BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: van Elk M, Murphy BP, Eufrásio-da-silva T, O’reilly DP, Vermonden T, Hennink WE, Duffy GP, Ruiz-hernández E. Nanomedicines for advanced cancer treatments: Transitioning towards responsive systems. International Journal of Pharmaceutics 2016;515:132-64. [DOI: 10.1016/j.ijpharm.2016.10.013] [Cited by in Crossref: 69] [Cited by in F6Publishing: 71] [Article Influence: 9.9] [Reference Citation Analysis]
Number Citing Articles
1 Boggio E, Gigliotti CL, Stoppa I, Pantham D, Sacchetti S, Rolla R, Grattarola M, Monge C, Pizzimenti S, Dianzani U, Dianzani C, Battaglia L. Exploiting Nanomedicine for Cancer Polychemotherapy: Recent Advances and Clinical Applications. Pharmaceutics 2023;15:937. [DOI: 10.3390/pharmaceutics15030937] [Reference Citation Analysis]
2 Siwal SS, Kaur H, Chauhan G, Thakur VK. MXene‐Based Nanomaterials for Biomedical Applications: Healthier Substitute Materials for the Future. Advanced NanoBiomed Research 2022. [DOI: 10.1002/anbr.202200123] [Reference Citation Analysis]
3 Ali F, Neha K, Parveen S. Current regulatory landscape of nanomaterials and nanomedicines: A global perspective. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.104118] [Reference Citation Analysis]
4 Chaudhuri A, Kumar DN, Dehari D, Singh S, Kumar P, Bolla PK, Kumar D, Agrawal AK. Emergence of Nanotechnology as a Powerful Cavalry against Triple-Negative Breast Cancer (TNBC). Pharmaceuticals 2022;15:542. [DOI: 10.3390/ph15050542] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
5 Zentel R. Nanoparticular Carriers As Objects to Study Intentional and Unintentional Bioconjugation. ACS Biomater Sci Eng 2022. [PMID: 35412796 DOI: 10.1021/acsbiomaterials.2c00091] [Reference Citation Analysis]
6 Mir MA, Aisha S, Mehraj U. Different drug delivery approaches in combinational therapy in TNBC. Combinational Therapy in Triple Negative Breast Cancer 2022. [DOI: 10.1016/b978-0-323-96136-3.00012-1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Xu X, Zhang R, Yang X, Lu Y, Yang Z, Peng M, Ma Z, Jiao J, Li L. A Honeycomb-Like Bismuth/Manganese Oxide Nanoparticle with Mutual Reinforcement of Internal and External Response for Triple-Negative Breast Cancer Targeted Therapy. Adv Healthc Mater 2021;10:e2100518. [PMID: 34297897 DOI: 10.1002/adhm.202100518] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
8 Živojević K, Mladenović M, Djisalov M, Mundzic M, Ruiz-Hernandez E, Gadjanski I, Knežević NŽ. Advanced mesoporous silica nanocarriers in cancer theranostics and gene editing applications. J Control Release 2021;337:193-211. [PMID: 34293320 DOI: 10.1016/j.jconrel.2021.07.029] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
9 Rysin A, Paal M, Lokerse WJM, Wedmann B, Hossann M, Vogeser M, Winter G, Lindner LH. Evaluation of release and pharmacokinetics of hexadecylphosphocholine (miltefosine) in phosphatidyldiglycerol-based thermosensitive liposomes. Biochim Biophys Acta Biomembr 2021;1863:183698. [PMID: 34283999 DOI: 10.1016/j.bbamem.2021.183698] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Radaic A, Joo NE, Jeong SH, Yoo SI, Kotov N, Kapila YL. Phosphatidylserine-Gold Nanoparticles (PS-AuNP) Induce Prostate and Breast Cancer Cell Apoptosis. Pharmaceutics 2021;13. [PMID: 34371784 DOI: 10.3390/pharmaceutics13071094] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Cheng Z, Li M, Dey R, Chen Y. Nanomaterials for cancer therapy: current progress and perspectives. J Hematol Oncol 2021;14:85. [PMID: 34059100 DOI: 10.1186/s13045-021-01096-0] [Cited by in Crossref: 88] [Cited by in F6Publishing: 103] [Article Influence: 44.0] [Reference Citation Analysis]
