BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Delaittre G. Telechelic poly(2-oxazoline)s. European Polymer Journal 2019;121:109281. [DOI: 10.1016/j.eurpolymj.2019.109281] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 6.8] [Reference Citation Analysis]
Number Citing Articles
1 Wang F, Pizzi D, Lu Y, He K, Thurecht KJ, Hill MR, Marriott PJ, Banaszak Holl MM, Kempe K, Wang H. A Homochiral Poly(2-oxazoline)-based Membrane for Efficient Enantioselective Separation. Angew Chem Int Ed Engl 2023;62:e202212139. [PMID: 36577702 DOI: 10.1002/anie.202212139] [Reference Citation Analysis]
2 Leiske MN. Poly(2-oxazoline)-derived star-shaped polymers as potential materials for biomedical applications: A review. European Polymer Journal 2023. [DOI: 10.1016/j.eurpolymj.2023.111832] [Reference Citation Analysis]
3 Stafast LM, Engel N, Görls H, Weber C, Schubert US. End-functionalized diblock copolymers by mix and match of poly(2-oxazoline) and polyester building blocks. European Polymer Journal 2022. [DOI: 10.1016/j.eurpolymj.2022.111779] [Reference Citation Analysis]
4 Kim J, Beyer V, Becer CR. Poly(2-oxazoline) with Pendant Hydroxyl Groups via a Silyl Ether-Based Protecting Group. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c02050] [Reference Citation Analysis]
5 Lusina A, Nazim T, Cegłowski M. Poly(2-oxazoline)s as Stimuli-Responsive Materials for Biomedical Applications: Recent Developments of Polish Scientists. Polymers (Basel) 2022;14:4176. [PMID: 36236124 DOI: 10.3390/polym14194176] [Reference Citation Analysis]
6 Rajesh S, Leiske MN, Leitch V, Zhai J, Drummond CJ, Kempe K, Tran N. Lipidic poly(2-oxazoline)s as PEG replacement steric stabilisers for cubosomes. Journal of Colloid and Interface Science 2022;623:1142-1150. [DOI: 10.1016/j.jcis.2022.04.158] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
7 Rajesh S, Leiske MN, Leitch V, Zhai J, Drummond CJ, Kempe K, Tran N. Lipidic poly(2-oxazoline)s as PEG replacement steric stabilisers for cubosomes. Journal of Colloid and Interface Science 2022;623:1142-50. [DOI: 10.1016/j.jcis.2022.04.158] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
8 Hoogenboom R. The future of poly(2-oxazoline)s. European Polymer Journal 2022;179:111521. [DOI: 10.1016/j.eurpolymj.2022.111521] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Stafast LM, Weber C, Kuchenbrod MT, Hoeppener S, Behnke M, Schubert S, Mehmetaj K, Press AT, Bauer M, Schubert US. Poly(2-oxazoline) Homopolymers and Diblock Copolymers Containing Retinoate ω-End Groups. ACS Appl Polym Mater 2022;4:3417-25. [DOI: 10.1021/acsapm.2c00037] [Reference Citation Analysis]
10 Mazrad ZAI, Lai M, Davis TP, Nicolazzo JA, Thurecht KJ, Leiske MN, Kempe K. Protected amine-functional initiators for the synthesis of α-amine homo- and heterotelechelic poly(2-ethyl-2-oxazoline)s. Polym Chem 2022;13:4436-45. [DOI: 10.1039/d2py00649a] [Reference Citation Analysis]
11 Aitken RA, Inwood RA. Oxazoles. Comprehensive Heterocyclic Chemistry IV 2022. [DOI: 10.1016/b978-0-12-818655-8.00157-8] [Reference Citation Analysis]
12 Drain BA, Beyer VP, Cattoz B, Becer CR. Solvent Dependency in the Synthesis of Multiblock and Cyclic Poly(2-oxazoline)s. Macromolecules 2021;54:5549-56. [DOI: 10.1021/acs.macromol.1c00529] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
13 Zahoranová A, Luxenhofer R. Poly(2-oxazoline)- and Poly(2-oxazine)-Based Self-Assemblies, Polyplexes, and Drug Nanoformulations-An Update. Adv Healthc Mater 2021;10:e2001382. [PMID: 33448122 DOI: 10.1002/adhm.202001382] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 11.5] [Reference Citation Analysis]
14 Gil Alvaradejo G, Glassner M, Kumar R, Trouillet V, Welle A, Wang Y, de la Rosa VR, Sekula-Neuner S, Hirtz M, Hoogenboom R, Delaittre G. Thioacetate-Based Initiators for the Synthesis of Thiol-End-Functionalized Poly(2-oxazoline)s. Macromol Rapid Commun 2020;41:e2000320. [PMID: 33463837 DOI: 10.1002/marc.202000320] [Reference Citation Analysis]
