1 |
Guazzelli E, Santarlasci L, Oliva M, Pretti C, Romio M, Glisenti A, Benetti EM, Martinelli E. Oligo(2-alkyl-2-oxazoline)-Based Graft Copolymers for Marine Antifouling Coatings. European Polymer Journal 2023. [DOI: 10.1016/j.eurpolymj.2023.111998] [Reference Citation Analysis]
|
2 |
Vergaelen M, Monnery BD, Jerca VV, Hoogenboom R. Detailed Understanding of Solvent Effects for the Cationic Ring-Opening Polymerization of 2-Ethyl-2-oxazoline. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01930] [Reference Citation Analysis]
|
3 |
Wang F, Pizzi D, Lu Y, He K, Thurecht KJ, Hill MR, Marriott PJ, Banaszak Holl MM, Kempe K, Wang H. A Homochiral Poly(2-oxazoline)-based Membrane for Efficient Enantioselective Separation. Angew Chem Int Ed Engl 2023;62:e202212139. [PMID: 36577702 DOI: 10.1002/anie.202212139] [Reference Citation Analysis]
|
4 |
Yang L, Wang F, Ren P, Zhang T, Zhang Q. Poly(2-oxazoline)s: synthesis and biomedical applications. Macromol Res 2023. [DOI: 10.1007/s13233-023-00116-x] [Reference Citation Analysis]
|
5 |
Yao X, Qi C, Sun C, Huo F, Jiang X. Poly(ethylene glycol) alternatives in biomedical applications. Nano Today 2023;48:101738. [DOI: 10.1016/j.nantod.2022.101738] [Reference Citation Analysis]
|
6 |
Np Ghoderao P, Lee C, Byun H. Phase behavior for the poly(2-ethyl-2-oxazoline) + supercritical DME + alcohol and carbon dioxide + 2-ethyl-2-oxazoline mixtures at high pressure. Chemical Engineering Science 2023. [DOI: 10.1016/j.ces.2023.118566] [Reference Citation Analysis]
|
7 |
Kozina N, Blokhin A, Kirila T, Razina A, Bursian A, Kurlykin M, Filippov A, Tenkovtsev A. Synthesis of novel star-shaped calix[4]arene-based poly(2-oxazoline)s and study of their complexation with curcumin. Materials Today Communications 2023. [DOI: 10.1016/j.mtcomm.2023.105403] [Reference Citation Analysis]
|
8 |
Borova S, Luxenhofer R. Investigation of cationic ring-opening polymerization of 2-oxazolines in the "green" solvent dihydrolevoglucosenone. Beilstein J Org Chem 2023;19:217-30. [PMID: 36895428 DOI: 10.3762/bjoc.19.21] [Reference Citation Analysis]
|
9 |
Leiske MN. Poly(2-oxazoline)-derived star-shaped polymers as potential materials for biomedical applications: A review. European Polymer Journal 2023. [DOI: 10.1016/j.eurpolymj.2023.111832] [Reference Citation Analysis]
|
10 |
Haslinger C, Zahoranová A, Baudis S. Synthesis of coumarin-containing poly(2-oxazoline)s and light-induced crosslinking for hydrogel formation. Monatsh Chem 2022. [DOI: 10.1007/s00706-022-03013-8] [Reference Citation Analysis]
|
11 |
Kim J, Beyer V, Becer CR. Poly(2-oxazoline) with Pendant Hydroxyl Groups via a Silyl Ether-Based Protecting Group. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c02050] [Reference Citation Analysis]
|
12 |
Wang X, Chen X, Qi L, Ma X, Zhou Y, Jiang X, Zhu W. Halogenation of Unsaturated Amides: Synthesis of Halogenated (Spiro)Oxazolines. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202203419] [Reference Citation Analysis]
|
13 |
Bardoula V, Leclercq L, Hoogenboom R, Nardello-rataj V. Amphiphilic nonionic block and gradient copoly(2-oxazoline)s based on 2-methyl-2-oxazoline and 2-phenyl-2-oxazoline as efficient stabilizers for the formulation of tailor-made emulsions. Journal of Colloid and Interface Science 2022. [DOI: 10.1016/j.jcis.2022.11.018] [Reference Citation Analysis]
|
14 |
Kohlan TB, Atespare AE, Yildiz M, Menceloglu YZ, Unal S, Dizman B. Synthesis and Structure–Property Relationship of Amphiphilic Poly(2-ethyl-co-2-(alkyl/aryl)-2-oxazoline) Copolymers. ACS Omega 2022. [DOI: 10.1021/acsomega.2c04809] [Reference Citation Analysis]
|
15 |
Lusina A, Nazim T, Cegłowski M. Poly(2-oxazoline)s as Stimuli-Responsive Materials for Biomedical Applications: Recent Developments of Polish Scientists. Polymers (Basel) 2022;14:4176. [PMID: 36236124 DOI: 10.3390/polym14194176] [Reference Citation Analysis]
|
16 |
Hoogenboom R. The future of poly(2-oxazoline)s. European Polymer Journal 2022;179:111521. [DOI: 10.1016/j.eurpolymj.2022.111521] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
17 |
Kirila TY, Razina AB, Ten’kovtsev AV, Filippov AP. Effect of the Structure of Arms and Way of Their Attachment to Calix[4]arene on Self-Assembly Processes in Aqueous Solutions of Thermoresponsive Star-Shaped Poly(2-alkyl-2-oxazolines) and Poly(2-alkyl-2-oxazines). Polym Sci Ser C 2022. [DOI: 10.1134/s1811238222700102] [Reference Citation Analysis]
|
18 |
Gao YZ, Li A, Chen JC, Cui Z, Wu YX. Quaternized Sodium Alginate-g-Ethyl-Oxazoline Copolymer Brushes and Their Supramolecular Networks via Hydrogen Bonding. ACS Biomater Sci Eng 2022. [PMID: 35878006 DOI: 10.1021/acsbiomaterials.2c00436] [Reference Citation Analysis]
|
19 |
Wang WL, Kawai K, Sigemitsu H, Jin RH. Crystalline lamellar films with honeycomb structure from comb-like polymers of poly(2-long-alkyl-2-oxazoline)s. J Colloid Interface Sci 2022;627:28-39. [PMID: 35841706 DOI: 10.1016/j.jcis.2022.07.041] [Reference Citation Analysis]
|
20 |
Smirnova AV, Tenkovtsev AV, Filippov AP. Effect of Annealing at High Temperatures on the Morphology of Aqueous Solutions of Star-Shaped Poly(2-Isopropyl-2-Oxazoline) and Linear Poly(2-Ethyl-5,6-Dihydrooxazine). Polym Sci Ser C 2022. [DOI: 10.1134/s1811238222700072] [Reference Citation Analysis]
|
21 |
Kim J, Cattoz B, Leung AHM, Parish JD, Becer CR. Enabling Reversible Addition-Fragmentation Chain-Transfer Polymerization for Brush Copolymers with a Poly(2-oxazoline) Backbone. Macromolecules. [DOI: 10.1021/acs.macromol.2c00497] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
22 |
Watanabe H, Kanazawa A, Okumoto S, Aoshima S. Role of the Counteranion in the Stereospecific Living Cationic Polymerization of N -Vinylcarbazole and Vinyl Ethers: Mechanistic Investigation and Synthesis of Stereo-Designed Polymers. Macromolecules. [DOI: 10.1021/acs.macromol.2c00090] [Reference Citation Analysis]
|
23 |
Chai H, Zhen X, Wang X, Qi L, Qin Y, Xue J, Xu Z, Zhang H, Zhu W. Catalytic Synthesis of 5-Fluoro-2-oxazolines: Using BF 3 ·Et 2 O as the Fluorine Source and Activating Reagent. ACS Omega 2022;7:19988-96. [DOI: 10.1021/acsomega.2c01791] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
24 |
Belkhir K, Riquet G, Becquart F, Thakur VK. Polymer Processing under Microwaves. Advances in Polymer Technology 2022;2022:1-21. [DOI: 10.1155/2022/3961233] [Reference Citation Analysis]
|
25 |