12 Shilova O, Shramova E, Proshkina G, Deyev S. Natural and Designed Toxins for Precise Therapy: Modern Approaches in Experimental Oncology. Int J Mol Sci 2021;22:4975. [PMID: 34067057 DOI: 10.3390/ijms22094975] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
13 Pereira I, Saleh M, Nunes C, Reis S, Veiga F, Paiva-Santos AC. Preclinical developments of natural-occurring halloysite clay nanotubes in cancer therapeutics. Adv Colloid Interface Sci 2021;291:102406. [PMID: 33819725 DOI: 10.1016/j.cis.2021.102406] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
14 Zamhuri A, Lim GP, Ma NL, Tee KS, Soon CF. MXene in the lens of biomedical engineering: synthesis, applications and future outlook. Biomed Eng Online 2021;20:33. [PMID: 33794899 DOI: 10.1186/s12938-021-00873-9] [Cited by in Crossref: 43] [Cited by in F6Publishing: 45] [Article Influence: 21.5] [Reference Citation Analysis]
15 Samadi A, Pourmadadi M, Yazdian F, Rashedi H, Navaei-Nigjeh M, Eufrasio-da-Silva T. Ameliorating quercetin constraints in cancer therapy with pH-responsive agarose-polyvinylpyrrolidone -hydroxyapatite nanocomposite encapsulated in double nanoemulsion. Int J Biol Macromol 2021;182:11-25. [PMID: 33775763 DOI: 10.1016/j.ijbiomac.2021.03.146] [Cited by in Crossref: 13] [Cited by in F6Publishing: 19] [Article Influence: 6.5] [Reference Citation Analysis]
16 Fernández-ponce C, Mánuel JM, Fernández-cisnal R, Félix E, Beato-lópez J, Muñoz-miranda JP, Beltrán AM, Santos AJ, Morales FM, Yeste MP, Bomati-miguel O, Litrán R, García-cózar F. Superficial Characteristics and Functionalization Effectiveness of Non-Toxic Glutathione-Capped Magnetic, Fluorescent, Metallic and Hybrid Nanoparticles for Biomedical Applications. Metals 2021;11:383. [DOI: 10.3390/met11030383] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
17 Berger M, Scherer C, Noskov S, Bantz C, Nickel C, Schupp W, Maskos M. Influence of oscillating main flow on separation efficiency in asymmetrical flow field-flow fractionation. J Chromatogr A 2021;1640:461941. [PMID: 33556685 DOI: 10.1016/j.chroma.2021.461941] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
18 Qamar H, Hussain K, Soni A, Khan A, Hussain T, Chénais B. Cyanobacteria as Natural Therapeutics and Pharmaceutical Potential: Role in Antitumor Activity and as Nanovectors. Molecules 2021;26:E247. [PMID: 33466486 DOI: 10.3390/molecules26010247] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
19 Vilsinski BH, Gonçalves RS, Caetano W, de Souza PR, de Oliveira AC, Gomes YS, Gerola AP, Martins AF, Valente AJM, Muniz EC. Photodynamic Therapy: Use of Nanocarrier Systems to Improve Its Effectiveness. Functional Properties of Advanced Engineering Materials and Biomolecules 2021. [DOI: 10.1007/978-3-030-62226-8_10] [Reference Citation Analysis]
20 Seba V, Silva G, Chee BS, Henn JG, de Lima GG, Cao Z, Marins M, Nugent M. Stimuli-responsive biopolymeric systems for drug delivery to cancer cells. Tailor-Made and Functionalized Biopolymer Systems 2021. [DOI: 10.1016/b978-0-12-821437-4.00014-1] [Reference Citation Analysis]
21 Ahmad I, Tabassum H, Shamsi FB, Saeed SM, Aslam S, Tabassum S. Nanomedicine and cancer. Nanomedicine Manufacturing and Applications 2021. [DOI: 10.1016/b978-0-12-820773-4.00004-4] [Reference Citation Analysis]
