BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Cuggino JC, Molina M, Wedepohl S, Igarzabal CIA, Calderón M, Gugliotta LM. Responsive nanogels for application as smart carriers in endocytic pH-triggered drug delivery systems. European Polymer Journal 2016;78:14-24. [DOI: 10.1016/j.eurpolymj.2016.02.022] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 5.4] [Reference Citation Analysis]
Number Citing Articles
1 Abedi F, Ghandforoushan P, Adeli F, Yousefnezhad M, Mohammadi A, Moghaddam S, Davaran S. Development of stimuli-responsive nanogels as drug carriers and their biomedical application in 3D printing. Materials Today Chemistry 2023;29:101372. [DOI: 10.1016/j.mtchem.2022.101372] [Reference Citation Analysis]
2 Morales-Rodríguez M, Paniagua-García L, Narayanan J, Zamudio-Meza H, Moreno-Torres RV, Cortés-González CC, Juanico-Lorán JA, Martínez-Pérez B, Fernández-Retana J. Insulin‑like growth factor axis: A potential nanotherapy target for resistant cervical cancer tumors (Review). Oncol Lett 2023;25:128. [PMID: 36844628 DOI: 10.3892/ol.2023.13714] [Reference Citation Analysis]
3 Ray S, Seth S. Site-specific theranostic uses of stimuli responsive nanohydrogels. Design and Applications of Theranostic Nanomedicines 2023. [DOI: 10.1016/b978-0-323-89953-6.00014-3] [Reference Citation Analysis]
4 Toma I, Barbălată C, Tefas L, Porfire A, Tomuță I. Development and characterization of gemcitabine lipobeads. V. Symposium of Young Researchers on Pharmaceutical Technology, Biotechnology and Regulatory Science 2023. [DOI: 10.14232/syrptbrs.2023.41] [Reference Citation Analysis]
5 Ma WC, Lee JM, An J, Yeong WY. 3D Printing in Triggered Drug Delivery Devices: A Review. Biomedical Materials & Devices 2022. [DOI: 10.1007/s44174-022-00058-5] [Reference Citation Analysis]
6 Makhathini SS, Mdanda S, Kondiah PJ, Kharodia ME, Rumbold K, Alagidede I, Pathak Y, Bulbulia Z, Rants'o TA, Kondiah PPD. Biomedicine Innovations and Its Nanohydrogel Classifications. Pharmaceutics 2022;14. [PMID: 36559335 DOI: 10.3390/pharmaceutics14122839] [Reference Citation Analysis]
7 Ebhodaghe SO. A scoping review on the biomedical applications of polymeric particles. International Journal of Polymeric Materials and Polymeric Biomaterials. [DOI: 10.1080/00914037.2022.2032708] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Saraogi GK, Tholiya S, Mishra Y, Mishra V, Albutti A, Nayak P, Tambuwala MM. Formulation Development and Evaluation of Pravastatin-Loaded Nanogel for Hyperlipidemia Management. Gels 2022;8:81. [DOI: 10.3390/gels8020081] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
9 Arredondo-ochoa T, Silva-martínez GA. Microemulsion Based Nanostructures for Drug Delivery. Front Nanotechnol 2022;3:753947. [DOI: 10.3389/fnano.2021.753947] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 García MC. Stimuli-responsive nanogels as promising carriers for controlled delivery of anticancer therapeutics. Stimuli-Responsive Nanocarriers 2022. [DOI: 10.1016/b978-0-12-824456-2.00005-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Parfentievich Maletskyy A, Markovich Samchenko Y, Mikhailivna Bigun N. Improving the Antitumor Effect of Doxorubicin in the Treatment of Eyeball and Orbital Tumors. Advances in Precision Medicine Oncology 2021. [DOI: 10.5772/intechopen.95080] [Reference Citation Analysis]
12 Macchione MA, Aristizabal Bedoya D, Figueroa FN, Strumia MC. Synthetic and semi-synthetic polymers for pharmaceutical applications. Advances and Challenges in Pharmaceutical Technology 2021. [DOI: 10.1016/b978-0-12-820043-8.00005-0] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
13 Preman NK, Barki RR, Vijayan A, Sanjeeva SG, Johnson RP. Recent developments in stimuli-responsive polymer nanogels for drug delivery and diagnostics: A review. European Journal of Pharmaceutics and Biopharmaceutics 2020;157:121-53. [DOI: 10.1016/j.ejpb.2020.10.009] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 7.7] [Reference Citation Analysis]
14 Cuggino JC, Tártara LI, Gugliotta LM, Palma SD, Alvarez Igarzabal CI. Mucoadhesive and responsive nanogels as carriers for sustainable delivery of timolol for glaucoma therapy. Mater Sci Eng C Mater Biol Appl 2021;118:111383. [PMID: 33254990 DOI: 10.1016/j.msec.2020.111383] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