Elzes MR, Mertens I, Sedlacek O, Verbraeken B, Doensen ACA, Mees MA, Glassner M, Jana S, Paulusse JMJ, Hoogenboom R. Linear Poly(ethylenimine-propylenimine) Random Copolymers for Gene Delivery: From Polymer Synthesis to Efficient Transfection with High Serum Tolerance. Biomacromolecules 2022. [PMID: 35499242 DOI: 10.1021/acs.biomac.2c00210] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
26 |
Liu F, Qu P, Weck M. Photoresponsive Azobenzene-Functionalized Shell Cross-Linked Micelles for Selective Asymmetric Transfer Hydrogenation. Org Lett 2022. [PMID: 35476916 DOI: 10.1021/acs.orglett.2c00925] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
27 |
Van Guyse JFR, Hoogenboom R. Poly(2‐Oxazoline)s. Macromolecular Engineering 2022. [DOI: 10.1002/9783527815562.mme0012] [Reference Citation Analysis]
|
28 |
Penczek S, Biela T, Cypryk M, Duda A, Lapienis G, Kubisa P, Pretula J, Slomkowski S, Szymanski R. Ionic and Coordination Ring‐Opening Polymerization. Macromolecular Engineering 2022. [DOI: 10.1002/9783527815562.mme0026] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
29 |
Blokhin AN, Kirila TY, Kozina ND, Razina AB, Filippov AP, Tenkovtsev AV. Synthesis and hydrodynamic properties of star poly(2-alkyl-2-oxazolines) and poly(2-alkyl-2-oxazines) based on sulfochlorinated calix[4]arene initiator. Mendeleev Communications 2022;32:247-8. [DOI: 10.1016/j.mencom.2022.03.031] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
30 |
Sedlacek O, Bardoula V, Vuorimaa-Laukkanen E, Gedda L, Edwards K, Radulescu A, Mun GA, Guo Y, Zhou J, Zhang H, Nardello-Rataj V, Filippov S, Hoogenboom R. Influence of Chain Length of Gradient and Block Copoly(2-oxazoline)s on Self-Assembly and Drug Encapsulation. Small 2022;:e2106251. [PMID: 35212458 DOI: 10.1002/smll.202106251] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
|
31 |
Wang H, Jin Z, Hu X, Jin Q, Tan S, Reza Mahdavian A, Zhu N, Guo K. Continuous flow cationic polymerizations. Chemical Engineering Journal 2022;430:132791. [DOI: 10.1016/j.cej.2021.132791] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
|
32 |
Liu H, Prachyathipsakul T, Koyasseril-Yehiya TM, Le SP, Thayumanavan S. Molecular bases for temperature sensitivity in supramolecular assemblies and their applications as thermoresponsive soft materials. Mater Horiz 2022;9:164-93. [PMID: 34549764 DOI: 10.1039/d1mh01091c] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
|
33 |
Kopka B, Kost B, Basko M. Poly(2-isopropenyl-2-oxazoline) as a reactive polymer for materials development. Polym Chem 2022;13:4736-46. [DOI: 10.1039/d2py00660j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
34 |
Benetti EM. Surface Functionalization with Cyclic Polymers. Topological Polymer Chemistry 2022. [DOI: 10.1007/978-981-16-6807-4_25] [Reference Citation Analysis]
|
35 |
Chung T, Han J, Kim YJ, Jeong K, Koo JM, Lee J, Park HG, Joo T, Kim YS. Effect of anions on the phase transition temperature of two structurally isomeric polymers: poly( N -isopropylacrylamide) and poly(2-isopropyl-2-oxazoline). Polym Chem . [DOI: 10.1039/d2py00543c] [Reference Citation Analysis]
|
36 |
Cegłowski M, Marien YW, Smeets S, De Smet L, D’hooge DR, Schroeder G, Hoogenboom R. Molecularly Imprinted Polymers with Enhanced Selectivity Based on 4-(Aminomethyl)pyridine-Functionalized Poly(2-oxazoline)s for Detecting Hazardous Herbicide Contaminants. Chem Mater 2022;34:84-96. [DOI: 10.1021/acs.chemmater.1c02813] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
37 |
Drews M, Trötschler T, Bauer M, Guntupalli A, Beichel W, Gentischer H, Mülhaupt R, Kerscher B, Biro D. Photocured Cationic Polyoxazoline Macromonomers as Gel Polymer Electrolytes for Lithium-Ion Batteries. ACS Appl Polym Mater 2022;4:158-68. [DOI: 10.1021/acsapm.1c01171] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
38 |
Mazrad ZAI, Schelle B, Nicolazzo JA, Leiske MN, Kempe K. Nitrile-Functionalized Poly(2-oxazoline)s as a Versatile Platform for the Development of Polymer Therapeutics. Biomacromolecules 2021;22:4618-32. [PMID: 34647734 DOI: 10.1021/acs.biomac.1c00923] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
39 |
Liu S, Kobayashi S, Nishimura S, Ueda T, Tanaka M. Effect of pendant groups on the blood compatibility and hydration states of poly(2‐oxazoline)s. Journal of Polymer Science 2021;59:2559-70. [DOI: 10.1002/pol.20210410] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
40 |
Huntošová V, Datta S, Lenkavská L, Máčajová M, Bilčík B, Kundeková B, Čavarga I, Kronek J, Jutková A, Miškovský P, Jancura D. Alkyl Chain Length in Poly(2-oxazoline)-Based Amphiphilic Gradient Copolymers Regulates the Delivery of Hydrophobic Molecules: A Case of the Biodistribution and the Photodynamic Activity of the Photosensitizer Hypericin. Biomacromolecules 2021;22:4199-216. [PMID: 34494830 DOI: 10.1021/acs.biomac.1c00768] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
41 |
Blokhin AN, Razina AB, Tenkovtsev AV. Novel Amphiphilic Star-Shaped Poly(2-Oxazoline)s with Calix[4]Arene Branching Center. KEM 2021;899:300-308. [DOI: 10.4028/www.scientific.net/kem.899.300] [Reference Citation Analysis]
|
42 |
Sano K, Suzuno N, Bao L, Haratake Y, Kijima K, Munekane M, Yamasaki T, Mukai T. Development of a Poly(2-ethyl-2-oxazoline)-Based Fluorescence Imaging Probe Targeting the Folate Receptor in Tumor Tissues. ACS Appl Polym Mater 2021;3:4889-95. [DOI: 10.1021/acsapm.1c00670] [Reference Citation Analysis]
|
43 |
Smirnova A, Kirila T, Blokhin A, Kozina N, Kurlykin M, Tenkovtsev A, Filippov A. Linear and star-shaped poly(2-ethyl-2-oxazine)s. Synthesis, characterization and conformation in solution. European Polymer Journal 2021;156:110637. [DOI: 10.1016/j.eurpolymj.2021.110637] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
44 |
Kaberov LI, Kaberova Z, Murmiliuk A, Trousil J, Sedláček O, Konefal R, Zhigunov A, Pavlova E, Vít M, Jirák D, Hoogenboom R, Filippov SK. Fluorine-Containing Block and Gradient Copoly(2-oxazoline)s Based on 2-(3,3,3-Trifluoropropyl)-2-oxazoline: A Quest for the Optimal Self-Assembled Structure for 19F Imaging. Biomacromolecules 2021;22:2963-75. [PMID: 34180669 DOI: 10.1021/acs.biomac.1c00367] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
45 |
Constantinou AP, Georgiou TK. Pre‐clinical and clinical applications of thermoreversible hydrogels in biomedical engineering: a review. Polym Int 2021;70:1433-48. [DOI: 10.1002/pi.6266] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
|
46 |
Drain BA, Beyer VP, Cattoz B, Becer CR. Solvent Dependency in the Synthesis of Multiblock and Cyclic Poly(2-oxazoline)s. Macromolecules 2021;54:5549-56. [DOI: 10.1021/acs.macromol.1c00529] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