22 Palmese LL, Fan M, Scott RA, Tan H, Kiick KL. Multi-stimuli-responsive, liposome-crosslinked poly(ethylene glycol) hydrogels for drug delivery. J Biomater Sci Polym Ed 2021;32:635-56. [PMID: 33231137 DOI: 10.1080/09205063.2020.1855392] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
23 Souza PR, Vilsinski BH, Nunes CS, Bonkovoski LC, Garcia F, Nakamura CV, Caetano W, Valente AJM, Martins AF, Muniz EC. Application of a polyelectrolyte complex based on biocompatible polysaccharides for colorectal cancer inhibition. Carbohydr Res 2021;499:108194. [PMID: 33234262 DOI: 10.1016/j.carres.2020.108194] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
24 Amin M, Huang W, Seynhaeve ALB, Ten Hagen TLM. Hyperthermia and Temperature-Sensitive Nanomaterials for Spatiotemporal Drug Delivery to Solid Tumors. Pharmaceutics 2020;12:E1007. [PMID: 33105816 DOI: 10.3390/pharmaceutics12111007] [Cited by in Crossref: 23] [Cited by in F6Publishing: 27] [Article Influence: 7.7] [Reference Citation Analysis]
25 Jiang B, Zhou L, Lu J, Wang Y, Liu C, You L, Guo J. Stroma-Targeting Therapy in Pancreatic Cancer: One Coin With Two Sides?Front Oncol. 2020;10:576399. [PMID: 33178608 DOI: 10.3389/fonc.2020.576399] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 9.0] [Reference Citation Analysis]
26 Richtering W, Alberg I, Zentel R. Nanoparticles in the Biological Context: Surface Morphology and Protein Corona Formation. Small 2020;16:2002162. [DOI: 10.1002/smll.202002162] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 12.0] [Reference Citation Analysis]
27 Alberg I, Kramer S, Schinnerer M, Hu Q, Seidl C, Leps C, Drude N, Möckel D, Rijcken C, Lammers T, Diken M, Maskos M, Morsbach S, Landfester K, Tenzer S, Barz M, Zentel R. Polymeric Nanoparticles with Neglectable Protein Corona. Small 2020;16:1907574. [DOI: 10.1002/smll.201907574] [Cited by in Crossref: 60] [Cited by in F6Publishing: 61] [Article Influence: 20.0] [Reference Citation Analysis]
28 Du J, Wu Q, Li Y, Liu P, Han X, Wang L, Yuan J, Meng X, Xiao Y. Preparation and characterization of Keratin-PEG conjugate-based micelles as a tumor microenvironment-responsive drug delivery system. Journal of Biomaterials Science, Polymer Edition 2020;31:1163-78. [DOI: 10.1080/09205063.2020.1747044] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
29 Perini MV, Dmello RS, Nero TL, Chand AL. Evaluating the benefits of renin-angiotensin system inhibitors as cancer treatments. Pharmacol Ther 2020;211:107527. [PMID: 32173557 DOI: 10.1016/j.pharmthera.2020.107527] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
30 Seynhaeve ALB, Amin M, Haemmerich D, van Rhoon GC, Ten Hagen TLM. Hyperthermia and smart drug delivery systems for solid tumor therapy. Adv Drug Deliv Rev 2020;163-164:125-44. [PMID: 32092379 DOI: 10.1016/j.addr.2020.02.004] [Cited by in Crossref: 70] [Cited by in F6Publishing: 78] [Article Influence: 23.3] [Reference Citation Analysis]
31 Ali ES, Sharker SM, Islam MT, Khan IN, Shaw S, Rahman MA, Uddin SJ, Shill MC, Rehman S, Das N, Ahmad S, Shilpi JA, Tripathi S, Mishra SK, Mubarak MS. Targeting cancer cells with nanotherapeutics and nanodiagnostics: Current status and future perspectives. Semin Cancer Biol 2021;69:52-68. [PMID: 32014609 DOI: 10.1016/j.semcancer.2020.01.011] [Cited by in Crossref: 61] [Cited by in F6Publishing: 65] [Article Influence: 20.3] [Reference Citation Analysis]
