021;11:7318-30. [DOI: 10.1039/d0ra09334c] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
70 |
Obeid MA, Aljabali AAA, Rezigue M, Amawi H, Alyamani H, Abdeljaber SN, Ferro VA. Use of Nanoparticles in Delivery of Nucleic Acids for Melanoma Treatment. Methods Mol Biol 2021;2265:591-620. [PMID: 33704742 DOI: 10.1007/978-1-0716-1205-7_41] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
71 |
Kurnik IS, D'angelo NA, Mazzola PG, Chorilli M, Kamei DT, Pereira JFB, Vicente AA, Lopes AM. Polymeric micelles using cholinium-based ionic liquids for the encapsulation and release of hydrophobic drug molecules. Biomater Sci 2021;9:2183-96. [DOI: 10.1039/d0bm01884h] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
72 |
Kandasamy G. Pharmacokinetics/pharmacodynamics and clinical relationship. Nano-Pharmacokinetics and Theranostics 2021. [DOI: 10.1016/b978-0-323-85050-6.00011-6] [Reference Citation Analysis]
|
73 |
Alven S, Aderibigbe BA. The Therapeutic Efficacy of Dendrimer and Micelle Formulations for Breast Cancer Treatment. Pharmaceutics 2020;12:E1212. [PMID: 33333778 DOI: 10.3390/pharmaceutics12121212] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
|
74 |
Bothiraja C, Dhage K, Kamble R. D-α-Tocopherol polyethylene glycol succinate and stearoylmacrogol glycerides biomaterial based nanostructured mixed micelles as nose-to-brain targeting drug delivery system. Materials Technology. [DOI: 10.1080/10667857.2020.1854517] [Reference Citation Analysis]
|
75 |
Shaikh MS, Kale MA. Formulation and molecular docking simulation study of luliconazole nanosuspension–based nanogel for transdermal drug delivery using modified polymer. Materials Today Chemistry 2020;18:100364. [DOI: 10.1016/j.mtchem.2020.100364] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
|
76 |
Kalinova R, Yordanov Y, Tzankov B, Tzankova V, Yoncheva K, Dimitrov I. Cinnamyl modified polymer micelles as efficient carriers of caffeic acid phenethyl ester. Reactive and Functional Polymers 2020;157:104763. [DOI: 10.1016/j.reactfunctpolym.2020.104763] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
77 |
Cheng SN, Tan ZG, Pandey M, Srichana T, Pichika MR, Gorain B, Choudhury H. A Critical Review on Emerging Trends in Dry Powder Inhaler Formulation for the Treatment of Pulmonary Aspergillosis. Pharmaceutics 2020;12:E1161. [PMID: 33260598 DOI: 10.3390/pharmaceutics12121161] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
78 |
Pashuck ET. Designing Enzyme-responsive Biomaterials. Peptide-based Biomaterials 2020. [DOI: 10.1039/9781839161148-00076] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
79 |
He L, Shang Z, Liu H, Yuan ZX. Alginate-Based Platforms for Cancer-Targeted Drug Delivery. Biomed Res Int 2020;2020:1487259. [PMID: 33083451 DOI: 10.1155/2020/1487259] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
|
80 |
Martins C, Chauhan VM, Araújo M, Abouselo A, Barrias CC, Aylott JW, Sarmento B. Advanced polymeric nanotechnology to augment therapeutic delivery and disease diagnosis. Nanomedicine (Lond) 2020;15:2287-309. [PMID: 32945230 DOI: 10.2217/nnm-2020-0145] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
81 |
Gote V, Ansong M, Pal D. Prodrugs and nanomicelles to overcome ocular barriers for drug penetration. Expert Opin Drug Metab Toxicol 2020;16:885-906. [PMID: 32729364 DOI: 10.1080/17425255.2020.1803278] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 5.7] [Reference Citation Analysis]
|
82 |
Ishihara K, Hachiya S, Inoue Y, Fukazawa K, Konno T. Water-Soluble and Cytocompatible Phospholipid Polymers for Molecular Complexation to Enhance Biomolecule Transportation to Cells in Vitro. Polymers (Basel) 2020;12:E1762. [PMID: 32781760 DOI: 10.3390/polym12081762] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
83 |