47 |
Kitasono S, Yamamoto K, Kadokawa JI. Preparation and gelation behaviors of poly(2-oxazoline)-grafted chitin nanofibers. Carbohydr Polym 2021;259:117709. [PMID: 33673988 DOI: 10.1016/j.carbpol.2021.117709] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
48 |
Bronzeri LB, Gauche C, Gudimard L, Courtial E, Marquette C, Felisberti MI. Amphiphilic and segmented polyurethanes based on poly(ε-caprolactone)diol and poly(2-ethyl-2-oxazoline)diol: Synthesis, properties, and a preliminary performance study of the 3D printing. European Polymer Journal 2021;151:110449. [DOI: 10.1016/j.eurpolymj.2021.110449] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
49 |
Egghe T, Van Guyse JF, Ghobeira R, Morent R, Hoogenboom R, De Geyter N. Evaluation of cross-linking and degradation processes occurring at polymer surfaces upon plasma activation via size-exclusion chromatography. Polymer Degradation and Stability 2021;187:109543. [DOI: 10.1016/j.polymdegradstab.2021.109543] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
50 |
Qu P, Kuepfert M, Hashmi M, Weck M. Compartmentalization and Photoregulating Pathways for Incompatible Tandem Catalysis. J Am Chem Soc 2021;143:4705-13. [PMID: 33724020 DOI: 10.1021/jacs.1c00257] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 10.5] [Reference Citation Analysis]
|
51 |
Aksakal S, Aksakal R, Becer CR. Thioester Functional Polymers. Sulfur‐Containing Polymers 2021. [DOI: 10.1002/9783527823819.ch7] [Reference Citation Analysis]
|
52 |
Qu P, Kuepfert M, Ahmed E, Liu F, Weck M. Cross‐Linked Polymeric Micelles as Catalytic Nanoreactors. Eur J Inorg Chem 2021;2021:1420-7. [DOI: 10.1002/ejic.202100013] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
|
53 |
Lavikainen J, Dauletbekova M, Toleutay G, Kaliva M, Chatzinikolaidou M, Kudaibergenov SE, Tenkovtsev A, Khutoryanskiy VV, Vamvakaki M, Aseyev V. Poly(2‐ethyl‐2‐oxazoline) grafted gellan gum for potential application in transmucosal drug delivery. Polym Adv Technol 2021;32:2770-80. [DOI: 10.1002/pat.5298] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
54 |
Varanaraja Z, Kim J, Becer CR. Poly(2-oxazine)s: A comprehensive overview of the polymer structures, physical properties and applications. European Polymer Journal 2021;147:110299. [DOI: 10.1016/j.eurpolymj.2021.110299] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
|
55 |
Gil Alvaradejo G, Glassner M, Kumar R, Trouillet V, Welle A, Wang Y, de la Rosa VR, Sekula-Neuner S, Hirtz M, Hoogenboom R, Delaittre G. Thioacetate-Based Initiators for the Synthesis of Thiol-End-Functionalized Poly(2-oxazoline)s. Macromol Rapid Commun 2020;41:e2000320. [PMID: 33463837 DOI: 10.1002/marc.202000320] [Reference Citation Analysis]
|
56 |
Trachsel L, Ramakrishna SN, Romio M, Spencer ND, Benetti EM. Topology and Molecular Architecture of Polyelectrolytes Determine Their pH-Responsiveness When Assembled on Surfaces. ACS Macro Lett 2021;10:90-7. [PMID: 35548981 DOI: 10.1021/acsmacrolett.0c00750] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
57 |
Ibrahim S, Lotfy S. Radiation crosslinking of linear polyethyleneimine‐based nanoparticles grafted to poly(glycidyl methacrylate) via trimethylolpropane triacrylate as potential electronic packaging material. J Appl Polym Sci 2021;138:50470. [DOI: 10.1002/app.50470] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
58 |
Menezes RNLD, Felisberti MI. Combining CROP and ATRP to synthesize pH-responsive poly(2-ethyl-2-oxazoline- b -4-vinylpyridine) block copolymers. Polym Chem 2021;12:4680-95. [DOI: 10.1039/d1py00730k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
59 |
Göppert NE, Dirauf M, Weber C, Schubert US. Block copolymers comprising degradable poly(2-ethyl-2-oxazoline) analogues via copper-free click chemistry. Polym Chem 2021;12:5426-37. [DOI: 10.1039/d1py00853f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
60 |
Abbrent S, Mahun A, Smrčková MD, Kobera L, Konefał R, Černoch P, Dušek K, Brus J. Copolymer chain formation of 2-oxazolines by in situ1H-NMR spectroscopy: dependence of sequential composition on substituent structure and monomer ratios. RSC Adv 2021;11:10468-10478. [DOI: 10.1039/d1ra01509e] [Reference Citation Analysis]
|
61 |
Zhao T, Drain B, Yilmaz G, Becer CR. One-pot synthesis of amphiphilic multiblock poly(2-oxazoline)s via para-fluoro-thiol click reactions. Polym Chem 2021;12:6392-6403. [DOI: 10.1039/d1py00944c] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
62 |
Blokhin AN, Razina AB, Bursian AE, Ten’kovtsev AV. Synthesis of a New Type of Star-Shaped Poly(2-alkyl-2-oxazolines) on the Basis of Sulfochlorinated Calix[8]arene. Polym Sci Ser B 2021;63:52-62. [DOI: 10.1134/s1560090421010024] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
63 |
Pásztói B, Trötschler TM, Szabó Á, Kerscher B, Tenhu H, Mülhaupt R, Iván B. Quasiliving cationic ring-opening polymerization of 2-ethyl-2-oxazoline in benzotrifluoride, as an alternative reaction medium. Polymer 2021;212:123165. [DOI: 10.1016/j.polymer.2020.123165] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
64 |
Deepagan VG, Leiske MN, Fletcher NL, Rudd D, Tieu T, Kirkwood N, Thurecht KJ, Kempe K, Voelcker NH, Cifuentes-Rius A. Engineering Fluorescent Gold Nanoclusters Using Xanthate-Functionalized Hydrophilic Polymers: Toward Enhanced Monodispersity and Stability. Nano Lett 2021;21:476-84. [PMID: 33350838 DOI: 10.1021/acs.nanolett.0c03930] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
|
65 |
Trachsel L, Romio M, Zenobi-Wong M, Benetti EM. Hydrogels Generated from Cyclic Poly(2-Oxazoline)s Display Unique Swelling and Mechanical Properties. Macromol Rapid Commun 2021;42:e2000658. [PMID: 33326133 DOI: 10.1002/marc.202000658] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
|
66 |
Iordache T, Banu ND, Giol ED, Vuluga DM, Jerca FA, Jerca VV. Factorial design optimization of polystyrene microspheres obtained by aqueous dispersion polymerization in the presence of poly(2‐ethyl‐2‐oxazoline) reactive stabilizer. Polym Int 2020;69:1122-1129. [DOI: 10.1002/pi.5974] [Reference Citation Analysis]
|
67 |
Blokhin AN, Razina AB, Kurlykin MP, Kashina AV, Tenkovtsev AV. New thermoresponsive polyester-graft-polyoxazolines based on sulfonyl chloride macroinitiators. Mendeleev Communications 2020;30:799-801. [DOI: 10.1016/j.mencom.2020.11.037] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
68 |
Zhou M, Jiang W, Xie J, Zhang W, Ji Z, Zou J, Cong Z, Xiao X, Gu J, Liu R. Peptide-Mimicking Poly(2-oxazoline)s Displaying Potent Antimicrobial Properties. ChemMedChem 2021;16:309-15. [PMID: 32926562 DOI: 10.1002/cmdc.202000530] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
