BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Raveendran R, Mullen KM, Wellard RM, Sharma CP, Hoogenboom R, Dargaville TR. Poly(2-oxazoline) block copolymer nanoparticles for curcumin loading and delivery to cancer cells. European Polymer Journal 2017;93:682-94. [DOI: 10.1016/j.eurpolymj.2017.02.043] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Datta S, Huntošová V, Jutková A, Seliga R, Kronek J, Tomkova A, Lenkavská L, Máčajová M, Bilčík B, Kundeková B, Čavarga I, Pavlova E, Šlouf M, Miškovský P, Jancura D. Influence of Hydrophobic Side-Chain Length in Amphiphilic Gradient Copoly(2-oxazoline)s on the Therapeutics Loading, Stability, Cellular Uptake and Pharmacokinetics of Nano-Formulation with Curcumin. Pharmaceutics 2022;14. [PMID: 36559069 DOI: 10.3390/pharmaceutics14122576] [Reference Citation Analysis]
2 Khan S, Wang H, Shu Y, Zhang Z, Liang T. Characterization of a novel bioactive film based on Artemisia sphaerocephala Krasch. Gum (ASKG) complexed with β-cyclodextrin/curcumin (β-CD/CUR) inclusion complex and its application in meat preservation. Food Hydrocolloids 2022. [DOI: 10.1016/j.foodhyd.2022.108296] [Reference Citation Analysis]
3 Haider MS, Mahato AK, Kotliarova A, Forster S, Böttcher B, Stahlhut P, Sidorova Y, Luxenhofer R. Biological Activity In Vitro, Absorption, BBB Penetration, and Tolerability of Nanoformulation of BT44:RET Agonist with Disease-Modifying Potential for the Treatment of Neurodegeneration. Biomacromolecules 2022. [PMID: 36219820 DOI: 10.1021/acs.biomac.2c00761] [Reference Citation Analysis]
4 Cegłowski M, Marien YW, Smeets S, De Smet L, D’hooge DR, Schroeder G, Hoogenboom R. Molecularly Imprinted Polymers with Enhanced Selectivity Based on 4-(Aminomethyl)pyridine-Functionalized Poly(2-oxazoline)s for Detecting Hazardous Herbicide Contaminants. Chem Mater 2022;34:84-96. [DOI: 10.1021/acs.chemmater.1c02813] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
5 Mazrad ZAI, Schelle B, Nicolazzo JA, Leiske MN, Kempe K. Nitrile-Functionalized Poly(2-oxazoline)s as a Versatile Platform for the Development of Polymer Therapeutics. Biomacromolecules 2021;22:4618-32. [PMID: 34647734 DOI: 10.1021/acs.biomac.1c00923] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Chroni A, Mavromoustakos T, Pispas S. Poly(2-oxazoline)-Based Amphiphilic Gradient Copolymers as Nanocarriers for Losartan: Insights into Drug–Polymer Interactions. Macromol 2021;1:177-200. [DOI: 10.3390/macromol1030014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
7 Varanaraja Z, Kim J, Becer CR. Poly(2-oxazine)s: A comprehensive overview of the polymer structures, physical properties and applications. European Polymer Journal 2021;147:110299. [DOI: 10.1016/j.eurpolymj.2021.110299] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
8 Zahoranová A, Luxenhofer R. Poly(2-oxazoline)- and Poly(2-oxazine)-Based Self-Assemblies, Polyplexes, and Drug Nanoformulations-An Update. Adv Healthc Mater 2021;10:e2001382. [PMID: 33448122 DOI: 10.1002/adhm.202001382] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 11.5] [Reference Citation Analysis]
9 Roma E, Corsi P, Willinger M, Leitner NS, Zirbs R, Reimhult E, Capone B, Gasperi T. Theoretical and Experimental Design of Heavy Metal-Mopping Magnetic Nanoparticles. ACS Appl Mater Interfaces 2021;13:1386-1397. [DOI: 10.1021/acsami.0c17759] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Phan H, Taresco V, Penelle J, Couturaud B. Polymerisation-induced self-assembly (PISA) as a straightforward formulation strategy for stimuli-responsive drug delivery systems and biomaterials: recent advances. Biomater Sci 2021;9:38-50. [PMID: 33179646 DOI: 10.1039/d0bm01406k] [Cited by in Crossref: 21] [Cited by in F6Publishing: 26] [Article Influence: 10.5] [Reference Citation Analysis]