Li S, Zhao W, Liang N, Xu Y, Kawashima Y, Sun S. Multifunctional micelles self-assembled from hyaluronic acid conjugate for enhancing anti-tumor effect of paclitaxel. Reactive and Functional Polymers 2020;152:104608. [DOI: 10.1016/j.reactfunctpolym.2020.104608] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
|
84 |
Shen C, Zhu J, Song J, Wang J, Shen B, Yuan H, Li X. Formulation of pluronic F127/TPGS mixed micelles to improve the oral absorption of glycyrrhizic acid. Drug Development and Industrial Pharmacy 2020;46:1100-7. [DOI: 10.1080/03639045.2020.1775634] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
|
85 |
Valverde C, Lligadas G, Ronda JC, Galià M, Cádiz V. Synthesis and characterization of castor oil-derived oxidation-responsive amphiphilic block copolymers: Poly(ethylene glycol)-b-poly(11-((2-hydroxyethyl)thio)undecanoate). European Polymer Journal 2020;133:109736. [DOI: 10.1016/j.eurpolymj.2020.109736] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
86 |
Zhang Y, Li J, Wang Z, Xu M, Zeng Z, Huang J, Guan Y. Natural plant-derived polygalacturonic acid-oleanolic acid assemblies as oral-delivered nanomedicine for insulin resistance treatment. Chemical Engineering Journal 2020;390:124630. [DOI: 10.1016/j.cej.2020.124630] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
|
87 |
Tornesello AL, Tagliamonte M, Tornesello ML, Buonaguro FM, Buonaguro L. Nanoparticles to Improve the Efficacy of Peptide-Based Cancer Vaccines. Cancers (Basel) 2020;12:E1049. [PMID: 32340356 DOI: 10.3390/cancers12041049] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 9.7] [Reference Citation Analysis]
|
88 |
Melim C, Jarak I, Veiga F, Figueiras A. The potential of micelleplexes as a therapeutic strategy for osteosarcoma disease. 3 Biotech 2020;10:147. [PMID: 32181109 DOI: 10.1007/s13205-020-2142-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
|
89 |
Carrero MJ, Borreguero AM, Rodríguez JF, Ramos MJ. Different drug incorporation routes in ethylene oxide based copolymers. Polym Int 2020;69:387-396. [DOI: 10.1002/pi.5963] [Reference Citation Analysis]
|
90 |
Huang Y, Zhang W, Xu Y, Zhu S, Wu Y, Chen T, Xiao Y, Lu W, Zhang X, Yu J. Dynamic core crosslinked camptothecin prodrug micelles with reduction sensitivity and boronic acid-mediated enhanced endocytosis: An intelligent tumor-targeted delivery nanoplatform. Int J Pharm 2020;580:119250. [PMID: 32209369 DOI: 10.1016/j.ijpharm.2020.119250] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
|
91 |
Kibler E, Lavrinenko A, Kolesnik I, Stankevich K, Bolbasov E, Kudryavtseva V, Leonov A, Schepetkin I, Khlebnikov A, Quinn MT, Tverdokhlebov S. Electrosprayed poly(lactic-co-glycolic acid) particles as a promising drug delivery system for the novel JNK inhibitor IQ-1. Eur Polym J 2020;127:109598. [PMID: 32372769 DOI: 10.1016/j.eurpolymj.2020.109598] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
92 |
Liu J, Liang N, Li S, Han Y, Yan P, Kawashima Y, Cui F, Sun S. Tumor-targeting and redox-sensitive micelles based on hyaluronic acid conjugate for delivery of paclitaxel. J Biomater Appl 2020;34:1458-69. [PMID: 32046573 DOI: 10.1177/0885328220905256] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
|
93 |
Han Y, Liang N, Yan P, Kawashima Y, Cui F, Sun S. A Chitosan-Based Micellar System as Nanocarrier For the Delivery of Paclitaxel. Polymers (Basel) 2020;12:E380. [PMID: 32046268 DOI: 10.3390/polym12020380] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
|
94 |
Costamagna F, Hillaireau H, Vergnaud J, Clarisse D, Jamgotchian L, Loreau O, Denis S, Gravel E, Doris E, Fattal E. Nanotoxicology at the particle/micelle frontier: influence of core-polymerization on the intracellular distribution, cytotoxicity and genotoxicity of polydiacetylene micelles. Nanoscale 2020;12:2452-63. [PMID: 31915784 DOI: 10.1039/c9nr08714a] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
|
95 |
Kapse A, Anup N, Patel V, Saraogi GK, Mishra DK, Tekade RK. Polymeric micelles: a ray of hope among new drug delivery systems. Drug Delivery Systems 2020. [DOI: 10.1016/b978-0-12-814487-9.00006-5] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
