BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 2015;93:52-79. [PMID: 25813885 DOI: 10.1016/j.ejpb.2015.03.018] [Cited by in Crossref: 864] [Cited by in F6Publishing: 927] [Article Influence: 123.4] [Reference Citation Analysis]
Number Citing Articles
1 Lotfallah A, Andreu J, Hathout R, Kassem D, Ibrahim S, Altava B, García-verdugo E, Luis S. Tripodal amphiphilic pseudopeptidic nanovesicles as p-coumaric acid delivery systems for brain cancer cells. Materials Today Chemistry 2023;27:101266. [DOI: 10.1016/j.mtchem.2022.101266] [Reference Citation Analysis]
2 Shi J, Tian H, Peng L, Huang C, Nice EC, Zou B, Zhang H. A nanoplatform reshaping intracellular osmolarity and redox homeostasis against colorectal cancer. Journal of Controlled Release 2022;352:766-775. [DOI: 10.1016/j.jconrel.2022.11.003] [Reference Citation Analysis]
3 Alvi M, Yaqoob A, Rehman K, Shoaib SM, Akash MSH. PLGA-based nanoparticles for the treatment of cancer: current strategies and perspectives. AAPS Open 2022;8. [DOI: 10.1186/s41120-022-00060-7] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
4 Xu Y, Shi L, Qin Y, Yuan X, Wang X, Zhang Q, Wei L, Du M, Liu Y, Yuan M, Xu X, Cheng R, Zou R, Wang W, Li F. A mutated glycosaminoglycan-binding domain functions as a novel probe to selectively target heparin-like epitopes on tumor cells. Journal of Biological Chemistry 2022;298:102609. [DOI: 10.1016/j.jbc.2022.102609] [Reference Citation Analysis]
5 Vijaya Bharathi S, Das M. Cytotoxicity effect of nanoparticles of Euphorbia antiquorum on breast cancer cell line. South African Journal of Botany 2022;151:410-416. [DOI: 10.1016/j.sajb.2022.10.017] [Reference Citation Analysis]
6 Mou Y, Zhang P, Lai WF, Zhang D. Design and applications of liposome-in-gel as carriers for cancer therapy. Drug Deliv 2022;29:3245-55. [PMID: 36310364 DOI: 10.1080/10717544.2022.2139021] [Reference Citation Analysis]
7 Ruan L, Su M, Qin X, Ruan Q, Lang W, Wu M, Chen Y, Lv Q. Progress in the application of sustained-release drug microspheres in tissue engineering. Mater Today Bio 2022;16:100394. [PMID: 36042853 DOI: 10.1016/j.mtbio.2022.100394] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Zhou Z, Cao Q, Diao Y, Wang Y, Long L, Wang S, Li P. Non-coding RNA-related antitumor mechanisms of marine-derived agents. Front Pharmacol 2022;13. [DOI: 10.3389/fphar.2022.1053556] [Reference Citation Analysis]
9 Meng D, Yang S, Yang Y, Zhang L, Cui L. Synergistic chemotherapy and phototherapy based on red blood cell biomimetic nanomaterials. Journal of Controlled Release 2022;352:146-162. [DOI: 10.1016/j.jconrel.2022.10.019] [Reference Citation Analysis]
10 Xie F, Wang M, Chen Q, Chi T, Zhu S, Wei P, Yang Y, Zhang L, Li X, Liao Z. Endogenous stimuli-responsive nanoparticles for cancer therapy: From bench to bedside. Pharmacological Research 2022;186:106522. [DOI: 10.1016/j.phrs.2022.106522] [Reference Citation Analysis]
11 Voltà-durán E, Sánchez JM, Parladé E, Serna N, Vazquez E, Unzueta U, Villaverde A. The Diphtheria Toxin Translocation Domain Impairs Receptor Selectivity in Cancer Cell-Targeted Protein Nanoparticles. Pharmaceutics 2022;14:2644. [DOI: 10.3390/pharmaceutics14122644] [Reference Citation Analysis]
12 Datta N. Cutting-Edge Developments in Oncology Research. Indian J Med Paediatr Oncol 2022. [DOI: 10.1055/s-0042-1758538] [Reference Citation Analysis]
13 Xian F, Yang X, Xu G. Prognostic significance of CDC20 expression in malignancy patients: A meta-analysis. Front Oncol 2022;12. [DOI: 10.3389/fonc.2022.1017864] [Reference Citation Analysis]