|
69 |
Schroffenegger M, Leitner NS, Morgese G, Ramakrishna SN, Willinger M, Benetti EM, Reimhult E. Polymer Topology Determines the Formation of Protein Corona on Core-Shell Nanoparticles. ACS Nano 2020;14:12708-18. [PMID: 32865993 DOI: 10.1021/acsnano.0c02358] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 9.0] [Reference Citation Analysis]
|
70 |
Benkhaled BT, Montheil T, Lapinte V, Monge S. Hydrosoluble phosphonic acid functionalized poly(2‐ethyl‐2‐oxazoline) chelating polymers for the sorption of metallic cations. Journal of Polymer Science 2020;58:2875-2886. [DOI: 10.1002/pol.20200487] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
71 |
Rueda JC, Suárez C, Komber H, Zschoche S, Voit B. Synthesis and characterization of pH- and thermo-responsive hydrogels based on poly(2-cyclopropyl-2-oxazoline) macromonomer, sodium acrylate, and acrylamide. Polym Bull 2020;77:5553-65. [DOI: 10.1007/s00289-019-03034-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
72 |
Kuepfert M, Qu P, Cohen AE, Hoyt CB, Jones CW, Weck M. Reversible Photoswitching in Poly(2-oxazoline) Nanoreactors. Chemistry 2020;26:11776-81. [PMID: 32270529 DOI: 10.1002/chem.202000179] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
73 |
Trachsel L, Romio M, Grob B, Zenobi-Wong M, Spencer ND, Ramakrishna SN, Benetti EM. Functional Nanoassemblies of Cyclic Polymers Show Amplified Responsiveness and Enhanced Protein-Binding Ability. ACS Nano 2020;14:10054-67. [PMID: 32628438 DOI: 10.1021/acsnano.0c03239] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
|
74 |
Bernhard Y, Sedlacek O, Van Guyse JFR, Bender J, Zhong Z, De Geest BG, Hoogenboom R. Poly(2-ethyl-2-oxazoline) Conjugates with Salicylic Acid via Degradable Modular Ester Linkages. Biomacromolecules 2020;21:3207-15. [PMID: 32639725 DOI: 10.1021/acs.biomac.0c00659] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
75 |
Trachsel L, Romio M, Ramakrishna SN, Benetti EM. Fabrication of Biopassive Surfaces Using Poly(2‐alkyl‐2‐oxazoline)s: Recent Progresses and Applications. Adv Mater Interfaces 2020;7:2000943. [DOI: 10.1002/admi.202000943] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
|
76 |
Sedlacek O, Jirak D, Vit M, Ziołkowska N, Janouskova O, Hoogenboom R. Fluorinated Water-Soluble Poly(2-oxazoline)s as Highly Sensitive 19 F MRI Contrast Agents. Macromolecules 2020;53:6387-95. [DOI: 10.1021/acs.macromol.0c01228] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
|
77 |
Cegłowski M, Schroeder G, Hoogenboom R. Porous Poly(2-oxazoline)-Based Polymers for Removal and Quantification of Phenolic Compounds. Chem Mater 2020;32:6425-36. [DOI: 10.1021/acs.chemmater.0c01559] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
|
78 |
Luo W, Wang Y, Jin Y, Zhang Z, Wu C. One‐pot tandem ring‐opening polymerization of N ‐sulfonyl aziridines and “click” chemistry to produce well‐defined star‐shaped polyaziridines. Journal of Polymer Science 2020;58:2116-25. [DOI: 10.1002/pol.20200154] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
|
79 |
Jana S, Uchman M. Poly(2-oxazoline)-based stimulus-responsive (Co)polymers: An overview of their design, solution properties, surface-chemistries and applications. Progress in Polymer Science 2020;106:101252. [DOI: 10.1016/j.progpolymsci.2020.101252] [Cited by in Crossref: 28] [Cited by in F6Publishing: 17] [Article Influence: 9.3] [Reference Citation Analysis]
|
80 |
Sedlacek O, Van Driessche A, Uvyn A, De Geest BG, Hoogenboom R. Poly(2-methyl-2-oxazoline) conjugates with doxorubicin: From synthesis of high drug loading water-soluble constructs to in vitro anti-cancer properties. J Control Release 2020;326:53-62. [PMID: 32565042 DOI: 10.1016/j.jconrel.2020.06.018] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
|
81 |
Delecourt G, Plet L, Bennevault V, Guégan P. Synthesis of Double Hydrophilic Block Copolymers Poly(2-oxazoline- b -ethylenimine) in a Two-Step Procedure. ACS Appl Polym Mater 2020;2:2696-705. [DOI: 10.1021/acsapm.0c00308] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
82 |
Klikovits N, Sinawehl L, Knaack P, Koch T, Stampfl J, Gorsche C, Liska R. UV-Induced Cationic Ring-Opening Polymerization of 2-Oxazolines for Hot Lithography. ACS Macro Lett 2020;9:546-51. [PMID: 35648510 DOI: 10.1021/acsmacrolett.0c00055] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
|
83 |
Beyer VP, Cattoz B, Strong A, Schwarz A, Becer CR. Brush Copolymers from 2-Oxazoline and Acrylic Monomers via an Inimer Approach. Macromolecules 2020;53:2950-8. [DOI: 10.1021/acs.macromol.0c00243] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
|
84 |
Raus V, Hološ A, Kronek J, Mosnáček J. Well-Defined Linear and Grafted Poly(2-isopropenyl-2-oxazoline)s Prepared via Copper-Mediated Reversible-Deactivation Radical Polymerization Methods. Macromolecules 2020;53:2077-87. [DOI: 10.1021/acs.macromol.9b02662] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
|
85 |
Hahn L, Maier M, Stahlhut P, Beudert M, Flegler V, Forster S, Altmann A, Töppke F, Fischer K, Seiffert S, Böttcher B, Lühmann T, Luxenhofer R. Inverse Thermogelation of Aqueous Triblock Copolymer Solutions into Macroporous Shear-Thinning 3D Printable Inks. ACS Appl Mater Interfaces 2020;12:12445-56. [DOI: 10.1021/acsami.9b21282] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
|
86 |
Gleede T, Yu F, Luo YL, Yuan Y, Wang J, Wurm FR. Linear Well-Defined Polyamines via Anionic Ring-Opening Polymerization of Activated Aziridines: From Mild Desulfonylation to Cell Transfection. ACS Macro Lett 2020;9:20-5. [PMID: 35638659 DOI: 10.1021/acsmacrolett.9b00792] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
|
87 |
Baheti P, Rheinberger T, Gimello O, Bouilhac C, Wurm FR, Lacroix-desmazes P, Howdle SM. Clean synthesis of linear and star amphiphilic poly(ε-caprolactone)- block -poly(ethyl ethylene phosphonate) block copolymers: assessing self-assembly and surface activity. Green Chem 2020;22:3248-61. [DOI: 10.1039/d0gc00819b] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
88 |
Oleszko-torbus N, Utrata-wesołek A, Bochenek M, Lipowska-kur D, Dworak A, Wałach W. Thermal and crystalline properties of poly(2-oxazoline)s. Polym Chem 2020;11:15-33. [DOI: 10.1039/c9py01316d] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 5.3] [Reference Citation Analysis]
|
89 |