|
96 |
Alkahtani S, Saquib Hasnain M, Nayak AK, Aminabhavi TM. Polysaccharide-based polyelectrolyte complex systems for biomedical uses. Tailor-Made Polysaccharides in Biomedical Applications 2020. [DOI: 10.1016/b978-0-12-821344-5.00007-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
97 |
Rezaei SJT, Sarijloo E, Rashidzadeh H, Zamani S, Ramazani A, Hesami A, Mohammadi E. pH-triggered prodrug micelles for cisplatin delivery: Preparation and In Vitro/Vivo evaluation. Reactive and Functional Polymers 2020;146:104399. [DOI: 10.1016/j.reactfunctpolym.2019.104399] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
|
98 |
Norouzi M, Amerian M, Amerian M, Atyabi F. Clinical applications of nanomedicine in cancer therapy. Drug Discovery Today 2020;25:107-25. [DOI: 10.1016/j.drudis.2019.09.017] [Cited by in Crossref: 48] [Cited by in F6Publishing: 50] [Article Influence: 16.0] [Reference Citation Analysis]
|
99 |
Chavan T, Muttil P, Kunda NK. Introduction to Nanomedicine in Drug Delivery. Mucosal Delivery of Drugs and Biologics in Nanoparticles 2020. [DOI: 10.1007/978-3-030-35910-2_1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
100 |
Roche A, Oriol L, Tejedor RM, Piñol M. Polymeric Self-Assemblies Based on tetra-ortho-Substituted Azobenzene as Visible Light Responsive Nanocarriers. Polymers (Basel) 2019;11:E2060. [PMID: 31835773 DOI: 10.3390/polym11122060] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
|
101 |
Grancharov G, Atanasova M, Aluani D, Yoncheva K, Tzankova V, Trusheva B, Forys A, Trzebicka B, Petrov PD. Functional block copolymers bearing pendant cinnamyl groups for enhanced solubilization of caffeic acid phenethyl ester. Polym J 2020;52:435-47. [DOI: 10.1038/s41428-019-0297-x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
|
102 |
Piazzini V, Vasarri M, Degl'Innocenti D, Guastini A, Barletta E, Salvatici MC, Bergonzi MC. Comparison of Chitosan Nanoparticles and Soluplus Micelles to Optimize the Bioactivity of Posidonia oceanica Extract on Human Neuroblastoma Cell Migration. Pharmaceutics 2019;11:E655. [PMID: 31817615 DOI: 10.3390/pharmaceutics11120655] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
|
103 |
Liu Y, Khan AR, Du X, Zhai Y, Tan H, Zhai G. Progress in the polymer-paclitaxel conjugate. Journal of Drug Delivery Science and Technology 2019;54:101237. [DOI: 10.1016/j.jddst.2019.101237] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
104 |
Farooq MA, Aquib M, Khan DH, Hussain Z, Ahsan A, Baig MMFA, Wande DP, Ahmad MM, Ahsan HM, Jiajie J, Wang B. Recent advances in the delivery of disulfiram: a critical analysis of promising approaches to improve its pharmacokinetic profile and anticancer efficacy. Daru 2019;27:853-62. [PMID: 31758497 DOI: 10.1007/s40199-019-00308-w] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
|
105 |
Braunová, Kaňa, Kudláčová, Kostka, Bouček, Betka, Šírová, Etrych. Micelle-Forming Block Copolymers Tailored for Inhibition of P-gp-Mediated Multidrug Resistance: Structure to Activity Relationship. Pharmaceutics 2019;11:579. [DOI: 10.3390/pharmaceutics11110579] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
|
106 |
Huang Y, Xu Y, Wu Y, Chen T, Lu W, Yu J. Bioinspired nanoplatform for enhanced delivery efficiency of doxorubicin into nucleus with fast endocytosis, lysosomal pH-triggered drug release, and reduced efflux. Colloids and Surfaces B: Biointerfaces 2019;183:110413. [DOI: 10.1016/j.colsurfb.2019.110413] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
107 |
Wang XF, Ren J, He HQ, Liang L, Xie X, Li ZX, Zhao JG, Yu JM. Self-assembled nanoparticles of reduction-sensitive poly (lactic-co-glycolic acid)-conjugated chondroitin sulfate A for doxorubicin delivery: preparation, characterization and evaluation. Pharm Dev Technol 2019;24:794-802. [PMID: 30907676 DOI: 10.1080/10837450.2019.1599914] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
