BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Muthiah K, Robson D, Prichard R, Walker R, Gupta S, Keogh AM, Macdonald PS, Woodard J, Kotlyar E, Dhital K, Granger E, Jansz P, Spratt P, Hayward CS. Effect of exercise and pump speed modulation on invasive hemodynamics in patients with centrifugal continuous-flow left ventricular assist devices. The Journal of Heart and Lung Transplantation 2015;34:522-9. [DOI: 10.1016/j.healun.2014.11.004] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 4.6] [Reference Citation Analysis]
Number Citing Articles
1 Mirza KK, Cuomo K, Jung MH, Russell SD, Gustafsson F. Effect of Heart Rate Reserve on Exercise Capacity in Patients Treated with a Continuous Left Ventricular Assist Device. ASAIO Journal 2020;66:160-5. [DOI: 10.1097/mat.0000000000000955] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
2 Chung BB, Sayer G, Uriel N. Mechanical circulatory support devices: methods to optimize hemodynamics during use. Expert Rev Med Devices 2017;14:343-53. [PMID: 28448170 DOI: 10.1080/17434440.2017.1324292] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
3 Wu EL, Fresiello L, Kleinhyer M, Meyns B, Fraser JF, Tansley G, Gregory SD. Haemodynamic Effect of Left Atrial and Left Ventricular Cannulation with a Rapid Speed Modulated Rotary Blood Pump During Rest and Exercise: Investigation in a Numerical Cardiorespiratory Model. Cardiovasc Eng Technol 2020;11:350-61. [PMID: 32557185 DOI: 10.1007/s13239-020-00471-1] [Reference Citation Analysis]
4 Schmidt T, Bjarnason-wehrens B, Mommertz S, Hannig M, Schulte-eistrup S, Willemsen D, Reiss N. Changes in Total Cardiac Output and Oxygen Extraction During Exercise in Patients Supported With an HVAD Left Ventricular Assist Device: CHANGES IN TOTAL CARDIAC OUTPUT AND OXYGEN EXTRACTION. Artificial Organs 2018;42:686-94. [DOI: 10.1111/aor.13102] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
5 Hayward CS, Salamonsen R, Keogh AM, Woodard J, Ayre P, Prichard R, Kotlyar E, Macdonald PS, Jansz P, Spratt P. Impact of Left Ventricular Assist Device Speed Adjustment on Exercise Tolerance and Markers of Wall Stress. Int J Artif Organs 2015;38:501-7. [DOI: 10.5301/ijao.5000431] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
6 Mirza KK, Gustafsson F. Determinants of Functional Capacity and Quality of Life After Implantation of a Durable Left Ventricular Assist Device. Card Fail Rev 2020;6:e29. [PMID: 33133643 DOI: 10.15420/cfr.2020.15] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
7 Gross C, Moscato F, Schlöglhofer T, Maw M, Meyns B, Marko C, Wiedemann D, Zimpfer D, Schima H, Fresiello L. LVAD speed increase during exercise, which patients would benefit the most? A simulation study. Artif Organs 2020;44:239-47. [DOI: 10.1111/aor.13569] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
8 Lai JV, Muthiah K, Robson D, Prichard R, Walker R, Pin Lim C, Wang LW, Macdonald PS, Jansz P, Hayward CS. Impact of Pump Speed on Hemodynamics With Exercise in Continuous Flow Ventricular Assist Device Patients. ASAIO J 2020;66:132-8. [PMID: 30913099 DOI: 10.1097/MAT.0000000000000975] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
9 Ton V, Ramani G, Hsu S, Hopkins CD, Kaczorowski D, Madathil RJ, Mak S, Tedford RJ. High Right Ventricular Afterload Is Associated with Impaired Exercise Tolerance in Patients with Left Ventricular Assist Devices. ASAIO Journal 2021;67:39-45. [DOI: 10.1097/mat.0000000000001169] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Segan LA, Nanayakkara SS, Leet AS, Vizi D, Kaye DM. Exercise Hemodynamics as a Predictor of Myocardial Recovery in LVAD Patients. ASAIO Journal 2017;63:342-5. [DOI: 10.1097/mat.0000000000000490] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
11 Vignati C, Apostolo A, Cattadori G, Farina S, Del Torto A, Scuri S, Gerosa G, Bottio T, Tarzia V, Bejko J, Sisillo E, Nicoli F, Sciomer S, Alamanni F, Paolillo S, Agostoni P. Lvad pump speed increase is associated with increased peak exercise cardiac output and vo2, postponed anaerobic threshold and improved ventilatory efficiency. International Journal of Cardiology 2017;230:28-32. [DOI: 10.1016/j.ijcard.2016.12.112] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 5.6] [Reference Citation Analysis]
12 Lim HS, Howell N, Ranasinghe A. The Physiology of Continuous-Flow Left Ventricular Assist Devices. Journal of Cardiac Failure 2017;23:169-80. [DOI: 10.1016/j.cardfail.2016.10.015] [Cited by in Crossref: 42] [Cited by in F6Publishing: 27] [Article Influence: 8.4] [Reference Citation Analysis]
13 Fresiello L, Rademakers F, Claus P, Ferrari G, Di Molfetta A, Meyns B. Exercise physiology with a left ventricular assist device: Analysis of heart-pump interaction with a computational simulator. PLoS One 2017;12:e0181879. [PMID: 28738087 DOI: 10.1371/journal.pone.0181879] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 2.6] [Reference Citation Analysis]