Vergaelen M, Verbraeken B, Van Guyse JFR, Podevyn A, Tigrine A, de la Rosa VR, Monnery BD, Hoogenboom R. Ethyl acetate as solvent for the synthesis of poly(2-ethyl-2-oxazoline). Green Chem 2020;22:1747-53. [DOI: 10.1039/c9gc03872h] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
|
90 |
Sedlacek O, de la Rosa VR, Hoogenboom R. Poly(2-oxazoline)–protein conjugates. Polymer-Protein Conjugates 2020. [DOI: 10.1016/b978-0-444-64081-9.00018-8] [Reference Citation Analysis]
|
91 |
Merckx R, Swift T, Rees R, Van Guyse JFR, Schoolaert E, De Clerck K, Ottevaere H, Thienpont H, Jerca VV, Hoogenboom R. Förster resonance energy transfer in fluorophore labeled poly(2-ethyl-2-oxazoline)s. J Mater Chem C 2020;8:14125-37. [DOI: 10.1039/d0tc02830d] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
92 |
Daubian D, Gaitzsch J, Meier W. Synthesis and complex self-assembly of amphiphilic block copolymers with a branched hydrophobic poly(2-oxazoline) into multicompartment micelles, pseudo-vesicles and yolk/shell nanoparticles. Polym Chem 2020;11:1237-48. [DOI: 10.1039/c9py01559k] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 9.0] [Reference Citation Analysis]
|
93 |
Watanabe H, Yamamoto T, Kanazawa A, Aoshima S. Stereoselective cationic polymerization of vinyl ethers by easily and finely tunable titanium complexes prepared from tartrate-derived diols: isospecific polymerization and recognition of chiral side chains. Polym Chem 2020;11:3398-403. [DOI: 10.1039/d0py00343c] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
|
94 |
Sedlacek O, Hoogenboom R. Drug Delivery Systems Based on Poly(2‐Oxazoline)s and Poly(2‐Oxazine)s. Adv Therap 2020;3:1900168. [DOI: 10.1002/adtp.201900168] [Cited by in Crossref: 50] [Cited by in F6Publishing: 50] [Article Influence: 12.5] [Reference Citation Analysis]
|
95 |
Gleede T, Markwart JC, Huber N, Rieger E, Wurm FR. Competitive Copolymerization: Access to Aziridine Copolymers with Adjustable Gradient Strengths. Macromolecules 2019;52:9703-14. [DOI: 10.1021/acs.macromol.9b01623] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
|
96 |
Liebscher J, Teßmar J, Groll J. In Situ Polymer Analogue Generation of Azlactone Functions at Poly(oxazoline)s for Peptide Conjugation. Macromol Chem Phys 2020;221:1900500. [DOI: 10.1002/macp.201900500] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
97 |
Pizzi D, Humphries J, Morrow JP, Fletcher NL, Bell CA, Thurecht KJ, Kempe K. Poly(2-oxazoline) macromonomers as building blocks for functional and biocompatible polymer architectures. European Polymer Journal 2019;121:109258. [DOI: 10.1016/j.eurpolymj.2019.109258] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 7.5] [Reference Citation Analysis]
|
98 |
Delaittre G. Telechelic poly(2-oxazoline)s. European Polymer Journal 2019;121:109281. [DOI: 10.1016/j.eurpolymj.2019.109281] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 6.8] [Reference Citation Analysis]
|
99 |
Berberich O, Blöhbaum J, Hölscher-doht S, Meffert RH, Teßmar J, Blunk T, Groll J. Catechol-modified poly(oxazoline)s with tunable degradability facilitate cell invasion and lateral cartilage integration. Journal of Industrial and Engineering Chemistry 2019;80:757-69. [DOI: 10.1016/j.jiec.2019.06.038] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
|
100 |
Kim BS, Osawa S, Naito M, Ogura S, Kamegawa R, Ishida H, Kim HJ, Uchida S, Miyata K. A 50‐nm‐Sized Micellar Assembly of Thermoresponsive Polymer‐Antisense Oligonucleotide Conjugates for Enhanced Gene Knockdown in Lung Cancer by Intratracheal Administration. Adv Therap 2020;3:1900123. [DOI: 10.1002/adtp.201900123] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
101 |
Koda Y, Terashima T, Ouchi M. Unnatural Oligoaminosaccharides with N-1,2-Glycosidic Bonds Prepared by Cationic Ring-Opening Polymerization of 2-Oxazoline-Based Heterobicyclic Sugar Monomers. ACS Macro Lett 2019;8:1456-60. [PMID: 35651175 DOI: 10.1021/acsmacrolett.9b00674] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
|
102 |
Mathivanan N, Paramasivam G, Vergaelen M, Rajendran J, Hoogenboom R, Sundaramurthy A. Hydrogen-Bonded Multilayer Thin Films and Capsules Based on Poly(2-n-propyl-2-oxazoline) and Tannic Acid: Investigation on Intermolecular Forces, Stability, and Permeability. Langmuir 2019;35:14712-24. [PMID: 31622110 DOI: 10.1021/acs.langmuir.9b02938] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
|
103 |
Trachsel L, Johnbosco C, Lang T, Benetti EM, Zenobi-wong M. Double-Network Hydrogels Including Enzymatically Crosslinked Poly-(2-alkyl-2-oxazoline)s for 3D Bioprinting of Cartilage-Engineering Constructs. Biomacromolecules 2019;20:4502-11. [DOI: 10.1021/acs.biomac.9b01266] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 10.3] [Reference Citation Analysis]
|
104 |
Yang R, Wang Y, Luo W, Jin Y, Zhang Z, Wu C, Hadjichristidis N. Carboxylic Acid Initiated Organocatalytic Ring-Opening Polymerization of N -Sulfonyl Aziridines: An Easy Access to Well-Controlled Polyaziridine-Based Architectural and Functionalized Polymers. Macromolecules 2019;52:8793-802. [DOI: 10.1021/acs.macromol.9b01716] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
|
105 |
Walsh DJ, Hyatt MG, Miller SA, Guironnet D. Recent Trends in Catalytic Polymerizations. ACS Catal 2019;9:11153-88. [DOI: 10.1021/acscatal.9b03226] [Cited by in Crossref: 124] [Cited by in F6Publishing: 134] [Article Influence: 31.0] [Reference Citation Analysis]
|
106 |
Boel E, Smeets A, Vergaelen M, De la Rosa VR, Hoogenboom R, Van den Mooter G. Comparative study of the potential of poly(2-ethyl-2-oxazoline) as carrier in the formulation of amorphous solid dispersions of poorly soluble drugs. European Journal of Pharmaceutics and Biopharmaceutics 2019;144:79-90. [DOI: 10.1016/j.ejpb.2019.09.005] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
|
107 |
Kalaoglu-altan OI, Li Y, Mcmaster R, Shaw A, Hou Z, Vergaelen M, Hoogenboom R, Dargaville TR, De Clerck K. Crosslinking of electrospun and bioextruded partially hydrolyzed poly(2-ethyl-2-oxazoline) using glutaraldehyde vapour. European Polymer Journal 2019;120:109218. [DOI: 10.1016/j.eurpolymj.2019.109218] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
|
108 |
Podevyn A, Arys K, de la Rosa VR, Glassner M, Hoogenboom R. End-group functionalization of poly(2-oxazoline)s using methyl bromoacetate as initiator followed by direct amidation. European Polymer Journal 2019;120:109273. [DOI: 10.1016/j.eurpolymj.2019.109273] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
|
109 |
Drain BA, Becer CR. Synthetic approaches on conjugation of poly(2-oxazoline)s with vinyl based polymers. European Polymer Journal 2019;119:344-51. [DOI: 10.1016/j.eurpolymj.2019.07.047] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