11 Moreno A, Jiménez-Alesanco A, Ronda JC, Cádiz V, Galià M, Percec V, Abian O, Lligadas G. Dual Biochemically Breakable Drug Carriers from Programmed Telechelic Homopolymers. Biomacromolecules 2020;21:4313-25. [PMID: 32897693 DOI: 10.1021/acs.biomac.0c01113] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
12 Cegłowski M, Schroeder G, Hoogenboom R. Porous Poly(2-oxazoline)-Based Polymers for Removal and Quantification of Phenolic Compounds. Chem Mater 2020;32:6425-36. [DOI: 10.1021/acs.chemmater.0c01559] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
13 Haider MS, Lübtow MM, Endres S, Forster S, Flegler VJ, Böttcher B, Aseyev V, Pöppler A, Luxenhofer R. Think Beyond the Core: Impact of the Hydrophilic Corona on Drug Solubilization Using Polymer Micelles. ACS Appl Mater Interfaces 2020;12:24531-43. [DOI: 10.1021/acsami.9b22495] [Cited by in Crossref: 29] [Cited by in F6Publishing: 33] [Article Influence: 9.7] [Reference Citation Analysis]
14 Sochor B, Düdükcü Ö, Lübtow MM, Schummer B, Jaksch S, Luxenhofer R. Probing the Complex Loading-Dependent Structural Changes in Ultrahigh Drug-Loaded Polymer Micelles by Small-Angle Neutron Scattering. Langmuir 2020;36:3494-503. [DOI: 10.1021/acs.langmuir.9b03460] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
15 Sedlacek O, Hoogenboom R. Drug Delivery Systems Based on Poly(2‐Oxazoline)s and Poly(2‐Oxazine)s. Adv Therap 2020;3:1900168. [DOI: 10.1002/adtp.201900168] [Cited by in Crossref: 50] [Cited by in F6Publishing: 50] [Article Influence: 12.5] [Reference Citation Analysis]
16 Ghitman J, Stan R, Vlasceanu G, Vasile E, Iovu H. Predicting the drug loading efficiency into hybrid nanocarriers based on PLGA-vegetable oil using molecular dynamic simulation approach and Flory-Huggins theory. Journal of Drug Delivery Science and Technology 2019;53:101203. [DOI: 10.1016/j.jddst.2019.101203] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
17 Feldman D. Polymers and Polymer Nanocomposites for Cancer Therapy. Applied Sciences 2019;9:3899. [DOI: 10.3390/app9183899] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 7.8] [Reference Citation Analysis]
18 Lübtow MM, Haider MS, Kirsch M, Klisch S, Luxenhofer R. Like Dissolves Like? A Comprehensive Evaluation of Partial Solubility Parameters to Predict Polymer-Drug Compatibility in Ultrahigh Drug-Loaded Polymer Micelles. Biomacromolecules 2019;20:3041-56. [PMID: 31318531 DOI: 10.1021/acs.biomac.9b00618] [Cited by in Crossref: 51] [Cited by in F6Publishing: 52] [Article Influence: 12.8] [Reference Citation Analysis]
19 Illy N, Corcé V, Zimbron J, Molinié V, Labourel M, Tresset G, Degrouard J, Salmain M, Guégan P. pH‐Sensitive Poly(ethylene glycol)/Poly(ethoxyethyl glycidyl ether) Block Copolymers: Synthesis, Characterization, Encapsulation, and Delivery of a Hydrophobic Drug. Macromol Chem Phys 2019;220:1900210. [DOI: 10.1002/macp.201900210] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
20 Omrani Z, Dadkhah Tehrani A. New cyclodextrin-based supramolecular nanocapsule for codelivery of curcumin and gallic acid. Polym Bull 2020;77:2003-19. [DOI: 10.1007/s00289-019-02845-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
21 Lübtow MM, Nelke LC, Seifert J, Kühnemundt J, Sahay G, Dandekar G, Nietzer SL, Luxenhofer R. Drug induced micellization into ultra-high capacity and stable curcumin nanoformulations: Physico-chemical characterization and evaluation in 2D and 3D in vitro models. Journal of Controlled Release 2019;303:162-80. [DOI: 10.1016/j.jconrel.2019.04.014] [Cited by in Crossref: 45] [Cited by in F6Publishing: 42] [Article Influence: 11.3] [Reference Citation Analysis]