32 Yu X, Sun L, Tan L, Wang M, Ren X, Pi J, Jiang M, Li N. Preparation and Characterization of PLGA-PEG-PLGA Nanoparticles Containing Salidroside and Tamoxifen for Breast Cancer Therapy. AAPS PharmSciTech 2020;21:85. [PMID: 31997020 DOI: 10.1208/s12249-019-1523-8] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 5.7] [Reference Citation Analysis]
33 Eleftheriou K, Kaminari A, Panagiotaki KN, Sideratou Z, Zachariadis M, Anastassopoulou J, Tsiourvas D. A combination drug delivery system employing thermosensitive liposomes for enhanced cell penetration and improved in vitro efficacy. Int J Pharm 2020;574:118912. [PMID: 31809858 DOI: 10.1016/j.ijpharm.2019.118912] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
34 Yan W, Leung SS, To KK. Updates on the use of liposomes for active tumor targeting in cancer therapy. Nanomedicine (Lond) 2020;15:303-18. [PMID: 31802702 DOI: 10.2217/nnm-2019-0308] [Cited by in Crossref: 48] [Cited by in F6Publishing: 54] [Article Influence: 12.0] [Reference Citation Analysis]
35 de Matos MBC, Deckers R, van Elburg B, Lajoinie G, de Miranda BS, Versluis M, Schiffelers R, Kok RJ. Ultrasound-Sensitive Liposomes for Triggered Macromolecular Drug Delivery: Formulation and In Vitro Characterization. Front Pharmacol 2019;10:1463. [PMID: 31866867 DOI: 10.3389/fphar.2019.01463] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
36 Velázquez NS, Ferreyra MG, Mengatto LN, Santagapita PR, Buera MP, Luna JA. Paclitaxel/β-Cyclodextrin interactions, a perspective from pulsed NMR spectroscopy experiments. Carbohydrate Research 2019;486:107828. [DOI: 10.1016/j.carres.2019.107828] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
37 Bresseleers J, Bagheri M, Storm G, Metselaar JM, Hennink WE, Meeuwissen SA, van Hest JCM. Scale-Up of the Manufacturing Process To Produce Docetaxel-Loaded mPEG-b-p(HPMA-Bz) Block Copolymer Micelles for Pharmaceutical Applications. Org Process Res Dev 2019;23:2707-15. [PMID: 32952390 DOI: 10.1021/acs.oprd.9b00387] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
38 Weber C, Voigt M, Simon J, Danner AK, Frey H, Mailänder V, Helm M, Morsbach S, Landfester K. Functionalization of Liposomes with Hydrophilic Polymers Results in Macrophage Uptake Independent of the Protein Corona. Biomacromolecules 2019;20:2989-99. [PMID: 31268685 DOI: 10.1021/acs.biomac.9b00539] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 9.3] [Reference Citation Analysis]
39 Dhasmana* A. Nanotherapeutic agent for cancer: Miracle or catastrophe. Ann Biomed Sci Eng 2019;3:010-012. [DOI: 10.29328/journal.abse.1001005] [Reference Citation Analysis]
40 Pethe AM, Yadav KS. Polymers, responsiveness and cancer therapy. Artif Cells Nanomed Biotechnol 2019;47:395-405. [PMID: 30688110 DOI: 10.1080/21691401.2018.1559176] [Cited by in Crossref: 35] [Cited by in F6Publishing: 28] [Article Influence: 8.8] [Reference Citation Analysis]
41 Santos AC, Pereira I, Magalhães M, Pereira-Silva M, Caldas M, Ferreira L, Figueiras A, Ribeiro AJ, Veiga F. Targeting Cancer Via Resveratrol-Loaded Nanoparticles Administration: Focusing on In Vivo Evidence. AAPS J 2019;21:57. [PMID: 31016543 DOI: 10.1208/s12248-019-0325-y] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
42 Fang L, Kong SS, Zhong LK, Wang CM, Liu YJ, Ding HY, Sun J, Zhang YW, Li FZ, Huang P. Asiatic acid enhances intratumor delivery and the antitumor effect of pegylated liposomal doxorubicin by reducing tumor-stroma collagen. Acta Pharmacol Sin 2019;40:539-45. [PMID: 29921887 DOI: 10.1038/s41401-018-0038-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