15 Cordero FM, Lascialfari L, Machetti F. Five-membered ring systems with O and N atoms. Progress in Heterocyclic Chemistry 2021. [DOI: 10.1016/b978-0-323-89812-6.00011-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Göppert NE, Dirauf M, Weber C, Schubert US. Block copolymers comprising degradable poly(2-ethyl-2-oxazoline) analogues via copper-free click chemistry. Polym Chem 2021;12:5426-37. [DOI: 10.1039/d1py00853f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Zhao T, Drain B, Yilmaz G, Becer CR. One-pot synthesis of amphiphilic multiblock poly(2-oxazoline)s via para-fluoro-thiol click reactions. Polym Chem 2021;12:6392-6403. [DOI: 10.1039/d1py00944c] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Pásztói B, Trötschler TM, Szabó Á, Kerscher B, Tenhu H, Mülhaupt R, Iván B. Quasiliving cationic ring-opening polymerization of 2-ethyl-2-oxazoline in benzotrifluoride, as an alternative reaction medium. Polymer 2021;212:123165. [DOI: 10.1016/j.polymer.2020.123165] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
19 Iordache T, Banu ND, Giol ED, Vuluga DM, Jerca FA, Jerca VV. Factorial design optimization of polystyrene microspheres obtained by aqueous dispersion polymerization in the presence of poly(2‐ethyl‐2‐oxazoline) reactive stabilizer. Polym Int 2020;69:1122-1129. [DOI: 10.1002/pi.5974] [Reference Citation Analysis]
20 Schoolaert E, Merckx R, Becelaere J, Everaerts M, Van Guyse JFR, Sedlacek O, De Geest BG, Van den Mooter G, D’hooge DR, De Clerck K, Hoogenboom R. Immiscibility of Chemically Alike Amorphous Polymers: Phase Separation of Poly(2-ethyl-2-oxazoline) and Poly(2- n -propyl-2-oxazoline). Macromolecules 2020;53:7590-600. [DOI: 10.1021/acs.macromol.0c00970] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
21 Bernhard Y, Sedlacek O, Van Guyse JFR, Bender J, Zhong Z, De Geest BG, Hoogenboom R. Poly(2-ethyl-2-oxazoline) Conjugates with Salicylic Acid via Degradable Modular Ester Linkages. Biomacromolecules 2020;21:3207-15. [PMID: 32639725 DOI: 10.1021/acs.biomac.0c00659] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
22 Sedlacek O, Jirak D, Vit M, Ziołkowska N, Janouskova O, Hoogenboom R. Fluorinated Water-Soluble Poly(2-oxazoline)s as Highly Sensitive 19 F MRI Contrast Agents. Macromolecules 2020;53:6387-95. [DOI: 10.1021/acs.macromol.0c01228] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
23 Park JM, Kim YJ, Jang W. Multimodal Stimuli-Responsive Fluorophore-Functionalized Heterotelechelic Poly(2-isopropyl-2-oxazoline). ACS Appl Polym Mater 2020;2:3535-42. [DOI: 10.1021/acsapm.0c00543] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
24 Schoolaert E, Cossu L, Becelaere J, Van Guyse JF, Tigrine A, Vergaelen M, Hoogenboom R, De Clerck K. Nanofibers with a tunable wettability by electrospinning and physical crosslinking of poly(2-n-propyl-2-oxazoline). Materials & Design 2020;192:108747. [DOI: 10.1016/j.matdes.2020.108747] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 6.3] [Reference Citation Analysis]
25 Dirauf M, Grune C, Weber C, Schubert US, Fischer D. Poly(ethylene glycol) or poly(2-ethyl-2-oxazoline) – A systematic comparison of PLGA nanoparticles from the bottom up. European Polymer Journal 2020;134:109801. [DOI: 10.1016/j.eurpolymj.2020.109801] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
26 Jana S, Uchman M. Poly(2-oxazoline)-based stimulus-responsive (Co)polymers: An overview of their design, solution properties, surface-chemistries and applications. Progress in Polymer Science 2020;106:101252. [DOI: 10.1016/j.progpolymsci.2020.101252] [Cited by in Crossref: 28] [Cited by in F6Publishing: 17] [Article Influence: 9.3] [Reference Citation Analysis]
27 Delecourt G, Plet L, Bennevault V, Guégan P. Synthesis of Double Hydrophilic Block Copolymers Poly(2-oxazoline- b -ethylenimine) in a Two-Step Procedure. ACS Appl Polym Mater 2020;2:2696-705. [DOI: 10.1021/acsapm.0c00308] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
28 Hoogenboom R. Poly(2-oxazoline)s and polypeptoids. European Polymer Journal 2020;131:109696. [DOI: 10.1016/j.eurpolymj.2020.109696] [Reference Citation Analysis]
29 Dirauf M, Erlebach A, Weber C, Hoeppener S, Buchheim JR, Sierka M, Schubert US. Block Copolymers Composed of PEtOx and Polyesteramides Based on Glycolic Acid, l -Valine, and l -Isoleucine. Macromolecules 2020;53:3580-90. [DOI: 10.1021/acs.macromol.0c00282] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
30 Kim J, Waldron C, Cattoz B, Becer CR. An ε-caprolactone-derived 2-oxazoline inimer for the synthesis of graft copolymers. Polym Chem 2020;11:6847-52. [DOI: 10.1039/d0py01092h] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]