22 Soni V, Pandey V, Asati S, Gour V, Tekade RK. Biodegradable Block Copolymers and Their Applications for Drug Delivery. Basic Fundamentals of Drug Delivery 2019. [DOI: 10.1016/b978-0-12-817909-3.00011-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
23 Lorson T, Lübtow MM, Wegener E, Haider MS, Borova S, Nahm D, Jordan R, Sokolski-papkov M, Kabanov AV, Luxenhofer R. Poly(2-oxazoline)s based biomaterials: A comprehensive and critical update. Biomaterials 2018;178:204-80. [DOI: 10.1016/j.biomaterials.2018.05.022] [Cited by in Crossref: 200] [Cited by in F6Publishing: 204] [Article Influence: 40.0] [Reference Citation Analysis]
24 Cegłowski M, Hoogenboom R. Molecularly Imprinted Poly(2-oxazoline) Based on Cross-Linking by Direct Amidation of Methyl Ester Side Chains. Macromolecules 2018;51:6468-75. [DOI: 10.1021/acs.macromol.8b01068] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
25 Hahn L, Lübtow MM, Lorson T, Schmitt F, Appelt-menzel A, Schobert R, Luxenhofer R. Investigating the Influence of Aromatic Moieties on the Formulation of Hydrophobic Natural Products and Drugs in Poly(2-oxazoline)-Based Amphiphiles. Biomacromolecules 2018;19:3119-28. [DOI: 10.1021/acs.biomac.8b00708] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 5.6] [Reference Citation Analysis]
26 Swift T, Rehman K, Surtees A, Hoskins R, Hickey SG. Segmental Mobility Studies of Poly(N-isopropyl acrylamide) Interactions with Gold Nanoparticles and Its Use as a Thermally Driven Trapping System. Macromol Rapid Commun 2018;39:e1800090. [PMID: 29722083 DOI: 10.1002/marc.201800090] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
27 Datta S, Jutková A, Šrámková P, Lenkavská L, Huntošová V, Chorvát D, Miškovský P, Jancura D, Kronek J. Unravelling the Excellent Chemical Stability and Bioavailability of Solvent Responsive Curcumin-Loaded 2-Ethyl-2-oxazoline-grad-2-(4-dodecyloxyphenyl)-2-oxazoline Copolymer Nanoparticles for Drug Delivery. Biomacromolecules 2018;19:2459-71. [PMID: 29634248 DOI: 10.1021/acs.biomac.8b00057] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 5.0] [Reference Citation Analysis]
28 Novelli F, De Santis S, Diociaiuti M, Giordano C, Morosetti S, Punzi P, Sciubba F, Viali V, Masci G, Scipioni A. Curcumin loaded nanocarriers obtained by self-assembly of a linear d,l-octapeptide-poly(ethylene glycol) conjugate. European Polymer Journal 2018;98:28-38. [DOI: 10.1016/j.eurpolymj.2017.11.010] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 2.6] [Reference Citation Analysis]
29 Sedlacek O, Monnery BD, Mattova J, Kucka J, Panek J, Janouskova O, Hocherl A, Verbraeken B, Vergaelen M, Zadinova M, Hoogenboom R, Hruby M. Poly(2-ethyl-2-oxazoline) conjugates with doxorubicin for cancer therapy: In vitro and in vivo evaluation and direct comparison to poly[N-(2-hydroxypropyl)methacrylamide] analogues. Biomaterials 2017;146:1-12. [PMID: 28892751 DOI: 10.1016/j.biomaterials.2017.09.003] [Cited by in Crossref: 73] [Cited by in F6Publishing: 74] [Article Influence: 12.2] [Reference Citation Analysis]
30 Lübtow MM, Hahn L, Haider MS, Luxenhofer R. Drug Specificity, Synergy and Antagonism in Ultrahigh Capacity Poly(2-oxazoline)/Poly(2-oxazine) based Formulations. J Am Chem Soc 2017;139:10980-3. [PMID: 28750162 DOI: 10.1021/jacs.7b05376] [Cited by in Crossref: 68] [Cited by in F6Publishing: 69] [Article Influence: 11.3] [Reference Citation Analysis]
31 Lorson T, Jaksch S, Lübtow MM, Jüngst T, Groll J, Lühmann T, Luxenhofer R. A Thermogelling Supramolecular Hydrogel with Sponge-Like Morphology as a Cytocompatible Bioink. Biomacromolecules 2017;18:2161-71. [DOI: 10.1021/acs.biomac.7b00481] [Cited by in Crossref: 76] [Cited by in F6Publishing: 77] [Article Influence: 12.7] [Reference Citation Analysis]