BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gomes NO, Carrilho E, Machado SAS, Sgobbi LF. Bacterial cellulose-based electrochemical sensing platform: A smart material for miniaturized biosensors. Electrochimica Acta 2020;349:136341. [DOI: 10.1016/j.electacta.2020.136341] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 11.0] [Reference Citation Analysis]
Number Citing Articles
1 Langari MM, Nikzad M, Labidi J. Nanocellulose-based sensors in medical/clinical applications: The state-of-the-art review. Carbohydr Polym 2023;304:120509. [PMID: 36641173 DOI: 10.1016/j.carbpol.2022.120509] [Reference Citation Analysis]
2 Samyn P, Meftahi A, Geravand SA, Heravi MEM, Najarzadeh H, Sabery MSK, Barhoum A. Opportunities for bacterial nanocellulose in biomedical applications: Review on biosynthesis, modification and challenges. Int J Biol Macromol 2023;231:123316. [PMID: 36682647 DOI: 10.1016/j.ijbiomac.2023.123316] [Reference Citation Analysis]
3 Srinivas S, Senthil Kumar A. Surface-Activated Pencil Graphite Electrode for Dopamine Sensor Applications: A Critical Review. Biosensors 2023;13:353. [DOI: 10.3390/bios13030353] [Reference Citation Analysis]
4 Popescu M, Ungureanu C. Biosensors in Food and Healthcare Industries: Bio-Coatings Based on Biogenic Nanoparticles and Biopolymers. Coatings 2023;13:486. [DOI: 10.3390/coatings13030486] [Reference Citation Analysis]
5 Sousa LR, Silva-Neto HA, Castro LF, Oliveira KA, Figueredo F, Cortón E, Coltro WKT. "Do it yourself" protocol to fabricate dual-detection paper-based analytical device for salivary biomarker analysis. Anal Bioanal Chem 2023. [PMID: 36773069 DOI: 10.1007/s00216-023-04581-2] [Reference Citation Analysis]
6 Tvorynska S, Barek J, Josypcuk B. High-performance amperometric biosensor for flow injection analysis consisting of a replaceable lactate oxidase-based mini-reactor and a silver amalgam screen-printed electrode. Electrochimica Acta 2023. [DOI: 10.1016/j.electacta.2023.142033] [Reference Citation Analysis]
7 Aslan S, Altuntaş DB. Biocomposites and Bioplastics in Electrochemical Applications. Handbook of Bioplastics and Biocomposites Engineering Applications 2023. [DOI: 10.1002/9781119160182.ch23] [Reference Citation Analysis]
8 Faraco TA, Fontes ML, Paschoalin RT, Claro AM, Gonçalves IS, Cavicchioli M, Farias RL, Cremona M, Ribeiro SJL, Barud HDS, Legnani C. Review of Bacterial Nanocellulose as Suitable Substrate for Conformable and Flexible Organic Light-Emitting Diodes. Polymers (Basel) 2023;15. [PMID: 36771781 DOI: 10.3390/polym15030479] [Reference Citation Analysis]
9 de Assis SC, Morgado DL, Scheidt DT, de Souza SS, Cavallari MR, Ando Junior OH, Carrilho E. Review of Bacterial Nanocellulose-Based Electrochemical Biosensors: Functionalization, Challenges, and Future Perspectives. Biosensors (Basel) 2023;13. [PMID: 36671977 DOI: 10.3390/bios13010142] [Reference Citation Analysis]
10 Ilyas RA, Hamid N, Ishak KA, Norrrahim MNF, Thiagamani S, Rangappa S, Siengchin S, Bangar S, Nurazzi NM. Advanced applications of biomass nanocellulose-reinforced polymer composites. Synthetic and Natural Nanofillers in Polymer Composites 2023. [DOI: 10.1016/b978-0-443-19053-7.00013-5] [Reference Citation Analysis]
11 Ong X, Chen AX, Li N, Yang YY, Luo H. Nanocellulose: Recent Advances Toward Biomedical Applications. Small Science 2022. [DOI: 10.1002/smsc.202200076] [Reference Citation Analysis]
12 Raucci A, Miglione A, Lenzi L, Fabbri P, Di Tocco J, Massaroni C, Presti DL, Schena E, Pifferi V, Falciola L, Aidli W, Di Natale C, Netti PA, Woo SL, Morselli D, Cinti S. Characterization and application of porous PHBV-based bacterial polymers to realize novel bio-based electroanalytical (bio)sensors. Sensors and Actuators B: Chemical 2022. [DOI: 10.1016/j.snb.2022.133178] [Reference Citation Analysis]
