BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Taheri A, Dinarvand R, Atyabi F, Ghahremani MH, Ostad SN. Trastuzumab decorated methotrexate–human serum albumin conjugated nanoparticles for targeted delivery to HER2 positive tumor cells. European Journal of Pharmaceutical Sciences 2012;47:331-40. [DOI: 10.1016/j.ejps.2012.06.016] [Cited by in Crossref: 34] [Cited by in F6Publishing: 27] [Article Influence: 3.4] [Reference Citation Analysis]
Number Citing Articles
1 Khetan R, Dharmayanti C, Gillam TA, Kübler E, Klingler-Hoffmann M, Ricciardelli C, Oehler MK, Blencowe A, Garg S, Albrecht H. Using GPCRs as Molecular Beacons to Target Ovarian Cancer with Nanomedicines. Cancers (Basel) 2022;14:2362. [PMID: 35625966 DOI: 10.3390/cancers14102362] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Safwat S, Hathout RM, Ishak RA, Mortada ND. Elaborated survey in the scope of nanocarriers engineering for boosting chemotherapy cytotoxicity: A meta-analysis study. Int J Pharm 2021;610:121268. [PMID: 34748812 DOI: 10.1016/j.ijpharm.2021.121268] [Reference Citation Analysis]
3 Spada A, Emami J, Tuszynski JA, Lavasanifar A. The Uniqueness of Albumin as a Carrier in Nanodrug Delivery. Mol Pharm 2021;18:1862-94. [PMID: 33787270 DOI: 10.1021/acs.molpharmaceut.1c00046] [Cited by in Crossref: 2] [Cited by in F6Publishing: 32] [Article Influence: 2.0] [Reference Citation Analysis]
4 Zeb A, Rana I, Choi HI, Lee CH, Baek SW, Lim CW, Khan N, Arif ST, Sahar NU, Alvi AM, Shah FA, Din FU, Bae ON, Park JS, Kim JK. Potential and Applications of Nanocarriers for Efficient Delivery of Biopharmaceuticals. Pharmaceutics 2020;12:E1184. [PMID: 33291312 DOI: 10.3390/pharmaceutics12121184] [Cited by in Crossref: 6] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
5 Nieto C, Vega MA, Martín Del Valle EM. Trastuzumab: More than a Guide in HER2-Positive Cancer Nanomedicine. Nanomaterials (Basel) 2020;10:E1674. [PMID: 32859026 DOI: 10.3390/nano10091674] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
6 Kumar G, Nandakumar K, Mutalik S, Rao CM. Biologicals to direct nanotherapeutics towards HER2-positive breast cancers. Nanomedicine 2020;27:102197. [PMID: 32275958 DOI: 10.1016/j.nano.2020.102197] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
7 Marques AC, Costa PJ, Velho S, Amaral MH. Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies. J Control Release 2020;320:180-200. [PMID: 31978444 DOI: 10.1016/j.jconrel.2020.01.035] [Cited by in Crossref: 47] [Cited by in F6Publishing: 74] [Article Influence: 23.5] [Reference Citation Analysis]
8 Rajasekharreddy P, Huang C, Busi S, Rajkumari J, Tai M, Liu G. Green Synthesized Nanomaterials as Theranostic Platforms for Cancer Treatment: Principles, Challenges and the Road Ahead. CMC 2019;26:1311-27. [DOI: 10.2174/0929867324666170309124327] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
9 Thanuja M Y, Anupama C, Ranganath SH. Bioengineered cellular and cell membrane-derived vehicles for actively targeted drug delivery: So near and yet so far. Adv Drug Deliv Rev 2018;132:57-80. [PMID: 29935987 DOI: 10.1016/j.addr.2018.06.012] [Cited by in Crossref: 54] [Cited by in F6Publishing: 61] [Article Influence: 13.5] [Reference Citation Analysis]
10 Vankayala R, Hwang KC. Near-Infrared-Light-Activatable Nanomaterial-Mediated Phototheranostic Nanomedicines: An Emerging Paradigm for Cancer Treatment. Adv Mater 2018;30:e1706320. [PMID: 29577458 DOI: 10.1002/adma.201706320] [Cited by in Crossref: 283] [Cited by in F6Publishing: 272] [Article Influence: 70.8] [Reference Citation Analysis]
11 Yang C, Liang C, Zhang D, Hu Y. Deciphering the interaction of methotrexate with DNA: Spectroscopic and molecular docking study. Journal of Molecular Liquids 2017;248:1-6. [DOI: 10.1016/j.molliq.2017.10.017] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
12 Choi J, Park J. Surface modification of docetaxel nanocrystals with HER2 antibody to enhance cell growth inhibition in breast cancer cells. Colloids and Surfaces B: Biointerfaces 2017;159:139-50. [DOI: 10.1016/j.colsurfb.2017.07.064] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
13 Bhushan B, Khanadeev V, Khlebtsov B, Khlebtsov N, Gopinath P. Impact of albumin based approaches in nanomedicine: Imaging, targeting and drug delivery. Adv Colloid Interface Sci 2017;246:13-39. [PMID: 28716187 DOI: 10.1016/j.cis.2017.06.012] [Cited by in Crossref: 56] [Cited by in F6Publishing: 52] [Article Influence: 11.2] [Reference Citation Analysis]