|
110 |
Kozur A, Burk L, Thomann R, Lutz PJ, Mülhaupt R. Graphene oxide grafted with polyoxazoline as thermoresponsive support for facile catalyst recycling by reversible thermal switching between dispersion and sedimentation. Polymer 2019;178:121553. [DOI: 10.1016/j.polymer.2019.121553] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
|
111 |
Svoboda J, Sedláček O, Riedel T, Hrubý M, Pop-georgievski O. Poly(2-oxazoline)s One-Pot Polymerization and Surface Coating: From Synthesis to Antifouling Properties Out-Performing Poly(ethylene oxide). Biomacromolecules 2019;20:3453-63. [DOI: 10.1021/acs.biomac.9b00751] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
|
112 |
Simon L, Vincent M, Le Saux S, Lapinte V, Marcotte N, Morille M, Dorandeu C, Devoisselle JM, Bégu S. Polyoxazolines based mixed micelles as PEG free formulations for an effective quercetin antioxidant topical delivery. Int J Pharm 2019;570:118516. [PMID: 31319148 DOI: 10.1016/j.ijpharm.2019.118516] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
|
113 |
Lübtow MM, Nelke LC, Seifert J, Kühnemundt J, Sahay G, Dandekar G, Nietzer SL, Luxenhofer R. Drug induced micellization into ultra-high capacity and stable curcumin nanoformulations: Physico-chemical characterization and evaluation in 2D and 3D in vitro models. Journal of Controlled Release 2019;303:162-80. [DOI: 10.1016/j.jconrel.2019.04.014] [Cited by in Crossref: 45] [Cited by in F6Publishing: 42] [Article Influence: 11.3] [Reference Citation Analysis]
|
114 |
Arraez FJ, Xu X, Van Steenberge PHM, Jerca V, Hoogenboom R, D’hooge DR. Macropropagation Rate Coefficients and Branching Levels in Cationic Ring-Opening Polymerization of 2-Ethyl-2-oxazoline through Prediction of Size Exclusion Chromatography Data. Macromolecules 2019;52:4067-78. [DOI: 10.1021/acs.macromol.9b00544] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
|
115 |
Sedlacek O, Lava K, Verbraeken B, Kasmi S, De Geest BG, Hoogenboom R. Unexpected Reactivity Switch in the Statistical Copolymerization of 2-Oxazolines and 2-Oxazines Enabling the One-Step Synthesis of Amphiphilic Gradient Copolymers. J Am Chem Soc 2019;141:9617-22. [DOI: 10.1021/jacs.9b02607] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
|
116 |
Benetti EM, Spencer ND. Using Polymers to Impart Lubricity and Biopassivity to Surfaces: Are These Properties Linked? HCA 2019;102:e1900071. [DOI: 10.1002/hlca.201900071] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
|
117 |
Kerscher B, Trötschler TM, Pásztói B, Gröer S, Szabó Á, Iván B, Mülhaupt R. Thermoresponsive Polymer Ionic Liquids and Nanostructured Hydrogels Based upon Amphiphilic Polyisobutylene- b -poly(2-ethyl-2-oxazoline) Diblock Copolymers. Macromolecules 2019;52:3306-18. [DOI: 10.1021/acs.macromol.9b00296] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
|
118 |
Alvaradejo GG, Nguyen HV, Harvey P, Gallagher NM, Le D, Ottaviani MF, Jasanoff A, Delaittre G, Johnson JA. Polyoxazoline-Based Bottlebrush and Brush-Arm Star Polymers via ROMP: Syntheses and Applications as Organic Radical Contrast Agents. ACS Macro Lett 2019;8:473-8. [PMID: 31289694 DOI: 10.1021/acsmacrolett.9b00016] [Cited by in Crossref: 43] [Cited by in F6Publishing: 43] [Article Influence: 10.8] [Reference Citation Analysis]
|
119 |
Engel N, Dirauf M, Seupel S, Leiske MN, Schubert S, Schubert US. Utilization of 4-(trifluoromethyl)benzenesulfonates as Counter Ions Tunes the Initiator Efficiency of Sophisticated Initiators for the Preparation of Well-Defined poly(2-oxazoline)s. Macromol Rapid Commun 2019;40:e1900094. [PMID: 30968504 DOI: 10.1002/marc.201900094] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
120 |
Li Y, Vergaelen M, Schoolaert E, Hoogenboom R, De Clerck K. Effect of crosslinking stage on photocrosslinking of benzophenone functionalized poly(2-ethyl-2-oxazoline) nanofibers obtained by aqueous electrospinning. European Polymer Journal 2019;112:24-30. [DOI: 10.1016/j.eurpolymj.2018.12.030] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 6.3] [Reference Citation Analysis]
|
121 |
Ryma M, Blöhbaum J, Singh R, Sancho A, Matuszak J, Cicha I, Groll J. Easy-to-Prepare Coating of Standard Cell Culture Dishes for Cell-Sheet Engineering Using Aqueous Solutions of Poly(2-n-propyl-oxazoline). ACS Biomater Sci Eng 2019;5:1509-17. [DOI: 10.1021/acsbiomaterials.8b01588] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
|
122 |
Ramakrishna SN, Morgese G, Zenobi-wong M, Benetti EM. Comblike Polymers with Topologically Different Side Chains for Surface Modification: Assembly Process and Interfacial Physicochemical Properties. Macromolecules 2019;52:1632-41. [DOI: 10.1021/acs.macromol.8b02549] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
|
123 |
Delage B, Briou B, Brossier T, Catrouillet S, Robin J, Lapinte V. Polyoxazoline associated with cardanol for bio‐based linear alkyl benzene surfactants. Polym Int 2018;68:755-63. [DOI: 10.1002/pi.5763] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
|
124 |
Sahn M, Weber C, Schubert US. Poly(2-oxazoline)-Containing Triblock Copolymers: Synthesis and Applications. Polymer Reviews 2019;59:240-79. [DOI: 10.1080/15583724.2018.1496930] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
|
125 |
Loukotová L, Bogomolova A, Konefal R, Špírková M, Štěpánek P, Hrubý M. Hybrid κ-carrageenan-based polymers showing "schizophrenic" lower and upper critical solution temperatures and potassium responsiveness. Carbohydr Polym 2019;210:26-37. [PMID: 30732762 DOI: 10.1016/j.carbpol.2019.01.050] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
|
126 |
Sedlacek O, Monnery BD, Hoogenboom R. Synthesis of defined high molar mass poly(2-methyl-2-oxazoline). Polym Chem 2019;10:1286-90. [DOI: 10.1039/c9py00013e] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
|
127 |
Sedlacek O, Bera D, Hoogenboom R. Poly(2-amino-2-oxazoline)s: a new class of thermoresponsive polymers. Polym Chem 2019;10:4683-9. [DOI: 10.1039/c9py00943d] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
|
128 |
Bera D, Sedlacek O, Jager E, Pavlova E, Vergaelen M, Hoogenboom R. Solvent-control over monomer distribution in the copolymerization of 2-oxazolines and the effect of a gradient structure on self-assembly. Polym Chem 2019;10:5116-23. [DOI: 10.1039/c9py00927b] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
|
129 |