14 Ramadan I, Nassar MY, Gomaa A. In-vitro Investigation of the Anticancer Efficacy of Carboplatin-Loaded Chitosan Nanocomposites Against Breast and Liver Cancer Cell Lines. J Polym Environ 2022. [DOI: 10.1007/s10924-022-02668-y] [Reference Citation Analysis]
15 Zhao J, Lv J, Chen Y, Dong Q, Dong H. Recent progress of amino acid transporters as a novel antitumor target. Open Chemistry 2022;20:1212-1228. [DOI: 10.1515/chem-2022-0239] [Reference Citation Analysis]
16 Marzi M, Osanloo M, Vakil MK, Mansoori Y, Ghasemian A, Dehghan A, Zarenezhad E. Applications of Metallic Nanoparticles in the Skin Cancer Treatment. BioMed Research International 2022;2022:1-20. [DOI: 10.1155/2022/2346941] [Reference Citation Analysis]
17 Zhang P, Li Q, Zhang Y, Wang Q, Yan J, Shen A, Hu B. Identification of a novel gene signature with DDR and EMT difunctionalities for predicting prognosis, immune activity, and drug response in breast cancer.. [DOI: 10.21203/rs.3.rs-2220137/v1] [Reference Citation Analysis]
18 Wang D, Du C, Wang S, Li L, Liu T, Song J, He Z, Zhai Y, Sun B, Sun J. Probing the Role of Connecting Bonds and Modifying Chains in the Rational Design of Prodrug Nanoassemblies. ACS Appl Mater Interfaces 2022. [DOI: 10.1021/acsami.2c14523] [Reference Citation Analysis]
19 Xiong Y, Wang Q, Liu Y, Wei J, Chen X. Renal adverse reactions of tyrosine kinase inhibitors in the treatment of tumours: A Bayesian network meta-analysis. Front Pharmacol 2022;13. [DOI: 10.3389/fphar.2022.1023660] [Reference Citation Analysis]
20 Wu J, Du X, Zhang D, Cui J, Zhang X, Duan X, Trant JF, Li Y. A nanodiamond chemotherapeutic folate receptor-targeting prodrug with triggerable drug release. International Journal of Pharmaceutics 2022. [DOI: 10.1016/j.ijpharm.2022.122432] [Reference Citation Analysis]
21 Mehravaran M, Haeri A, Rabbani S, Mortazavi SA, Torshabi M. Preparation and characterization of benzydamine hydrochloride-loaded lyophilized mucoadhesive wafers for the treatment of oral mucositis. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103944] [Reference Citation Analysis]
22 Abdolahinia ED, Fathi M, Pirdel Z, Jafari S, Samiei M, Adibkia K, Sefat F, Dizaj SM, Sharifi S. Strategies to improve drug penetration into tumor microenvironment by nanoparticles: focus on nanozymes. OpenNano 2022. [DOI: 10.1016/j.onano.2022.100100] [Reference Citation Analysis]
23 Xu Y, Xiong J, Sun X, Gao H. Targeted nanomedicines remodeling immunosuppressive tumor microenvironment for enhanced cancer immunotherapy. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.11.001] [Reference Citation Analysis]
24 Onyancha RB, Ukhurebor KE, Aigbe UO, Mogire NB, Chanzu I, Kitoto VA, Kusuma HS, Darmokoesoemo H. A review of the capabilities of carbon dots for the treatment and diagnosis of cancer-related diseases. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103946] [Reference Citation Analysis]
25 Ren J, Wang B, Wu Q, Wang G. Combination of niclosamide and current therapies to overcome resistance for cancer: New frontiers for an old drug. Biomedicine & Pharmacotherapy 2022;155:113789. [DOI: 10.1016/j.biopha.2022.113789] [Reference Citation Analysis]