14 Hashad RA, Ishak RA, Geneidi AS, Mansour S. Surface functionalization of methotrexate-loaded chitosan nanoparticles with hyaluronic acid/human serum albumin: Comparative characterization and in vitro cytotoxicity. International Journal of Pharmaceutics 2017;522:128-36. [DOI: 10.1016/j.ijpharm.2017.03.008] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 3.6] [Reference Citation Analysis]
15 Dadras P, Atyabi F, Irani S, Ma'mani L, Foroumadi A, Mirzaie ZH, Ebrahimi M, Dinarvand R. Formulation and evaluation of targeted nanoparticles for breast cancer theranostic system. European Journal of Pharmaceutical Sciences 2017;97:47-54. [DOI: 10.1016/j.ejps.2016.11.005] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 3.4] [Reference Citation Analysis]
16 Karimi M, Bahrami S, Ravari SB, Zangabad PS, Mirshekari H, Bozorgomid M, Shahreza S, Sori M, Hamblin MR. Albumin nanostructures as advanced drug delivery systems. Expert Opin Drug Deliv 2016;13:1609-23. [PMID: 27216915 DOI: 10.1080/17425247.2016.1193149] [Cited by in Crossref: 112] [Cited by in F6Publishing: 143] [Article Influence: 18.7] [Reference Citation Analysis]
17 Zhao L, Xu H, Li Y, Song D, Wang X, Qiao M, Gong M. Novel application of hydrophobin in medical science: a drug carrier for improving serum stability. Sci Rep 2016;6:26461. [PMID: 27212208 DOI: 10.1038/srep26461] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
18 Kulhari H, Pooja D, Shrivastava S, Kuncha M, Naidu VGM, Bansal V, Sistla R, Adams DJ. Trastuzumab-grafted PAMAM dendrimers for the selective delivery of anticancer drugs to HER2-positive breast cancer. Sci Rep 2016;6:23179. [PMID: 27052896 DOI: 10.1038/srep23179] [Cited by in Crossref: 92] [Cited by in F6Publishing: 86] [Article Influence: 15.3] [Reference Citation Analysis]
19 Sobot D, Mura S, Couvreur P. How can nanomedicines overcome cellular-based anticancer drug resistance? J Mater Chem B 2016;4:5078-100. [DOI: 10.1039/c6tb00900j] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 4.5] [Reference Citation Analysis]
20 Shargh VH, Hondermarck H, Liang M. Antibody-targeted biodegradable nanoparticles for cancer therapy. Nanomedicine 2016;11:63-79. [DOI: 10.2217/nnm.15.186] [Cited by in Crossref: 56] [Cited by in F6Publishing: 58] [Article Influence: 9.3] [Reference Citation Analysis]
21 Misri R, Wong NK, Shenoi RA, Lum CM, Chafeeva I, Toth K, Rustum Y, Kizhakkedathu JN, Khan MK. Investigation of hydrophobically derivatized hyperbranched polyglycerol with PEGylated shell as a nanocarrier for systemic delivery of chemotherapeutics. Nanomedicine: Nanotechnology, Biology and Medicine 2015;11:1785-95. [DOI: 10.1016/j.nano.2015.04.016] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
22 Kulhari H, Pooja D, Rompicharla SVK, Sistla R, Adams DJ. Biomedical Applications of Trastuzumab: As a Therapeutic Agent and a Targeting Ligand: BIOMEDICAL APPLICATIONS OF TRASTUZUMAB. Med Res Rev 2015;35:849-76. [DOI: 10.1002/med.21345] [Cited by in Crossref: 27] [Cited by in F6Publishing: 17] [Article Influence: 3.9] [Reference Citation Analysis]
23 Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 2015;93:52-79. [PMID: 25813885 DOI: 10.1016/j.ejpb.2015.03.018] [Cited by in Crossref: 634] [Cited by in F6Publishing: 734] [Article Influence: 90.6] [Reference Citation Analysis]
24 Akhtar MJ, Ahamed M, Alhadlaq HA, Alrokayan SA, Kumar S. Targeted anticancer therapy: Overexpressed receptors and nanotechnology. Clinica Chimica Acta 2014;436:78-92. [DOI: 10.1016/j.cca.2014.05.004] [Cited by in Crossref: 119] [Cited by in F6Publishing: 118] [Article Influence: 14.9] [Reference Citation Analysis]
25 de Fátima Pereira A, Mara da Costa V, Cristina Magalhães Santos M, Carmo Horta Pinto F, Rodrigues Da Silva G. Evaluation of the effects of methotrexate released from polymeric implants in solid Ehrlich tumor. Biomedicine & Pharmacotherapy 2014;68:365-8. [DOI: 10.1016/j.biopha.2013.12.012] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
26 Mehra NK, Mishra V, Jain NK. Receptor-based targeting of therapeutics. Ther Deliv 2013;4:369-94. [PMID: 23442082 DOI: 10.4155/tde.13.6] [Cited by in Crossref: 60] [Cited by in F6Publishing: 60] [Article Influence: 6.7] [Reference Citation Analysis]
27 Abolmaali SS, Tamaddon AM, Dinarvand R. A review of therapeutic challenges and achievements of methotrexate delivery systems for treatment of cancer and rheumatoid arthritis. Cancer Chemother Pharmacol. 2013;71:1115-1130. [PMID: 23292116 DOI: 10.1007/s00280-012-2062-0] [Cited by in Crossref: 117] [Cited by in F6Publishing: 134] [Article Influence: 13.0] [Reference Citation Analysis]