BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhao X, Yao Y, Tian K, Zhou T, Jia X, Li J, Liu P. Leakage-free DOX/PEGylated chitosan micelles fabricated via facile one-step assembly for tumor intracellular pH-triggered release. European Journal of Pharmaceutics and Biopharmaceutics 2016;108:91-9. [DOI: 10.1016/j.ejpb.2016.08.018] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 3.2] [Reference Citation Analysis]
Number Citing Articles
1 Yi G, Ling J, Jiang Y, Lu Y, Yang L, Ouyang X. Fabrication, characterization, and in vitro evaluation of doxorubicin-coupled chitosan oligosaccharide nanoparticles. Journal of Molecular Structure 2022;1268:133688. [DOI: 10.1016/j.molstruc.2022.133688] [Reference Citation Analysis]
2 Cong X, Chen J, Xu R. Recent Progress in Bio-Responsive Drug Delivery Systems for Tumor Therapy. Front Bioeng Biotechnol 2022;10:916952. [DOI: 10.3389/fbioe.2022.916952] [Reference Citation Analysis]
3 Xie P, Liu P. Chitosan-based DDSs for pH/hypoxia dual-triggered DOX delivery: Facile morphology modulation for higher in vitro cytotoxicity. Carbohydr Polym 2022;275:118760. [PMID: 34742449 DOI: 10.1016/j.carbpol.2021.118760] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
4 Gooneh-Farahani S, Naghib SM, Naimi-Jamal MR, Seyfoori A. A pH-sensitive nanocarrier based on BSA-stabilized graphene-chitosan nanocomposite for sustained and prolonged release of anticancer agents. Sci Rep 2021;11:17404. [PMID: 34465842 DOI: 10.1038/s41598-021-97081-1] [Cited by in F6Publishing: 12] [Reference Citation Analysis]
5 Helmi O, Elshishiny F, Mamdouh W. Targeted doxorubicin delivery and release within breast cancer environment using PEGylated chitosan nanoparticles labeled with monoclonal antibodies. Int J Biol Macromol 2021;184:325-38. [PMID: 34119547 DOI: 10.1016/j.ijbiomac.2021.06.014] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
6 Zhao X, Bai J, Yang W. Stimuli-responsive nanocarriers for therapeutic applications in cancer. Cancer Biol Med 2021:j. [PMID: 33764711 DOI: 10.20892/j.issn.2095-3941.2020.0496] [Cited by in Crossref: 4] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
7 Atanase LI. Micellar Drug Delivery Systems Based on Natural Biopolymers. Polymers (Basel) 2021;13:477. [PMID: 33540922 DOI: 10.3390/polym13030477] [Cited by in Crossref: 14] [Cited by in F6Publishing: 44] [Article Influence: 14.0] [Reference Citation Analysis]
8 Gooneh-farahani S, Naghib SM, Naimi-jamal MR. A Novel and Inexpensive Method Based on Modified Ionic Gelation for pH-responsive Controlled Drug Release of Homogeneously Distributed Chitosan Nanoparticles with a High Encapsulation Efficiency. Fibers Polym 2020;21:1917-26. [DOI: 10.1007/s12221-020-1095-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
9 Qian X, Wang Y, Xu Y, Ma L, Xue N, Jiang Z, Cao Y, Akakuru OU, Li J, Zhang S, Wu A. Active targeting nano-scale bubbles enhanced ultrasound cavitation chemotherapy in Y1 receptor-overexpressed breast cancer. J Mater Chem B 2020;8:6837-44. [PMID: 32510101 DOI: 10.1039/d0tb00556h] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
10 Xie P, Liu P. pH-responsive surface charge reversal carboxymethyl chitosan-based drug delivery system for pH and reduction dual-responsive triggered DOX release. Carbohydrate Polymers 2020;236:116093. [DOI: 10.1016/j.carbpol.2020.116093] [Cited by in Crossref: 15] [Cited by in F6Publishing: 27] [Article Influence: 7.5] [Reference Citation Analysis]
11 Xie P, Liu P. Core-shell-corona chitosan-based micelles for tumor intracellular pH-triggered drug delivery: Improving performance by grafting polycation. Int J Biol Macromol 2019;141:161-70. [PMID: 31479675 DOI: 10.1016/j.ijbiomac.2019.08.251] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
12 Yang W, Zhao X. Glutathione-Induced Structural Transform of Double-Cross-Linked PEGylated Nanogel for Efficient Intracellular Anticancer Drug Delivery. Mol Pharm 2019;16:2826-37. [PMID: 31063382 DOI: 10.1021/acs.molpharmaceut.9b00467] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
13 Xie P, Du P, Li J, Liu P. Stimuli-responsive hybrid cluster bombs of PEGylated chitosan encapsulated DOX-loaded superparamagnetic nanoparticles enabling tumor-specific disassembly for on-demand drug delivery and enhanced MR imaging. Carbohydrate Polymers 2019;205:377-84. [DOI: 10.1016/j.carbpol.2018.10.076] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
14 Li Z, Zhang L, Wei X, Liu J, Wang Z. Temperature/pH-Responsive Hexagonal Liquid Crystal for Curcumin Release. Langmuir 2019;35:453-60. [DOI: 10.1021/acs.langmuir.8b03559] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
15 Li J, Liu P. One-pot fabrication of pH/reduction dual-stimuli responsive chitosan-based supramolecular nanogels for leakage-free tumor-specific DOX delivery with enhanced anti-cancer efficacy. Carbohydrate Polymers 2018;201:583-90. [DOI: 10.1016/j.carbpol.2018.08.102] [Cited by in Crossref: 12] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
16 Zhou T, Li J, Liu P. Ionically crosslinked alginate-based nanohydrogels for tumor-specific intracellular triggered release: Effect of chemical modification. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2018;553:180-6. [DOI: 10.1016/j.colsurfa.2018.05.061] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
17 Zhou T, Li J, Jia X, Zhao X, Liu P. pH/Reduction Dual-Responsive Oxidized Alginate-Doxorubicin (mPEG-OAL-DOX/Cys) Prodrug Nanohydrogels: Effect of Complexation with Cyclodextrins. Langmuir 2018;34:416-24. [DOI: 10.1021/acs.langmuir.7b03990] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
18 Dai Y, Wang S, Shi W, Lang M. pH-responsive carboxymethyl chitosan-derived micelles as apatinib carriers for effective anti-angiogenesis activity: Preparation and in vitro evaluation. Carbohydrate Polymers 2017;176:107-16. [DOI: 10.1016/j.carbpol.2017.08.011] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 3.6] [Reference Citation Analysis]
19 Zhang L, Li X, Wang Z. Construction, in vitro release and rheological behavior of apigenin-encapsulated hexagonal liquid crystal. Journal of Drug Delivery Science and Technology 2017;41:475-81. [DOI: 10.1016/j.jddst.2017.09.003] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
20 Mahmood A, Lanthaler M, Laffleur F, Huck CW, Bernkop-Schnürch A. Thiolated chitosan micelles: Highly mucoadhesive drug carriers. Carbohydr Polym 2017;167:250-8. [PMID: 28433160 DOI: 10.1016/j.carbpol.2017.03.019] [Cited by in Crossref: 35] [Cited by in F6Publishing: 41] [Article Influence: 7.0] [Reference Citation Analysis]
21 Zhao X, Wang Z, Yuan S, Lu J, Wang Z. MesoDyn prediction of a pharmaceutical microemulsion self-assembly consistent with experimental measurements. RSC Adv 2017;7:20293-9. [DOI: 10.1039/c7ra01541k] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]