BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chen L, Wei X, Chaves BD, Jones D, Ponder MA, Subbiah J. Inactivation of Salmonella enterica and Enterococcus faecium NRRL B2354 on cumin seeds using gaseous ethylene oxide. Food Microbiol 2021;94:103656. [PMID: 33279081 DOI: 10.1016/j.fm.2020.103656] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Wason S, Subbiah J. Gaseous chlorine dioxide for inactivating Salmonella enterica and Enterococcus faecium NRRL B-2354 on chia seeds. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109736] [Reference Citation Analysis]
2 Wei X, Verma T, Irmak S, Subbiah J. Effect of storage on microbial reductions after gaseous chlorine dioxide treatment of black peppercorns, cumin seeds, and dried basil leaves. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109627] [Reference Citation Analysis]
3 Rodrigues JFB, Silva JAD, Medeiros RP, Queiroz JVSDA, Pinto MRDO, Amoah SKS, Fook MVL. A GC-FID validated method for detection and quantification of ethylene oxide in urine bags. Matéria (Rio J ) 2023;28. [DOI: 10.1590/s1517-707620230001.1334] [Reference Citation Analysis]
4 Acuff JC, Dickson JS, Farber JM, Grasso-Kelley EM, Hedberg C, Lee A, Zhu MJ. Practice and Progress: Updates on Outbreaks, Advances in Research, and Processing Technologies for Low-moisture Food Safety. J Food Prot 2023;86:100018. [PMID: 36916598 DOI: 10.1016/j.jfp.2022.11.010] [Reference Citation Analysis]
5 Sharma P, Xiao H, Zhang Q, Sutar P. Intermittent high-power short-time microwave-vacuum treatment combined with steam impingement for effective microbial decontamination of black pepper (Piper nigrum). Journal of Food Engineering 2022. [DOI: 10.1016/j.jfoodeng.2022.111373] [Reference Citation Analysis]
6 Garcia JO, Wason S, Subbiah J, Eifert J, Strawn LK, Ponder MA. Media impacts recovery of Salmonella enterica and Enterococcus faecium NRRL B2354 from whole black peppercorns, basil leaves, and chia seeds treated with antimicrobial gasses. Front Food Sci Technol 2022;2. [DOI: 10.3389/frfst.2022.1033814] [Reference Citation Analysis]
7 Seshadrinathan S, Chakraborty S. Fermentative Production of Erythritol from Cane Molasses Using Candida magnoliae: Media Optimization, Purification, and Characterization. Sustainability 2022;14:10342. [DOI: 10.3390/su141610342] [Reference Citation Analysis]
8 Letcher SM, Rubio NR, Ashizawa RN, Saad MK, Rittenberg ML, McCreary A, Ali A, Calkins OP, Trimmer BA, Kaplan DL. In vitro Insect Fat Cultivation for Cellular Agriculture Applications. ACS Biomater Sci Eng 2022. [PMID: 35977409 DOI: 10.1021/acsbiomaterials.2c00093] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Rana YS, Chen L, Balasubramaniam VM, Snyder AB. Superheated steam effectively inactivates diverse microbial targets despite mediating effects from food matrices in bench-scale assessments. Int J Food Microbiol 2022;378:109838. [PMID: 35863173 DOI: 10.1016/j.ijfoodmicro.2022.109838] [Reference Citation Analysis]
10 Kowalska A, Manning L. Food Safety Governance and Guardianship: The Role of the Private Sector in Addressing the EU Ethylene Oxide Incident. Foods 2022;11:204. [PMID: 35053936 DOI: 10.3390/foods11020204] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
11 Aradhana SK, Appugol KA, Kumar S, Sunil CK, Rawson A. Decontamination of Spices. Microbial Decontamination of Food 2022. [DOI: 10.1007/978-981-19-5114-5_9] [Reference Citation Analysis]
12 Verma T, Wei X, Chaves BD, Howell T, Subbiah J. Antimicrobial efficacy of gaseous chlorine dioxide for inactivation of Salmonella and Enterococcus faecium NRRL B-2354 on dried basil leaves. LWT 2022;153:112488. [DOI: 10.1016/j.lwt.2021.112488] [Reference Citation Analysis]
13 Wei X, Verma T, Danao MC, Ponder MA, Subbiah J. Gaseous chlorine dioxide technology for improving microbial safety of spices. Innovative Food Science & Emerging Technologies 2021;73:102783. [DOI: 10.1016/j.ifset.2021.102783] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
14 Xiong H, Zhu X, Lu S, Zhou C, Xu W, Zhou Z. Enhancement of plasma-catalytic oxidation of ethylene oxide (EO) over FeMn catalysts in a dielectric barrier discharge reactor. Sci Total Environ 2021;788:147675. [PMID: 34034179 DOI: 10.1016/j.scitotenv.2021.147675] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
15 Rana YS, Eberly PM, Suehr QJ, Hildebrandt IM, Marks BP, Snyder AB. Survival of Escherichia coli O157:H7 during Moderate Temperature Dehydration of Plant-Based Foods. Foods 2021;10:2162. [PMID: 34574271 DOI: 10.3390/foods10092162] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Wason S, Verma T, Subbiah J. Validation of process technologies for enhancing the safety of low-moisture foods: A review. Compr Rev Food Sci Food Saf 2021. [PMID: 34323364 DOI: 10.1111/1541-4337.12800] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
17 Chen L, Jung J, Chaves BD, Jones D, Negahban M, Zhao Y, Subbiah J. Challenges of dry hazelnut shell surface for radio frequency pasteurization of inshell hazelnuts. Food Control 2021;125:107948. [DOI: 10.1016/j.foodcont.2021.107948] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
18 Dhowlaghar N, Zhu MJ. Control of Salmonella in low-moisture foods: Enterococcus faecium NRRL B-2354 as a surrogate for thermal and non-thermal validation. Crit Rev Food Sci Nutr 2021;:1-19. [PMID: 33798006 DOI: 10.1080/10408398.2021.1895055] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]