43 Pawar A, Prabhu P. Nanosoldiers: A promising strategy to combat triple negative breast cancer. Biomedicine & Pharmacotherapy 2019;110:319-41. [DOI: 10.1016/j.biopha.2018.11.122] [Cited by in Crossref: 42] [Cited by in F6Publishing: 45] [Article Influence: 10.5] [Reference Citation Analysis]
44 Ji DK, Ménard-Moyon C, Bianco A. Physically-triggered nanosystems based on two-dimensional materials for cancer theranostics. Adv Drug Deliv Rev 2019;138:211-32. [PMID: 30172925 DOI: 10.1016/j.addr.2018.08.010] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 10.3] [Reference Citation Analysis]
45 Yamala AK, Nadella V, Mastai Y, Prakash H, Paik P. Poly-N-acryloyl-(l-phenylalanine methyl ester) hollow core nanocapsules facilitate sustained delivery of immunomodulatory drugs and exhibit adjuvant properties. Nanoscale 2017;9:14006-14. [PMID: 28891586 DOI: 10.1039/c7nr03724d] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 3.2] [Reference Citation Analysis]
46 Bagheri M, Bresseleers J, Varela-moreira A, Sandre O, Meeuwissen SA, Schiffelers RM, Metselaar JM, van Nostrum CF, van Hest JCM, Hennink WE. Effect of Formulation and Processing Parameters on the Size of mPEG- b -p(HPMA-Bz) Polymeric Micelles. Langmuir 2018;34:15495-506. [DOI: 10.1021/acs.langmuir.8b03576] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 6.0] [Reference Citation Analysis]
47 Argenziano M, Lombardi C, Ferrara B, Trotta F, Caldera F, Blangetti M, Koltai H, Kapulnik Y, Yarden R, Gigliotti L, Dianzani U, Dianzani C, Prandi C, Cavalli R. Glutathione/pH-responsive nanosponges enhance strigolactone delivery to prostate cancer cells. Oncotarget 2018;9:35813-29. [PMID: 30533197 DOI: 10.18632/oncotarget.26287] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 5.6] [Reference Citation Analysis]
48 Tan T, Wang Y, Wang H, Cao H, Wang Z, Wang J, Li J, Li Y, Zhang Z, Wang S. Apoferritin nanocages loading mertansine enable effective eradiation of cancer stem-like cells in vitro. Int J Pharm 2018;553:201-9. [PMID: 30339945 DOI: 10.1016/j.ijpharm.2018.10.038] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
49 Weber C, Simon J, Mailänder V, Morsbach S, Landfester K. Preservation of the soft protein corona in distinct flow allows identification of weakly bound proteins. Acta Biomater 2018;76:217-24. [PMID: 29885856 DOI: 10.1016/j.actbio.2018.05.057] [Cited by in Crossref: 54] [Cited by in F6Publishing: 47] [Article Influence: 10.8] [Reference Citation Analysis]
50 Almeida A, Macedo H, Neves JD, Sarmento B. Thermo-responsive Nanomedicines for Drug Delivery in the Gastrointestinal Tract. Stimuli-responsive Drug Delivery Systems 2018. [DOI: 10.1039/9781788013536-00083] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
51 Richard PU, Craciun I, Gaitzsch J, Weiner L, Palivan CG. Delivery of ROS Generating Anthraquinones Using Reduction-Responsive Peptide-Based Nanoparticles. Helv Chim Acta 2018;101:e1800064. [DOI: 10.1002/hlca.201800064] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
52 Radaic A, de Jesus MB. Solid lipid nanoparticles release DNA upon endosomal acidification in human embryonic kidney cells. Nanotechnology 2018;29:315102. [PMID: 29756603 DOI: 10.1088/1361-6528/aac447] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