15 Cornejo-bravo JM, Becerra CD, Palomino K, Magaña H, Rivero I, López-maldonado E, Serrano-medina A. Copolymeric nano/microgels of N -isopropylacrylamide and carboxyalkyl methacrylamides: Effect of methylene chains and the ionization state of the weak acids on size and sensitivity to pH and temperature. Soft Materials 2021;19:89-99. [DOI: 10.1080/1539445x.2020.1769130] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
16 Phan QT, Patil MP, Tu TT, Le CM, Kim G, Lim KT. Polyampholyte-grafted single walled carbon nanotubes prepared via a green process for anticancer drug delivery application. Polymer 2020;193:122340. [DOI: 10.1016/j.polymer.2020.122340] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 3.7] [Reference Citation Analysis]
17 Cuggino JC, Ambrosioni FE, Picchio ML, Nicola M, Jiménez Kairuz ÁF, Gatti G, Minari RJ, Calderón M, Alvarez Igarzabal CI, Gugliotta LM. Thermally self-assembled biodegradable poly(casein-g-N-isopropylacrylamide) unimers and their application in drug delivery for cancer therapy. Int J Biol Macromol 2020;154:446-55. [PMID: 32194104 DOI: 10.1016/j.ijbiomac.2020.03.138] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
18 Hayati M, Rezanejade Bardajee G, Ramezani M, Mizani F. Temperature/pH/magnetic triple sensitive nanogel for doxorubicin anticancer drug delivery. Inorganic and Nano-Metal Chemistry 2020;50:1189-200. [DOI: 10.1080/24701556.2020.1737821] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
19 Liao S, Ting C, Chiang W. Functionalized polymeric nanogels with pH-sensitive benzoic-imine cross-linkages designed as vehicles for indocyanine green delivery. Journal of Colloid and Interface Science 2020;561:11-22. [DOI: 10.1016/j.jcis.2019.11.109] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 5.7] [Reference Citation Analysis]
20 Phan QT, Patil MP, Tu TT, Kim G, Lim KT. Synthesis of zwitterionic redox-responsive nanogels by one-pot amine-thiol-ene reaction for anticancer drug release application. Reactive and Functional Polymers 2020;147:104463. [DOI: 10.1016/j.reactfunctpolym.2019.104463] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
21 Macchione MA, Sacarelli MF, Racca AC, Biglione C, Panzetta-Dutari GM, Strumia MC. Dual-responsive nanogels based on oligo(ethylene glycol) methacrylates and acidic co-monomers. Soft Matter 2019;15:9700-9. [PMID: 31724683 DOI: 10.1039/c9sm01180c] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
22 Mahmoodzadeh F, Ghorbani M, Jannat B. Glutathione and pH-responsive chitosan-based nanogel as an efficient nanoplatform for controlled delivery of doxorubicin. Journal of Drug Delivery Science and Technology 2019;54:101315. [DOI: 10.1016/j.jddst.2019.101315] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
23 Pan G, Mou Q, Ma Y, Ding F, Zhang J, Guo Y, Huang X, Li Q, Zhu X, Zhang C. pH-Responsive and Gemcitabine-Containing DNA Nanogel To Facilitate the Chemodrug Delivery. ACS Appl Mater Interfaces 2019;11:41082-90. [PMID: 31603313 DOI: 10.1021/acsami.9b14892] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
24 Feldman D. Polymers and Polymer Nanocomposites for Cancer Therapy. Applied Sciences 2019;9:3899. [DOI: 10.3390/app9183899] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 7.8] [Reference Citation Analysis]
25 Theune LE, Charbaji R, Kar M, Wedepohl S, Hedtrich S, Calderón M. Critical parameters for the controlled synthesis of nanogels suitable for temperature-triggered protein delivery. Materials Science and Engineering: C 2019;100:141-51. [DOI: 10.1016/j.msec.2019.02.089] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
26 Hajebi S, Rabiee N, Bagherzadeh M, Ahmadi S, Rabiee M, Roghani-Mamaqani H, Tahriri M, Tayebi L, Hamblin MR. Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomater 2019;92:1-18. [PMID: 31096042 DOI: 10.1016/j.actbio.2019.05.018] [Cited by in Crossref: 162] [Cited by in F6Publishing: 141] [Article Influence: 40.5] [Reference Citation Analysis]