|
108 |
Zor F, Selek FN, Orlando G, Williams DF. Biocompatibility in regenerative nanomedicine. Nanomedicine (Lond) 2019;14:2763-75. [PMID: 31612774 DOI: 10.2217/nnm-2019-0140] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
|
109 |
Jin X, Zhou J, Zhang Z, Lv H. Doxorubicin combined with betulinic acid or lonidamine in RGD ligand-targeted pH-sensitive micellar system for ovarian cancer treatment. Int J Pharm 2019;571:118751. [PMID: 31605722 DOI: 10.1016/j.ijpharm.2019.118751] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
|
110 |
Halamish HM, Trousil J, Rak D, Knudsen KD, Pavlova E, Nyström B, Štěpánek P, Sosnik A. Self-assembly and nanostructure of poly(vinyl alcohol)-graft-poly(methyl methacrylate) amphiphilic nanoparticles. Journal of Colloid and Interface Science 2019;553:512-23. [DOI: 10.1016/j.jcis.2019.06.047] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
|
111 |
Diogo P, F Faustino MA, P M S Neves MG, Palma PJ, P Baptista I, Gonçalves T, Santos JM. An Insight into Advanced Approaches for Photosensitizer Optimization in Endodontics-A Critical Review. J Funct Biomater 2019;10:E44. [PMID: 31575005 DOI: 10.3390/jfb10040044] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 6.3] [Reference Citation Analysis]
|
112 |
Pescina S, Lucca LG, Govoni P, Padula C, Favero ED, Cantù L, Santi P, Nicoli S. Ex Vivo Conjunctival Retention and Transconjunctival Transport of Poorly Soluble Drugs Using Polymeric Micelles. Pharmaceutics 2019;11:E476. [PMID: 31540066 DOI: 10.3390/pharmaceutics11090476] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
|
113 |
Farooq MA, Aquib M, Farooq A, Haleem Khan D, Joelle Maviah MB, Sied Filli M, Kesse S, Boakye-Yiadom KO, Mavlyanova R, Parveen A, Wang B. Recent progress in nanotechnology-based novel drug delivery systems in designing of cisplatin for cancer therapy: an overview. Artif Cells Nanomed Biotechnol 2019;47:1674-92. [PMID: 31066300 DOI: 10.1080/21691401.2019.1604535] [Cited by in Crossref: 55] [Cited by in F6Publishing: 43] [Article Influence: 13.8] [Reference Citation Analysis]
|
114 |
Shi M, Jiang H, Yin L, Liu Y, Xu M. Development of an UPLC-MS/MS method coupled with in-source CID for quantitative analysis of PEG-PLA copolymer and its application to a pharmacokinetic study in rats. J Chromatogr B Analyt Technol Biomed Life Sci 2019;1125:121716. [PMID: 31319286 DOI: 10.1016/j.jchromb.2019.121716] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
|
115 |
Kansom T, Dumkliang E, Patrojanasophon P, Sajomsang W, Saeeng R, Zhu WM, Opanasopit P. Folate-Functionalized Amphiphilic Chitosan Polymeric Micelles Containing Andrographolide Analogue (3A.1) for Colorectal Cancer. KEM 2019;819:15-20. [DOI: 10.4028/www.scientific.net/kem.819.15] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
116 |
Lima AC, Ferreira H, Reis RL, Neves NM. Biodegradable polymers: an update on drug delivery in bone and cartilage diseases. Expert Opinion on Drug Delivery 2019;16:795-813. [DOI: 10.1080/17425247.2019.1635117] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
|
117 |
Li Y, Zhang T, Liu Q, He J. PEG-Derivatized Dual-Functional Nanomicelles for Improved Cancer Therapy. Front Pharmacol 2019;10:808. [PMID: 31379579 DOI: 10.3389/fphar.2019.00808] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
|
118 |
Heenatigala Palliyage G, Singh S, Ashby CR Jr, Tiwari AK, Chauhan H. Pharmaceutical Topical Delivery of Poorly Soluble Polyphenols: Potential Role in Prevention and Treatment of Melanoma. AAPS PharmSciTech 2019;20:250. [PMID: 31297635 DOI: 10.1208/s12249-019-1457-1] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
|
119 |
Tran PH, Duan W, Lee B, Tran TT. The use of zein in the controlled release of poorly water-soluble drugs. International Journal of Pharmaceutics 2019;566:557-64. [DOI: 10.1016/j.ijpharm.2019.06.018] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 9.0] [Reference Citation Analysis]