53 Malone CD, Newton IG. Molecular imaging: The convergence of form and function. AR 2018. [DOI: 10.37549/ar2484] [Reference Citation Analysis]
54 Xu L, Shao Y, Chang C, Zhu Y. Efficient Active Oxygen Free Radical Generated in Tumor Cell by Loading-(HCONH₂)·H₂O₂ Delivery Nanosystem with Soft-X-ray Radiotherapy. Materials (Basel) 2018;11:E596. [PMID: 29649155 DOI: 10.3390/ma11040596] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
55 Merino M, Zalba S, Garrido MJ. Immunoliposomes in clinical oncology: State of the art and future perspectives. Journal of Controlled Release 2018;275:162-76. [DOI: 10.1016/j.jconrel.2018.02.015] [Cited by in Crossref: 51] [Cited by in F6Publishing: 43] [Article Influence: 10.2] [Reference Citation Analysis]
56 Ji M, Qiu X, Hou L, Huang S, Li Y, Liu Y, Duan S, Hu Y. Construction and application of a liver cancer-targeting drug delivery system based on core-shell gold nanocages. Int J Nanomedicine 2018;13:1773-89. [PMID: 29606870 DOI: 10.2147/IJN.S151043] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
57 Rhodes KR, Green JJ. Nanoscale artificial antigen presenting cells for cancer immunotherapy. Mol Immunol 2018;98:13-8. [PMID: 29525074 DOI: 10.1016/j.molimm.2018.02.016] [Cited by in Crossref: 43] [Cited by in F6Publishing: 47] [Article Influence: 8.6] [Reference Citation Analysis]
58 Gheybi H, Sattari S, Bodaghi A, Soleimani K, Dadkhah A, Adeli M. Polyglycerols. Engineering of Biomaterials for Drug Delivery Systems 2018. [DOI: 10.1016/b978-0-08-101750-0.00005-2] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
59 Estanqueiro M, Vasconcelos H, Sousa Lobo JM, Amaral H. Delivering miRNA modulators for cancer treatment. Drug Targeting and Stimuli Sensitive Drug Delivery Systems 2018. [DOI: 10.1016/b978-0-12-813689-8.00014-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
60 Bayir S, Barras A, Boukherroub R, Szunerits S, Raehm L, Richeter S, Durand J. Mesoporous silica nanoparticles in recent photodynamic therapy applications. Photochem Photobiol Sci 2018;17:1651-74. [DOI: 10.1039/c8pp00143j] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 6.2] [Reference Citation Analysis]
61 Magalhães M, Figueiras A, Veiga F. Smart micelleplexes. Design and Development of New Nanocarriers. Elsevier; 2018. pp. 257-91. [DOI: 10.1016/b978-0-12-813627-0.00007-7] [Cited by in Crossref: 6] [Article Influence: 1.2] [Reference Citation Analysis]
62 Swierczewska M, Crist RM, McNeil SE. Evaluating Nanomedicines: Obstacles and Advancements. Methods Mol Biol 2018;1682:3-16. [PMID: 29039088 DOI: 10.1007/978-1-4939-7352-1_1] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
63 Mele E. Introduction: Smart Materials in Biomedicine. Smart Nanoparticles for Biomedicine 2018. [DOI: 10.1016/b978-0-12-814156-4.00001-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
64 Mishra B, Thokala S. Multifunctional Nanocarrier Systems for Effective Delivery of Drugs in Cancer Treatment. Multifunctional Nanocarriers for Contemporary Healthcare Applications 2018. [DOI: 10.4018/978-1-5225-4781-5.ch011] [Reference Citation Analysis]
65 Huang Y, Gao Y, Chen T, Xu Y, Lu W, Yu J, Xiao Y, Liu S. Reduction-Triggered Release of CPT from Acid-Degradable Polymeric Prodrug Micelles Bearing Boronate Ester Bonds with Enhanced Cellular Uptake. ACS Biomater Sci Eng 2017;3:3364-75. [DOI: 10.1021/acsbiomaterials.7b00618] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