14 Fresiello L, Gross C, Jacobs S. Exercise physiology in left ventricular assist device patients: insights from hemodynamic simulations. Ann Cardiothorac Surg 2021;10:339-52. [PMID: 34159115 DOI: 10.21037/acs-2020-cfmcs-23] [Reference Citation Analysis]
15 Gross C, Marko C, Mikl J, Altenberger J, Schlöglhofer T, Schima H, Zimpfer D, Moscato F. LVAD Pump Flow Does Not Adequately Increase With Exercise. Artif Organs 2019;43:222-8. [PMID: 30155903 DOI: 10.1111/aor.13349] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
16 Laoutaris ID. Restoring pulsatility and peakVO2 in the era of continuous flow, fixed pump speed, left ventricular assist devices: 'A hypothesis of pump's or patient's speed?'. Eur J Prev Cardiol 2019;26:1806-15. [PMID: 31180758 DOI: 10.1177/2047487319856448] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Rocchi M, Fresiello L, Meyns B, Jacobs S, Gross C, Pauls JP, Graefe R, Stecka A, Kozarski M, Zieliński K. A Compliant Model of the Ventricular Apex to Study Suction in Ventricular Assist Devices. ASAIO J 2021;67:1125-33. [PMID: 34570727 DOI: 10.1097/MAT.0000000000001370] [Reference Citation Analysis]
18 Van Iterson EH. Left Ventricular Assist Device Support Complicates the Exercise Physiology of Oxygen Transport and Uptake in Heart Failure. Card Fail Rev 2019;5:162-8. [PMID: 31768273 DOI: 10.15420/cfr.2019.10.2] [Reference Citation Analysis]
19 Fresiello L, Buys R, Jacobs S, Van Puyvelde J, Droogne W, Rega F, Meyns B. Exercise capacity in left ventricular assist device patients with full and partial support. Eur J Prev Cardiolog 2016;24:168-77. [DOI: 10.1177/2047487316656088] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
20 Hayward CS, Fresiello L, Meyns B. Exercise physiology in chronic mechanical circulatory support patients: vascular function and beyond. Curr Opin Cardiol 2016;31:292-8. [PMID: 26945227 DOI: 10.1097/HCO.0000000000000285] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 2.2] [Reference Citation Analysis]
21 Dridi NP, Vishram-Nielsen JKK, Gustafsson F. Exercise Tolerance in Patients Treated With a Durable Left Ventricular Assist Device: Importance of Myocardial Recovery. J Card Fail 2021;27:486-93. [PMID: 33347995 DOI: 10.1016/j.cardfail.2020.12.005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Schmidt T, Bjarnason-Wehrens B, Schulte-Eistrup S, Reiss N. Effects of pump speed changes on exercise capacity in patients supported with a left ventricular assist device-an overview. J Thorac Dis 2018;10:S1802-10. [PMID: 30034856 DOI: 10.21037/jtd.2018.01.114] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
23 Fresiello L, Buys R, Timmermans P, Vandersmissen K, Jacobs S, Droogne W, Ferrari G, Rega F, Meyns B. Exercise capacity in ventricular assist device patients: clinical relevance of pump speed and power. Eur J Cardiothorac Surg 2016;50:752-7. [DOI: 10.1093/ejcts/ezw147] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.7] [Reference Citation Analysis]
24 Gross C, Fresiello L, Schlöglhofer T, Dimitrov K, Marko C, Maw M, Meyns B, Wiedemann D, Zimpfer D, Schima H, Moscato F. Hemodynamic exercise responses with a continuous-flow left ventricular assist device: Comparison of patients' response and cardiorespiratory simulations. PLoS One 2020;15:e0229688. [PMID: 32187193 DOI: 10.1371/journal.pone.0229688] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
25 Bozkurt S, Bozkurt S. In-silico evaluation of left ventricular unloading under varying speed continuous flow left ventricular assist device support. Biocybernetics and Biomedical Engineering 2017;37:373-87. [DOI: 10.1016/j.bbe.2017.03.003] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 2.4] [Reference Citation Analysis]
26 Apostolo A, Paolillo S, Contini M, Vignati C, Tarzia V, Campodonico J, Mapelli M, Massetti M, Bejko J, Righini F, Bottio T, Bonini N, Salvioni E, Gugliandolo P, Parati G, Lombardi C, Gerosa G, Salvi L, Alamanni F, Agostoni P. Comprehensive effects of left ventricular assist device speed changes on alveolar gas exchange, sleep ventilatory pattern, and exercise performance. The Journal of Heart and Lung Transplantation 2018;37:1361-71. [DOI: 10.1016/j.healun.2018.07.005] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
27 Lim HS, Howell N, Ranasinghe A. The Effect of Left Ventricular Assist Device Therapy in Patients with Heart Failure and Mixed Pulmonary Hypertension. Int J Artif Organs 2017;40:67-73. [DOI: 10.5301/ijao.5000556] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
28 Fresiello L, Jacobs S, Timmermans P, Buys R, Hornikx M, Goetschalckx K, Droogne W, Meyns B. Limiting factors of peak and submaximal exercise capacity in LVAD patients. PLoS One 2020;15:e0235684. [PMID: 32645710 DOI: 10.1371/journal.pone.0235684] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
29 Graefe R, Henseler A, Körfer R, Meyns B, Fresiello L. Influence of left ventricular assist device pressure-flow characteristic on exercise physiology: Assessment with a verified numerical model. Int J Artif Organs 2019;42:490-9. [PMID: 31104554 DOI: 10.1177/0391398819846126] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]