Van Guyse JFR, Mees MA, Vergaelen M, Baert M, Verbraeken B, Martens PJ, Hoogenboom R. Amidation of methyl ester side chain bearing poly(2-oxazoline)s with tyramine: a quest for a selective and quantitative approach. Polym Chem 2019;10:954-62. [DOI: 10.1039/c9py00014c] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
|
130 |
Nishimura T, Sumi N, Koda Y, Sasaki Y, Akiyoshi K. Intrinsically permeable polymer vesicles based on carbohydrate-conjugated poly(2-oxazoline)s synthesized using a carbohydrate-based initiator system. Polym Chem 2019;10:691-7. [DOI: 10.1039/c8py01502c] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
|
131 |
Hoogenboom R. Temperature-Responsive Polymers: Properties, Synthesis, and Applications. Smart Polymers and their Applications 2019. [DOI: 10.1016/b978-0-08-102416-4.00002-8] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
|
132 |
Le D, Wagner F, Takamiya M, Hsiao I, Gil Alvaradejo G, Strähle U, Weiss C, Delaittre G. Straightforward access to biocompatible poly(2-oxazoline)-coated nanomaterials by polymerization-induced self-assembly. Chem Commun 2019;55:3741-4. [DOI: 10.1039/c9cc00407f] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 8.3] [Reference Citation Analysis]
|
133 |
Monnery BD, Hoogenboom R. Thermoresponsive hydrogels formed by poly(2-oxazoline) triblock copolymers. Polym Chem 2019;10:3480-7. [DOI: 10.1039/c9py00300b] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 6.8] [Reference Citation Analysis]
|
134 |
Sedlacek O, Janouskova O, Verbraeken B, Hoogenboom R. Straightforward Route to Superhydrophilic Poly(2-oxazoline)s via Acylation of Well-Defined Polyethylenimine. Biomacromolecules 2019;20:222-30. [DOI: 10.1021/acs.biomac.8b01366] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 4.2] [Reference Citation Analysis]
|
135 |
Verbraeken B, Hullaert J, van Guyse J, Van Hecke K, Winne J, Hoogenboom R. The Elusive Seven-Membered Cyclic Imino Ether Tetrahydrooxazepine. J Am Chem Soc 2018;140:17404-8. [DOI: 10.1021/jacs.8b10918] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
|
136 |
de Jongh PA, Haddleton DM, Kempe K. Spontaneous zwitterionic copolymerisation: An undervalued and efficacious technique for the synthesis of functional degradable oligomers and polymers. Progress in Polymer Science 2018;87:228-46. [DOI: 10.1016/j.progpolymsci.2018.08.002] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.6] [Reference Citation Analysis]
|
137 |
Bauer M, Tauhardt L, Lambermont-thijs HM, Kempe K, Hoogenboom R, Schubert US, Fischer D. Rethinking the impact of the protonable amine density on cationic polymers for gene delivery: A comparative study of partially hydrolyzed poly(2-ethyl-2-oxazoline)s and linear poly(ethylene imine)s. European Journal of Pharmaceutics and Biopharmaceutics 2018;133:112-21. [DOI: 10.1016/j.ejpb.2018.10.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
|
138 |
Monnery BD, Jerca VV, Sedlacek O, Verbraeken B, Cavill R, Hoogenboom R. Defined High Molar Mass Poly(2‐Oxazoline)s. Angew Chem 2018;130:15626-30. [DOI: 10.1002/ange.201807796] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
|
139 |
Monnery BD, Jerca VV, Sedlacek O, Verbraeken B, Cavill R, Hoogenboom R. Defined High Molar Mass Poly(2‐Oxazoline)s. Angew Chem Int Ed 2018;57:15400-4. [DOI: 10.1002/anie.201807796] [Cited by in Crossref: 52] [Cited by in F6Publishing: 55] [Article Influence: 10.4] [Reference Citation Analysis]
|
140 |
Kuepfert M, Cohen AE, Cullen O, Weck M. Shell Cross-Linked Micelles as Nanoreactors for Enantioselective Three-Step Tandem Catalysis. Chemistry 2018;24:18648-52. [PMID: 30276903 DOI: 10.1002/chem.201804956] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 4.4] [Reference Citation Analysis]
|
141 |
Morgese G, Gombert Y, Ramakrishna SN, Benetti EM. Mixing Poly(ethylene glycol) and Poly(2-alkyl-2-oxazoline)s Enhances Hydration and Viscoelasticity of Polymer Brushes and Determines Their Nanotribological and Antifouling Properties. ACS Appl Mater Interfaces 2018;10:41839-48. [DOI: 10.1021/acsami.8b17193] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 5.2] [Reference Citation Analysis]
|
142 |
Jerca FA, Anghelache AM, Ghibu E, Cecoltan S, Stancu I, Trusca R, Vasile E, Teodorescu M, Vuluga DM, Hoogenboom R, Jerca VV. Poly(2-isopropenyl-2-oxazoline) Hydrogels for Biomedical Applications. Chem Mater 2018;30:7938-49. [DOI: 10.1021/acs.chemmater.8b03545] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 6.0] [Reference Citation Analysis]
|
143 |
Jerca FA, Jerca VV, Hoogenboom R. Well‐Defined Thermoresponsive Polymethacrylamide Copolymers with Ester Pendent Groups through One‐Pot Statistical Postpolymerization Modification of Poly(2‐Isopropenyl‐2‐Oxazoline) with Multiple Carboxylic Acids. J Polym Sci Part A: Polym Chem 2018;57:360-6. [DOI: 10.1002/pola.29188] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
|
144 |
Morgese G, Verbraeken B, Ramakrishna SN, Gombert Y, Cavalli E, Rosenboom J, Zenobi‐wong M, Spencer ND, Hoogenboom R, Benetti EM. Chemical Design of Non‐Ionic Polymer Brushes as Biointerfaces: Poly(2‐oxazine)s Outperform Both Poly(2‐oxazoline)s and PEG. Angew Chem Int Ed 2018;57:11667-72. [DOI: 10.1002/anie.201805620] [Cited by in Crossref: 82] [Cited by in F6Publishing: 82] [Article Influence: 16.4] [Reference Citation Analysis]
|
145 |
Lorson T, Lübtow MM, Wegener E, Haider MS, Borova S, Nahm D, Jordan R, Sokolski-papkov M, Kabanov AV, Luxenhofer R. Poly(2-oxazoline)s based biomaterials: A comprehensive and critical update. Biomaterials 2018;178:204-80. [DOI: 10.1016/j.biomaterials.2018.05.022] [Cited by in Crossref: 200] [Cited by in F6Publishing: 204] [Article Influence: 40.0] [Reference Citation Analysis]
|
146 |
Khan J, Alexander A, Ajazuddin, Saraf S, Saraf S. Exploring the role of polymeric conjugates toward anti-cancer drug delivery: Current trends and future projections. International Journal of Pharmaceutics 2018;548:500-14. [DOI: 10.1016/j.ijpharm.2018.06.060] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 4.2] [Reference Citation Analysis]
|
147 |
Cegłowski M, Hoogenboom R. Molecularly Imprinted Poly(2-oxazoline) Based on Cross-Linking by Direct Amidation of Methyl Ester Side Chains. Macromolecules 2018;51:6468-75. [DOI: 10.1021/acs.macromol.8b01068] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
|
148 |
Morgese G, Verbraeken B, Ramakrishna SN, Gombert Y, Cavalli E, Rosenboom J, Zenobi-wong M, Spencer ND, Hoogenboom R, Benetti EM. Chemical Design of Non-Ionic Polymer Brushes as Biointerfaces: Poly(2-oxazine)s Outperform Both Poly(2-oxazoline)s and PEG. Angew Chem 2018;130:11841-6. [DOI: 10.1002/ange.201805620] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