66 Martín-Saavedra F, Ruiz-Hernández E, Escudero-Duch C, Prieto M, Arruebo M, Sadeghi N, Deckers R, Storm G, Hennink WE, Santamaría J, Vilaboa N. Lipogels responsive to near-infrared light for the triggered release of therapeutic agents. Acta Biomater 2017;61:54-65. [PMID: 28801266 DOI: 10.1016/j.actbio.2017.08.010] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
67 Yuana Y, Jiang L, Lammertink BHA, Vader P, Deckers R, Bos C, Schiffelers RM, Moonen CT. Microbubbles-Assisted Ultrasound Triggers the Release of Extracellular Vesicles. Int J Mol Sci 2017;18:E1610. [PMID: 28757579 DOI: 10.3390/ijms18081610] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 3.3] [Reference Citation Analysis]
68 van Alem CMA, Boonstra M, Prins J, Bezhaeva T, van Essen MF, Ruben JM, Vahrmeijer AL, van der Veer EP, de Fijter JW, Reinders ME, Meijer O, Metselaar JM, van Kooten C, Rotmans JI. Local delivery of liposomal prednisolone leads to an anti-inflammatory profile in renal ischaemia–reperfusion injury in the rat. Nephrology Dialysis Transplantation 2018;33:44-53. [DOI: 10.1093/ndt/gfx204] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
69 Bernabeu E, Cagel M, Lagomarsino E, Moretton M, Chiappetta DA. Paclitaxel: What has been done and the challenges remain ahead. International Journal of Pharmaceutics 2017;526:474-95. [DOI: 10.1016/j.ijpharm.2017.05.016] [Cited by in Crossref: 200] [Cited by in F6Publishing: 211] [Article Influence: 33.3] [Reference Citation Analysis]
70 Genchi GG, Marino A, Grillone A, Pezzini I, Ciofani G. Remote Control of Cellular Functions: The Role of Smart Nanomaterials in the Medicine of the Future. Adv Healthc Mater 2017;6. [PMID: 28338285 DOI: 10.1002/adhm.201700002] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 3.8] [Reference Citation Analysis]
71 Pedersen SF, Novak I, Alves F, Schwab A, Pardo LA. Alternating pH landscapes shape epithelial cancer initiation and progression: Focus on pancreatic cancer. BioEssays 2017;39:1600253. [DOI: 10.1002/bies.201600253] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 5.8] [Reference Citation Analysis]
72 Suma T, Cui J, Müllner M, Fu S, Tran J, Noi KF, Ju Y, Caruso F. Modulated Fragmentation of Proapoptotic Peptide Nanoparticles Regulates Cytotoxicity. J Am Chem Soc 2017;139:4009-18. [PMID: 28286953 DOI: 10.1021/jacs.6b11302] [Cited by in Crossref: 46] [Cited by in F6Publishing: 47] [Article Influence: 7.7] [Reference Citation Analysis]
73 Kolosenko I, Avnet S, Baldini N, Viklund J, De Milito A. Therapeutic implications of tumor interstitial acidification. Semin Cancer Biol 2017;43:119-33. [PMID: 28188829 DOI: 10.1016/j.semcancer.2017.01.008] [Cited by in Crossref: 62] [Cited by in F6Publishing: 65] [Article Influence: 10.3] [Reference Citation Analysis]
74 Hemmer E, Acosta-mora P, Méndez-ramos J, Fischer S. Optical nanoprobes for biomedical applications: shining a light on upconverting and near-infrared emitting nanoparticles for imaging, thermal sensing, and photodynamic therapy. J Mater Chem B 2017;5:4365-92. [DOI: 10.1039/c7tb00403f] [Cited by in Crossref: 148] [Cited by in F6Publishing: 150] [Article Influence: 24.7] [Reference Citation Analysis]
75 Torti SV, Lemler E, Mueller BK, Popp A, Torti FM. Effects of Anti-repulsive Guidance Molecule C (RGMc/Hemojuvelin) Antibody on Hepcidin and Iron in Mouse Liver and Tumor Xenografts. Clin Exp Pharmacol 2016;6:223. [PMID: 28203489 DOI: 10.4172/2161-1459.1000223] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.1] [Reference Citation Analysis]