BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: van Assen M, Pelgrim GJ, De Cecco CN, Stijnen JMA, Zaki BM, Oudkerk M, Vliegenthart R, Schoepf UJ. Intermodel disagreement of myocardial blood flow estimation from dynamic CT perfusion imaging. European Journal of Radiology 2019;110:175-80. [DOI: 10.1016/j.ejrad.2018.11.029] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
Number Citing Articles
1 Møller MB, Schuijf JD, Oyama-Manabe N, Linde JJ, Kühl JT, Lima JAC, Kofoed KF. Technical Considerations for Dynamic Myocardial Computed Tomography Perfusion as Part of a Comprehensive Evaluation of Coronary Artery Disease Using Computed Tomography. J Thorac Imaging 2023;38:54-68. [PMID: 36044617 DOI: 10.1097/RTI.0000000000000673] [Reference Citation Analysis]
2 Lyu L, Pan J, Li D, Li X, Yang W, Dong M, Guo C, Lin P, Han Y, Liang Y, Sun J, Yu D, Zhang P, Zhang M. Knowledge of Hyperemic Myocardial Blood Flow in Healthy Subjects Helps Identify Myocardial Ischemia in Patients With Coronary Artery Disease. Front Cardiovasc Med 2022;9:817911. [DOI: 10.3389/fcvm.2022.817911] [Reference Citation Analysis]
3 Kim MY, Yang DH, Choo KS, Lee W. Beyond Coronary CT Angiography: CT Fractional Flow Reserve and Perfusion. J Korean Soc Radiol 2022;83:3. [DOI: 10.3348/jksr.2021.0177] [Reference Citation Analysis]
4 Yu L, Lu Z, Dai X, Shen C, Zhang L, Zhang J. Prognostic value of CT-derived myocardial blood flow, CT fractional flow reserve and high-risk plaque features for predicting major adverse cardiac events. Cardiovasc Diagn Ther 2021;11:956-66. [PMID: 34527519 DOI: 10.21037/cdt-21-219] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 Nous FMA, Geisler T, Kruk MBP, Alkadhi H, Kitagawa K, Vliegenthart R, Hell MM, Hausleiter J, Nguyen PK, Budde RPJ, Nikolaou K, Kepka C, Manka R, Sakuma H, Malik SB, Coenen A, Zijlstra F, Klotz E, van der Harst P, Artzner C, Dedic A, Pugliese F, Bamberg F, Nieman K. Dynamic Myocardial Perfusion CT for the Detection of Hemodynamically Significant Coronary Artery Disease. JACC Cardiovasc Imaging 2021:S1936-878X(21)00621-5. [PMID: 34538630 DOI: 10.1016/j.jcmg.2021.07.021] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 4.5] [Reference Citation Analysis]
6 Lara Hernandez KA, Rienmüller T, Baumgartner D, Baumgartner C. Deep learning in spatiotemporal cardiac imaging: A review of methodologies and clinical usability. Comput Biol Med 2021;130:104200. [PMID: 33421825 DOI: 10.1016/j.compbiomed.2020.104200] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
7 Yang MX, Xu HY, Zhang L, Chen L, Xu R, Fu H, Liu H, Li XS, Fu C, Liu KL, Li H, Zhou XY, Guo YK, Yang ZG. Myocardial perfusion assessment in the infarct core and penumbra zones in an in-vivo porcine model of the acute, sub-acute, and chronic infarction. Eur Radiol 2021;31:2798-808. [PMID: 33156386 DOI: 10.1007/s00330-020-07220-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
8 Yi Y, Xu C, Wu W, Shen ZJ, Lee W, Yun CH, Lu B, Zhang JY, Jin ZY, Wang YN. Low-dose CT perfusion with combined use of CTP and CTP-derived coronary CT angiography at 70 kVp: validation with invasive fractional flow reserve. Eur Radiol 2021;31:1119-29. [PMID: 32809164 DOI: 10.1007/s00330-020-07096-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
9 Li Y, Dai X, Lu Z, Shen C, Zhang J. Diagnostic performance of quantitative, semi-quantitative, and visual analysis of dynamic CT myocardial perfusion imaging: a validation study with invasive fractional flow reserve. Eur Radiol 2021;31:525-34. [PMID: 32794126 DOI: 10.1007/s00330-020-07145-5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
10 Yu L, Tao X, Dai X, Liu T, Zhang J. Dynamic CT Myocardial Perfusion Imaging in Patients without Obstructive Coronary Artery Disease: Quantification of Myocardial Blood Flow according to Varied Heart Rate Increments after Stress. Korean J Radiol 2021;22:97-105. [PMID: 32783416 DOI: 10.3348/kjr.2020.0249] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
11 Assen MV, Vonder M, Pelgrim GJ, Von Knebel Doeberitz PL, Vliegenthart R. Computed tomography for myocardial characterization in ischemic heart disease: a state-of-the-art review. Eur Radiol Exp 2020;4:36. [PMID: 32548777 DOI: 10.1186/s41747-020-00158-1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
12 Tanabe Y, Kurata A, Matsuda T, Yoshida K, Baruah D, Kido T, Mochizuki T, Rajiah P. Computed tomographic evaluation of myocardial ischemia. Jpn J Radiol 2020;38:411-33. [PMID: 32026226 DOI: 10.1007/s11604-020-00922-8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
13 Yi Y, Xu C, Wu W, Wang Y, Li YM, Shen ZJ, Jin ZY, Wang YN. Myocardial blood flow analysis of stress dynamic myocardial CT perfusion for hemodynamically significant coronary artery disease diagnosis: The clinical value of relative parameter optimization. J Cardiovasc Comput Tomogr 2020;14:314-21. [PMID: 31953042 DOI: 10.1016/j.jcct.2019.10.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]