|
149 |
Trützschler A, Leiske MN, Strumpf M, Brendel JC, Schubert US. One-Pot Synthesis of Block Copolymers by a Combination of Living Cationic and Controlled Radical Polymerization. Macromol Rapid Commun 2019;40:1800398. [DOI: 10.1002/marc.201800398] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
|
150 |
Kaberov LI, Verbraeken B, Riabtseva A, Brus J, Radulescu A, Talmon Y, Stepanek P, Hoogenboom R, Filippov SK. Fluorophilic–Lipophilic–Hydrophilic Poly(2-oxazoline) Block Copolymers as MRI Contrast Agents: From Synthesis to Self-Assembly. Macromolecules 2018;51:6047-56. [DOI: 10.1021/acs.macromol.8b00957] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
|
151 |
Rieger E, Gleede T, Manhart A, Lamla M, Wurm FR. Microwave-Assisted Desulfonylation of Polysulfonamides toward Polypropylenimine. ACS Macro Lett 2018;7:598-603. [PMID: 35632962 DOI: 10.1021/acsmacrolett.8b00180] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
|
152 |
Blokhin AN, Razina AB, Ten’kovtsev AV. Star Poly(2-alkyl-2-oxazolines) Based on Octa-(chlorosulfonyl)-calix[8]arene. Polym Sci Ser B 2018;60:307-316. [DOI: 10.1134/s1560090418030028] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
|
153 |
Ďorďovič V, Verbraeken B, Hogenboom R, Kereïche S, Matějíček P, Uchman M. Tuning of Thermoresponsivity of a Poly(2-alkyl-2-oxazoline) Block Copolymer by Interaction with Surface-Active and Chaotropic Metallacarborane Anion. Chem Asian J 2018;13:838-45. [PMID: 29384259 DOI: 10.1002/asia.201701720] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
|
154 |
Konishcheva E, Daubian D, Gaitzsch J, Meier W. Synthesis of Linear ABC Triblock Copolymers and Their Self-Assembly in Solution. Helv Chim Acta 2018;101:e1700287. [DOI: 10.1002/hlca.201700287] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 5.2] [Reference Citation Analysis]
|
155 |
Van Guyse JFR, de la Rosa VR, Hoogenboom R. Mechanochemical Preparation of Stable Sub-100 nm γ-Cyclodextrin:Buckminsterfullerene (C60) Nanoparticles by Electrostatic or Steric Stabilization. Chemistry 2018;24:2758-66. [PMID: 29232020 DOI: 10.1002/chem.201705647] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
|
156 |
Kaberov LI, Verbraeken B, Riabtseva A, Brus J, Talmon Y, Stepanek P, Hoogenboom R, Filippov SK. Fluorinated 2-Alkyl-2-oxazolines of High Reactivity: Spacer-Length-Induced Acceleration for Cationic Ring-Opening Polymerization As a Basis for Triphilic Block Copolymer Synthesis. ACS Macro Lett 2018;7:7-10. [PMID: 35610932 DOI: 10.1021/acsmacrolett.7b00954] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
|
157 |
Steinkoenig J, de Jongh PAJM, Haddleton DM, Goldmann AS, Barner-kowollik C, Kempe K. Unraveling the Spontaneous Zwitterionic Copolymerization Mechanism of Cyclic Imino Ethers and Acrylic Acid. Macromolecules 2018;51:318-27. [DOI: 10.1021/acs.macromol.7b02608] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
|
158 |
Eibel A, Marx P, Jin H, Tsekmes IA, Mühlbacher I, Smit JJ, Kern W, Wiesbrock F. Enhancement of the Insulation Properties of Poly(2-oxazoline)-co-Polyester Networks by the Addition of Nanofillers. Macromol Rapid Commun 2018;39:e1700681. [PMID: 29292560 DOI: 10.1002/marc.201700681] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
|
159 |
Trachsel L, Broguiere N, Rosenboom J, Zenobi-wong M, Benetti EM. Enzymatically crosslinked poly(2-alkyl-2-oxazoline) networks for 3D cell culture. J Mater Chem B 2018;6:7568-72. [DOI: 10.1039/c8tb02382d] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
|
160 |
Mees MA, Hoogenboom R. Full and partial hydrolysis of poly(2-oxazoline)s and the subsequent post-polymerization modification of the resulting polyethylenimine (co)polymers. Polym Chem 2018;9:4968-78. [DOI: 10.1039/c8py00978c] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 6.8] [Reference Citation Analysis]
|
161 |
Gubarev AS, Monnery BD, Lezov AA, Sedlacek O, Tsvetkov NV, Hoogenboom R, Filippov SK. Conformational properties of biocompatible poly(2-ethyl-2-oxazoline)s in phosphate buffered saline. Polym Chem 2018;9:2232-7. [DOI: 10.1039/c8py00255j] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 4.8] [Reference Citation Analysis]
|
162 |
Gil Alvaradejo G, Glassner M, Hoogenboom R, Delaittre G. Maleimide end-functionalized poly(2-oxazoline)s by the functional initiator route: synthesis and (bio)conjugation. RSC Adv 2018;8:9471-9. [DOI: 10.1039/c8ra00948a] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
|
163 |
Jerca FA, Jerca VV, Anghelache AM, Vuluga DM, Hoogenboom R. Poly(2-isopropenyl-2-oxazoline) as a versatile platform towards thermoresponsive copolymers. Polym Chem 2018;9:3473-8. [DOI: 10.1039/c8py00612a] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 6.0] [Reference Citation Analysis]
|
164 |
Glassner M, Verbraeken B, Jerca VV, Van Hecke K, Tsanaktsidis J, Hoogenboom R. Poly(2-oxazoline)s with pendant cubane groups. Polym Chem 2018;9:4840-7. [DOI: 10.1039/c8py01037d] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
|
165 |
Mahmoud AM, Rajakanthan A, Kempe K. Functional hydrophobic and hetero-grafted block comb polymers via a combination of spontaneous zwitterionic copolymerisation and redox-initiated RAFT polymerisation. Polym Chem 2018;9:1562-6. [DOI: 10.1039/c7py01912b] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
|
166 |
Nam J, Jung Y, Joe J, Jang W. Dual stimuli-responsive viologen-containing poly(2-isopropyl-2-oxazoline) and its multi-modal electrochromic phase transition. Polym Chem 2018;9:3662-6. [DOI: 10.1039/c8py00591e] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 3.2] [Reference Citation Analysis]
|
167 |
Glassner M, Vergaelen M, Hoogenboom R. Poly(2-oxazoline)s: A comprehensive overview of polymer structures and their physical properties: Poly(2-oxazoline)s. Polym Int 2018;67:32-45. [DOI: 10.1002/pi.5457] [Cited by in Crossref: 148] [Cited by in F6Publishing: 151] [Article Influence: 24.7] [Reference Citation Analysis]
|
168 |
Hoogenboom R. 50 years of poly(2-oxazoline)s. European Polymer Journal 2017;88:448-50. [DOI: 10.1016/j.eurpolymj.2017.01.014] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 4.2] [Reference Citation Analysis]
|
169 |
Petit C, Grassl B, Mignard E, Luef KP, Wiesbrock F, Reynaud S. Living cationic ring-opening polymerization of 2-ethyl-2-oxazoline following sustainable concepts: microwave-assisted and droplet-based millifluidic processes in an ionic liquid medium. Polym Chem 2017;8:5910-7. [DOI: 10.1039/c7py01255a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
|