|
120 |
Karami Z, Sadighian S, Rostamizadeh K, Hosseini SH, Rezaee S, Hamidi M. Magnetic brain targeting of naproxen-loaded polymeric micelles: pharmacokinetics and biodistribution study. Materials Science and Engineering: C 2019;100:771-80. [DOI: 10.1016/j.msec.2019.03.004] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 5.5] [Reference Citation Analysis]
|
121 |
Toncheva-moncheva N, Bakardzhiev P, Rangelov S, Trzebicka B, Forys A, Petrov PD. Linear Amphiphilic Polyglycidol/Poly(ε-caprolactone) Block Copolymers Prepared via “Click” Chemistry-Based Concept. Macromolecules 2019;52:3435-47. [DOI: 10.1021/acs.macromol.9b00366] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
|
122 |
Grimaudo MA, Pescina S, Padula C, Santi P, Concheiro A, Alvarez-Lorenzo C, Nicoli S. Topical application of polymeric nanomicelles in ophthalmology: a review on research efforts for the noninvasive delivery of ocular therapeutics. Expert Opin Drug Deliv 2019;16:397-413. [PMID: 30889977 DOI: 10.1080/17425247.2019.1597848] [Cited by in Crossref: 36] [Cited by in F6Publishing: 29] [Article Influence: 9.0] [Reference Citation Analysis]
|
123 |
Zajdel A, Wilczok A, Jelonek K, Musiał-Kulik M, Foryś A, Li S, Kasperczyk J. Cytotoxic Effect of Paclitaxel and Lapatinib Co-Delivered in Polylactide-co-Poly(ethylene glycol) Micelles on HER-2-Negative Breast Cancer Cells. Pharmaceutics 2019;11:E169. [PMID: 30959904 DOI: 10.3390/pharmaceutics11040169] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
|
124 |
Min B, Seo M, Kim BO, Koh Y, Yi Y, Kim H. Structural characteristics of mPEG-PDLLA and their effects on micelle stability. Colloid Polym Sci 2019;297:785-93. [DOI: 10.1007/s00396-019-04495-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
125 |
Dai Y, Chen X, Zhang X. Recent advances in stimuli-responsive polymeric micelles via click chemistry. Polym Chem 2019;10:34-44. [DOI: 10.1039/c8py01174e] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 12.0] [Reference Citation Analysis]
|
126 |
Dai Y, Wu D, Lin S, Ma X, Zhang X, Xia F. pH-responsive polymeric micelles with tunable aggregation-induced emission and controllable drug release. J Nanopart Res 2019;21. [DOI: 10.1007/s11051-018-4447-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
|
127 |
Khan AR, Yang X, Fu M, Zhai G. Recent progress of drug nanoformulations targeting to brain. Journal of Controlled Release 2018;291:37-64. [DOI: 10.1016/j.jconrel.2018.10.004] [Cited by in Crossref: 92] [Cited by in F6Publishing: 78] [Article Influence: 18.4] [Reference Citation Analysis]
|
128 |
Casajus H, Saba S, Vlach M, Vène E, Ribault C, Tranchimand S, Nugier-Chauvin C, Dubreucq E, Loyer P, Cammas-Marion S, Lepareur N. Cell Uptake and Biocompatibility of Nanoparticles Prepared from Poly(benzyl malate) (Co)polymers Obtained through Chemical and Enzymatic Polymerization in Human HepaRG Cells and Primary Macrophages. Polymers (Basel) 2018;10:E1244. [PMID: 30961169 DOI: 10.3390/polym10111244] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
|
129 |
Kesharwani SS, Kaur S, Tummala H, Sangamwar AT. Overcoming multiple drug resistance in cancer using polymeric micelles. Expert Opinion on Drug Delivery 2018;15:1127-42. [DOI: 10.1080/17425247.2018.1537261] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 4.4] [Reference Citation Analysis]
|
130 |
Kesharwani SS, Kaur S, Tummala H, Sangamwar AT. Multifunctional approaches utilizing polymeric micelles to circumvent multidrug resistant tumors. Colloids Surf B Biointerfaces 2019;173:581-90. [PMID: 30352379 DOI: 10.1016/j.colsurfb.2018.10.022] [Cited by in Crossref: 34] [Cited by in F6Publishing: 44] [Article Influence: 6.8] [Reference Citation Analysis]
|
131 |