13 Kulkarni MB, Ayachit NH, Aminabhavi TM. Biosensors and Microfluidic Biosensors: From Fabrication to Application. Biosensors 2022;12:543. [DOI: 10.3390/bios12070543] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
14 Martoni LV, Gomes NO, Prado TM, Calegaro ML, Oliveira Jr. ON, Machado SA, Raymundo-pereira PA. Carbon spherical shells in a flexible photoelectrochemical sensor to determine hydroquinone in tap water. Journal of Environmental Chemical Engineering 2022;10:107556. [DOI: 10.1016/j.jece.2022.107556] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
15 Singh S, Wang J, Cinti S. Review—An Overview on Recent Progress in Screen-Printed Electroanalytical (Bio)Sensors. ECS Sens Plus 2022;1:023401. [DOI: 10.1149/2754-2726/ac70e2] [Cited by in Crossref: 23] [Cited by in F6Publishing: 28] [Article Influence: 23.0] [Reference Citation Analysis]
16 Wang G, Jiang G, Zhu Y, Cheng W, Cao K, Zhou J, Lei H, Xu G, Zhao D. Developing cellulosic functional materials from multi-scale strategy and applications in flexible bioelectronic devices. Carbohydrate Polymers 2022;283:119160. [DOI: 10.1016/j.carbpol.2022.119160] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
17 Roy L, Buragohain P, Borse V. Strategies for sensitivity enhancement of point-of-care devices. Biosensors and Bioelectronics: X 2022;10:100098. [DOI: 10.1016/j.biosx.2021.100098] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Shrivastav P, Pramanik S, Vaidya G, Abdelgawad MA, Ghoneim MM, Singh A, Abualsoud BM, Amaral LS, Abourehab MAS. Bacterial cellulose as a potential biopolymer in biomedical applications: a state-of-the-art review. J Mater Chem B 2022. [PMID: 35445674 DOI: 10.1039/d1tb02709c] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
19 Singh A, Sharma A, Arya S. Human sweat-based wearable glucose sensor on cotton fabric for real-time monitoring. J Anal Sci Technol 2022;13. [DOI: 10.1186/s40543-022-00320-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
20 Al-qahtani SD, Alnoman RB, Snari RM, Aljuhani E, Bayazeed A, Qurban J, El-metwaly NM. Synthesis and Characterization of Novel Ionochromic Tricyanofuran-Based Phenothiazine Fluorophore: Cellulose-Based Xerogel for Colorimetric Detection of Toxic Cyanides. J Polym Environ. [DOI: 10.1007/s10924-022-02418-0] [Reference Citation Analysis]
21 Zhou J, Men D, Zhang X. Progress in wearable sweat sensors and their applications. Chinese Journal of Analytical Chemistry 2022;50:87-96. [DOI: 10.1016/j.cjac.2021.11.004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
22 Dronina J, Samukaite-bubniene U, Ramanavicius A. Towards application of CRISPR-Cas12a in the design of modern viral DNA detection tools (Review). J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01246-7] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 18.0] [Reference Citation Analysis]
23 Bondancia TJ, Soares AC, Popolin-neto M, Gomes NO, Raymundo-pereira PA, Barud HS, Machado SA, Ribeiro SJ, Melendez ME, Carvalho AL, Reis RM, Paulovich FV, Oliveira ON. Low-cost bacterial nanocellulose-based interdigitated biosensor to detect the p53 cancer biomarker. Materials Science and Engineering: C 2022. [DOI: 10.1016/j.msec.2022.112676] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
24 Paixão TR, Garcia CD. Chemistry of paper—properties, modification strategies, and uses in bioanalytical chemistry. Paper-based Analytical Devices for Chemical Analysis and Diagnostics 2022. [DOI: 10.1016/b978-0-12-820534-1.00008-6] [Reference Citation Analysis]
25 Paschoalin RT, Gomes NO, Almeida GF, Bilatto S, Farinas CS, Machado SAS, Mattoso LHC, Oliveira ON Jr, Raymundo-Pereira PA. Wearable sensors made with solution-blow spinning poly(lactic acid) for non-enzymatic pesticide detection in agriculture and food safety. Biosens Bioelectron 2021;199:113875. [PMID: 34922318 DOI: 10.1016/j.bios.2021.113875] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
