1 |
Tiwari A, Barbhuiya RI, Dash KK. Nanotechnology-based sensors for shelf-life determination of food materials. Nanotechnology Applications for Food Safety and Quality Monitoring 2023. [DOI: 10.1016/b978-0-323-85791-8.00014-8] [Reference Citation Analysis]
|
2 |
Kushwaha CS, Singh P, Shukla SK, Chehimi MM. Advances in conducting polymer nanocomposite based chemical sensors: An overview. Materials Science and Engineering: B 2022;284:115856. [DOI: 10.1016/j.mseb.2022.115856] [Reference Citation Analysis]
|
3 |
Qi J, Zhang X, Zhang Q, Xue Y, Meng F, Liu Y, Yang G. Ultrasensitive “signal-on” sandwich electrochemiluminescence immunosensor based on Pd@Au-L-cysteine enabled multiple-amplification strategy for Apolipoprotein-A1 detection. Microchemical Journal 2022;178:107409. [DOI: 10.1016/j.microc.2022.107409] [Reference Citation Analysis]
|
4 |
Chausali N, Saxena J, Prasad R. Recent trends in nanotechnology applications of bio-based packaging. Journal of Agriculture and Food Research 2022;7:100257. [DOI: 10.1016/j.jafr.2021.100257] [Cited by in Crossref: 19] [Cited by in F6Publishing: 23] [Article Influence: 19.0] [Reference Citation Analysis]
|
5 |
Aljabali AAA, Obeid MA, Al Zoubi MS, Charbe NB, Chellappan DK, Mishra V, Dureja H, Gupta G, Prasher P, Dua K, Elnashar RM, Tambuwala MM, Barhoum A. Nanocelluloses in Sensing Technology. Handbook of Nanocelluloses 2022. [DOI: 10.1007/978-3-030-89621-8_44] [Reference Citation Analysis]
|
6 |
Barua P, Khan AH, Hossain N. Nanotechnology for Food and Packing Application. Nanotechnology for Electronic Applications 2022. [DOI: 10.1007/978-981-16-6022-1_12] [Reference Citation Analysis]
|
7 |
Garg D, Singh D, Sharma R, Verma N, Bhari R, Asadnia M. Applications of Nanomaterials for Greener Food Analysis. Green Chemical Analysis and Sample Preparations 2022. [DOI: 10.1007/978-3-030-96534-1_12] [Reference Citation Analysis]
|
8 |
Ting KKK, Khor SM. Application of Nanotechnology in Food Analysis. Biosensing and Micro-Nano Devices 2022. [DOI: 10.1007/978-981-16-8333-6_2] [Reference Citation Analysis]
|
9 |
Saini A, Panwar D, Panesar PS, Chandra P. Potential of Nanotechnology in Food Analysis and Quality Improvement. Nanosensing and Bioanalytical Technologies in Food Quality Control 2022. [DOI: 10.1007/978-981-16-7029-9_8] [Reference Citation Analysis]
|
10 |
Kazemifard N, Rezaei B, Saberi Z. Conventional Technologies and Opto-electronic Devices for Detection of Food Biomarkers. Biosensing and Micro-Nano Devices 2022. [DOI: 10.1007/978-981-16-8333-6_7] [Reference Citation Analysis]
|
11 |
Aljabali AAA, Obeid MA, Al Zoubi MS, Charbe NB, Chellappan DK, Mishra V, Dureja H, Gupta G, Prasher P, Dua K, Elnashar RM, Tambuwala MM, Barhoum A. Nanocelluloses in Sensing Technology. Handbook of Nanocelluloses 2021. [DOI: 10.1007/978-3-030-62976-2_44-1] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
12 |
Yang B, Han N, Zhang L, Yi S, Zhang Z, Wang Y, Zhou Y, Chen D, Gao Y. Cu3Pt/Cu2O nanorod array prepared by a facile method for glucose detection. Applied Surface Science 2020;534:147596. [DOI: 10.1016/j.apsusc.2020.147596] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
13 |
Ye Y, Wang L, Liu K, Li J. A label-free and sensitive electrochemiluminescence sensor based on a simple one-step electrodeposition of Go/ZnS modified electrode for trace copper ions detection. Microchemical Journal 2020;155:104749. [DOI: 10.1016/j.microc.2020.104749] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
|
14 |
Zhou H, Chen L, Li S, Huang S, Sun Y, Chen Y, Wang Z, Liu W, Li X. One-step electroreduction preparation of multilayered reduced graphene oxide/gold-palladium nanohybrid as a proficient electrocatalyst for development of sensitive hydrazine sensor. Journal of Colloid and Interface Science 2020;566:473-84. [DOI: 10.1016/j.jcis.2020.01.105] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
|
15 |
Li P, Yu J, Zhao K, Deng A, Li J. Efficient enhancement of electrochemiluminescence from tin disulfide quantum dots by hollow titanium dioxide spherical shell for highly sensitive detection of chloramphenicol. Biosensors and Bioelectronics 2020;147:111790. [DOI: 10.1016/j.bios.2019.111790] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 9.0] [Reference Citation Analysis]
|
16 |
Mustafa F, Andreescu S. Nanotechnology-based approaches for food sensing and packaging applications. RSC Adv 2020;10:19309-36. [DOI: 10.1039/d0ra01084g] [Cited by in Crossref: 97] [Cited by in F6Publishing: 103] [Article Influence: 32.3] [Reference Citation Analysis]
|
17 |
Azam NFN, Lim SA, Ahmed MU. Carbon Nanomaterials for Electrochemiluminescence-Based Immunosensors: Recent Advances and Applications. Nanobiomaterial Engineering 2020. [DOI: 10.1007/978-981-32-9840-8_4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
18 |
Wang C, Jiang T, Zhao K, Deng A, Li J. A novel electrochemiluminescent immunoassay for diclofenac using conductive polymer functionalized graphene oxide as labels and gold nanorods as signal enhancers. Talanta 2019;193:184-91. [DOI: 10.1016/j.talanta.2018.09.103] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
|
19 |
Wang C, Tang Q, Zhao K, Deng A, Li J. Peroxydisulfate/oxygen system-based electrochemiluminescent immunosensing of Hg 2+ using Pt/Pd nanodendrites-thiosemicarbazide/norfloxacin as a signal enhancer. Analyst 2019;144:1590-9. [DOI: 10.1039/c8an02386g] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
|