Bodratti AM, Alexandridis P. Amphiphilic block copolymers in drug delivery: advances in formulation structure and performance. Expert Opinion on Drug Delivery 2018;15:1085-104. [DOI: 10.1080/17425247.2018.1529756] [Cited by in Crossref: 75] [Cited by in F6Publishing: 69] [Article Influence: 15.0] [Reference Citation Analysis]
|
132 |
Feng R, Deng P, Zhou F, Feng S, Song Z. Pluronic F127-cyclodextrin conjugate micelles for encapsulation of honokiol. J Nanopart Res 2018;20. [DOI: 10.1007/s11051-018-4367-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
|
133 |
Large DE, Soucy JR, Hebert J, Auguste DT. Advances in Receptor-Mediated, Tumor-Targeted Drug Delivery. Adv Therap 2019;2:1800091. [DOI: 10.1002/adtp.201800091] [Cited by in Crossref: 74] [Cited by in F6Publishing: 75] [Article Influence: 14.8] [Reference Citation Analysis]
|
134 |
Jin X, Yang Q, Cai N. Preparation of ginsenoside compound-K mixed micelles with improved retention and antitumor efficacy. Int J Nanomedicine 2018;13:3827-38. [PMID: 30013338 DOI: 10.2147/IJN.S167529] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
|
135 |
Simões A, Veiga F, Figueiras A, Vitorino C. A practical framework for implementing Quality by Design to the development of topical drug products: Nanosystem-based dosage forms. Int J Pharm 2018;548:385-99. [PMID: 29953928 DOI: 10.1016/j.ijpharm.2018.06.052] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 4.4] [Reference Citation Analysis]
|
136 |
Liang N, Sun S, Gong X, Li Q, Yan P, Cui F. Polymeric Micelles Based on Modified Glycol Chitosan for Paclitaxel Delivery: Preparation, Characterization and Evaluation. Int J Mol Sci 2018;19:E1550. [PMID: 29882845 DOI: 10.3390/ijms19061550] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
|
137 |
Kołoczek P, Skórska-Stania A, Cierniak A, Sebastian V, Komarnicka UK, Płotek M, Kyzioł A. Polymeric micelle-mediated delivery of half-sandwich ruthenium(II) complexes with phosphanes derived from fluoroloquinolones for lung adenocarcinoma treatment. Eur J Pharm Biopharm 2018;128:69-81. [PMID: 29678734 DOI: 10.1016/j.ejpb.2018.04.016] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]
|
138 |
Rai MF, Pham CT. Intra-articular drug delivery systems for joint diseases. Curr Opin Pharmacol 2018;40:67-73. [PMID: 29625332 DOI: 10.1016/j.coph.2018.03.013] [Cited by in Crossref: 48] [Cited by in F6Publishing: 52] [Article Influence: 9.6] [Reference Citation Analysis]
|
139 |
Miao L, Su J, Zhuo X, Luo L, Kong Y, Gou J, Yin T, Zhang Y, He H, Tang X. mPEG 5k - b -PLGA 2k /PCL 3.4k /MCT Mixed Micelles as Carriers of Disulfiram for Improving Plasma Stability and Antitumor Effect in Vivo. Mol Pharmaceutics 2018;15:1556-64. [DOI: 10.1021/acs.molpharmaceut.7b01094] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
|
140 |
Ito T, Takami T, Uchida Y, Murakami Y. Chitosan gel sheet containing drug carriers with controllable drug-release properties. Colloids and Surfaces B: Biointerfaces 2018;163:257-65. [DOI: 10.1016/j.colsurfb.2017.12.054] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 4.2] [Reference Citation Analysis]
|
141 |
Andrade F, Almeida A, Rafael D, Schwartz S, Sarmento B. Micellar-Based Nanoparticles for Cancer Therapy and Bioimaging. Nanooncology 2018. [DOI: 10.1007/978-3-319-89878-0_6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
|
142 |
Makhmalzade BS, Chavoshy F. Polymeric micelles as cutaneous drug delivery system in normal skin and dermatological disorders. J Adv Pharm Technol Res 2018;9:2-8. [PMID: 29441317 DOI: 10.4103/japtr.JAPTR_314_17] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 9.8] [Reference Citation Analysis]
|
143 |
Pawlish G, Spivack K, Gabriel A, Huang Z, Comolli N; 1 Department of Bioengineering, College of Engineering, Temple University, 1947 N 12th St, Philadelphia, PA 19122, USA, 2 Department of Chemical Engineering, College of Engineering, Villanova University, 800 E. Lancaster Ave., Villanova, PA 19085, USA. . AIMS Bioengineering 2018;5:106-32. [DOI: 10.3934/bioeng.2018.2.106] [Reference Citation Analysis]
|