27 Cuggino JC, Gatti G, Picchio ML, Maccioni M, Gugliotta LM, Alvarez Igarzabal CI. Dually responsive nanogels as smart carriers for improving the therapeutic index of doxorubicin for breast cancer. European Polymer Journal 2019;116:445-52. [DOI: 10.1016/j.eurpolymj.2019.04.031] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
28 Cuggino JC, Blanco ERO, Gugliotta LM, Alvarez Igarzabal CI, Calderón M. Crossing biological barriers with nanogels to improve drug delivery performance. J Control Release 2019;307:221-46. [PMID: 31175895 DOI: 10.1016/j.jconrel.2019.06.005] [Cited by in Crossref: 70] [Cited by in F6Publishing: 76] [Article Influence: 17.5] [Reference Citation Analysis]
29 Qureshi MA, Khatoon F. Different types of smart nanogel for targeted delivery. Journal of Science: Advanced Materials and Devices 2019;4:201-12. [DOI: 10.1016/j.jsamd.2019.04.004] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
30 Hadaeghnia M, Goharpey F, Khademzadeh Yeganeh J. Characterization and phase‐transition behavior of thermoresponsive PVME nanogels in the presence of cellulose nanowhiskers: Rheology, morphology, and FTIR studies. Polym Eng Sci 2019;59:899-912. [DOI: 10.1002/pen.25035] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
31 Agrawal G, Agrawal R. Functional Microgels: Recent Advances in Their Biomedical Applications. Small 2018;14:1801724. [DOI: 10.1002/smll.201801724] [Cited by in Crossref: 68] [Cited by in F6Publishing: 71] [Article Influence: 13.6] [Reference Citation Analysis]
32 Quinones JP, Jokinen J, Keinänen S, Covas CP, Brüggemann O, Ossipov D. Self-assembled hyaluronic acid-testosterone nanocarriers for delivery of anticancer drugs. European Polymer Journal 2018;99:384-93. [DOI: 10.1016/j.eurpolymj.2017.12.043] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
33 Ekkelenkamp AE, Elzes MR, Engbersen JFJ, Paulusse JMJ. Responsive crosslinked polymer nanogels for imaging and therapeutics delivery. J Mater Chem B 2018;6:210-35. [DOI: 10.1039/c7tb02239e] [Cited by in Crossref: 62] [Cited by in F6Publishing: 64] [Article Influence: 12.4] [Reference Citation Analysis]
34 Rimondino G, Biglione C, Martinelli M, Alvarez Igarzábal C, Strumia M. Design of Multifunctional Nanogels with Intelligent Behavior. Polymer Gels 2018. [DOI: 10.1007/978-981-10-6086-1_7] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
35 García MC, Cuggino JC. Stimulus-responsive nanogels for drug delivery. Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications, Volume 1 2018. [DOI: 10.1016/b978-0-08-101997-9.00016-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
36 Serrano-medina A, Oroz-parra I, Gomez-resendiz VE, Licea-navarro A, Licea-claverie A, Cornejo-bravo JM. Temperature- and pH-sensitive core–shell nanogels as efficient carriers of doxorubicin with potential application in lung cancer treatment. International Journal of Polymeric Materials and Polymeric Biomaterials 2017;67:20-6. [DOI: 10.1080/00914037.2017.1297938] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
37 Pohlit H, Leibig D, Frey H. Poly(Ethylene Glycol) Dimethacrylates with Cleavable Ketal Sites: Precursors for Cleavable PEG-Hydrogels. Macromol Biosci 2017;17:1600532. [DOI: 10.1002/mabi.201600532] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
38 Bardajee GR, Hooshyar Z. Drug release study by a novel thermo sensitive nanogel based on salep modified graphene oxide. J Polym Res 2017;24. [DOI: 10.1007/s10965-016-1148-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
39 Rimondino GN, Miceli E, Molina M, Wedepohl S, Thierbach S, Rühl E, Strumia M, Martinelli M, Calderón M. Rational design of dendritic thermoresponsive nanogels that undergo phase transition under endolysosomal conditions. J Mater Chem B 2017;5:866-74. [PMID: 32263855 DOI: 10.1039/c6tb02001a] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.2] [Reference Citation Analysis]
40 Molina M, Wedepohl S, Miceli E, Calderón M. Overcoming drug resistance with on-demand charged thermoresponsive dendritic nanogels. Nanomedicine (Lond) 2017;12:117-29. [PMID: 27879151 DOI: 10.2217/nnm-2016-0308] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 2.7] [Reference Citation Analysis]