26 Otoni CG, Azeredo HMC, Mattos BD, Beaumont M, Correa DS, Rojas OJ. The Food-Materials Nexus: Next Generation Bioplastics and Advanced Materials from Agri-Food Residues. Adv Mater 2021;33:e2102520. [PMID: 34510571 DOI: 10.1002/adma.202102520] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 8.5] [Reference Citation Analysis]
27 Teodoro KBR, Sanfelice RC, Migliorini FL, Pavinatto A, Facure MHM, Correa DS. A Review on the Role and Performance of Cellulose Nanomaterials in Sensors. ACS Sens 2021;6:2473-96. [PMID: 34182751 DOI: 10.1021/acssensors.1c00473] [Cited by in Crossref: 26] [Cited by in F6Publishing: 30] [Article Influence: 13.0] [Reference Citation Analysis]
28 Zhou C, Cui K, Liu Y, Li L, Zhang L, Hao S, Ge S, Yu J. Bi2S3@MoS2 Nanoflowers on Cellulose Fibers Combined with Octahedral CeO2 for Dual-Mode Microfluidic Paper-Based MiRNA-141 Sensors. ACS Appl Mater Interfaces 2021;13:32780-9. [PMID: 34228452 DOI: 10.1021/acsami.1c07669] [Cited by in Crossref: 10] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
29 Queirós EC, Pinheiro SP, Pereira JE, Prada J, Pires I, Dourado F, Parpot P, Gama M. Hemostatic Dressings Made of Oxidized Bacterial Nanocellulose Membranes. Polysaccharides 2021;2:80-99. [DOI: 10.3390/polysaccharides2010006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
30 Liu P, Zhang S, Gao L, Wang H, Guo J, Huang J, Liu L. Progress in Application of Carrageenan Hydrogel in Biomedicine. J Photopol Sci Technol 2021;34:615-622. [DOI: 10.2494/photopolymer.34.615] [Reference Citation Analysis]
31 Materon EM, Gómez FR, Joshi N, Dalmaschio CJ, Carrilho E, Oliveira ON. Smart materials for electrochemical flexible nanosensors: Advances and applications. Nanosensors for Smart Manufacturing 2021. [DOI: 10.1016/b978-0-12-823358-0.00018-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
32 Dronina J, Bubniene US, Ramanavicius A. The application of DNA polymerases and Cas9 as representative of DNA-modifying enzymes group in DNA sensor design (review). Biosens Bioelectron 2021;175:112867. [PMID: 33303323 DOI: 10.1016/j.bios.2020.112867] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 11.0] [Reference Citation Analysis]
33 Klemm D, Petzold-Welcke K, Kramer F, Richter T, Raddatz V, Fried W, Nietzsche S, Bellmann T, Fischer D. Biotech nanocellulose: A review on progress in product design and today's state of technical and medical applications. Carbohydr Polym 2021;254:117313. [PMID: 33357876 DOI: 10.1016/j.carbpol.2020.117313] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
34 Subhedar A, Bhadauria S, Ahankari S, Kargarzadeh H. Nanocellulose in biomedical and biosensing applications: A review. Int J Biol Macromol 2021;166:587-600. [PMID: 33130267 DOI: 10.1016/j.ijbiomac.2020.10.217] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 8.7] [Reference Citation Analysis]
35 Sriplai N, Pinitsoontorn S. Bacterial cellulose-based magnetic nanocomposites: A review. Carbohydr Polym 2021;254:117228. [PMID: 33357842 DOI: 10.1016/j.carbpol.2020.117228] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
36 Cancelliere R, Zurlo F, Micheli L, Melino S. Vegetable waste scaffolds for 3D-stem cell proliferating systems and low cost biosensors. Talanta 2021;223:121671. [PMID: 33303135 DOI: 10.1016/j.talanta.2020.121671] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
37 Marestoni LD, Barud HDS, Gomes RJ, Catarino RPF, Hata NNY, Ressutte JB, Spinosa WA. Commercial and potential applications of bacterial cellulose in Brazil: ten years review. Polímeros 2020;30:e2020047. [DOI: 10.1590/0104-1428.09420] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]