26 Domińska M, Pastuch-Gawołek G, Skonieczna M, Szeja W, Domiński A, Kurcok P. Glycoconjugation of Quinoline Derivatives Using the C-6 Position in Sugars as a Strategy for Improving the Selectivity and Cytotoxicity of Functionalized Compounds. Molecules 2022;27:6918. [PMID: 36296513 DOI: 10.3390/molecules27206918] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Liang S, Wang C, Shao Y, Wang Y, Xing D, Geng Z. Recent advances in bacteria-mediated cancer therapy. Front Bioeng Biotechnol 2022;10:1026248. [DOI: 10.3389/fbioe.2022.1026248] [Reference Citation Analysis]
28 Wang Y, Qu X, Li L, He D, Jakovljevic M. Integrative Analysis Reveals a Nine TP53 Pathway-Related lncRNA Prognostic Signature in Endometrial Cancer. BioMed Research International 2022;2022:1-18. [DOI: 10.1155/2022/5432806] [Reference Citation Analysis]
29 Han X, Bi L, Wu Y, Yan J, Wu X, Zheng R, Sun Y, Zhang H, Wang Z, Wang Y, Zhang H. Genetically engineered exosomes for targetedly preventing premetastatic niche formation and suppressing postoperative melanoma lung metastasis. Nano Today 2022;46:101597. [DOI: 10.1016/j.nantod.2022.101597] [Reference Citation Analysis]
30 Jing Z, Du Q, Zhang X, Zhang Y. Nanomedicines and nanomaterials for cancer therapy: Progress, challenge and perspectives. Chemical Engineering Journal 2022;446:137147. [DOI: 10.1016/j.cej.2022.137147] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
31 Hu H, Zhang Z, Fang Y, Chen L, Wu J. Therapeutic poly(amino acid)s as drug carriers for cancer therapy. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.107953] [Reference Citation Analysis]
32 Gao H, Ji Q, Chi B, Lin C, Ding G, Wang Y, Yu X, Xu Z, Zhang R, Li L, Wang J. Achieving a “all in one” Fe/Tm-MOFs with controllable photothermal and catalytic performance for imaging-guided multi-modal synergetic therapy. Journal of Colloid and Interface Science 2022;623:124-34. [DOI: 10.1016/j.jcis.2022.05.015] [Reference Citation Analysis]
33 Zhang B, Li X, Shu W, Yang Y, Zhu H, Shao C. A self-supplied O2 versatile nanoplatform for GOx-mediated synergistic starvation and hypothermal photothermal therapy. Materials & Design 2022;222:111067. [DOI: 10.1016/j.matdes.2022.111067] [Reference Citation Analysis]
34 Ebrahimi F, Noaparast Z, Abedi SM, Hosseinimehr SJ. Homodimer 99mTc-HYNIC-E(SSSLTVPWY)2 peptide improved HER2-overexpressed tumor targeting and imaging. Med Oncol 2022;39:204. [PMID: 36175805 DOI: 10.1007/s12032-022-01798-6] [Reference Citation Analysis]
35 Zimina TM, Sitkov NO, Gareev KG, Fedorov V, Grouzdev D, Koziaeva V, Gao H, Combs SE, Shevtsov M. Biosensors and Drug Delivery in Oncotheranostics Using Inorganic Synthetic and Biogenic Magnetic Nanoparticles. Biosensors 2022;12:789. [DOI: 10.3390/bios12100789] [Reference Citation Analysis]
36 Yue H, Tian Y, Zhao Z, Bo Y, Guo Y, Wang J. Comparative Study of Docosahexaenoic Acid with Different Molecular Forms for Promoting Apoptosis of the 95D Non-Small-Cell Lung Cancer Cells in a PPARγ-Dependent Manner. Marine Drugs 2022;20:599. [DOI: 10.3390/md20100599] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
37 Madej M, Kurowska N, Strzalka-mrozik B. Polymeric Nanoparticles—Tools in a Drug Delivery System in Selected Cancer Therapies. Applied Sciences 2022;12:9479. [DOI: 10.3390/app12199479] [Reference Citation Analysis]
38 M.yu. K, O.n. T, O.n. D, A.a. E, O.s. V, Yu.s. G, E.v. B. PHARMACOLOGICAL ACTIVITY OF LHT-17-19 IN CULTURES OF EGFR-EXPRESSING EPITHELIAL TUMORS. Vestnik "Biomedicina i sociologiya" 2022. [DOI: 10.26787/nydha-2618-8783-2022-7-3-70-74] [Reference Citation Analysis]
39 Shi Z, Liu J, Tian L, Li J, Gao Y, Xing Y, Yan W, Hua C, Xie X, Liu C, Liang C. Insights into stimuli-responsive diselenide bonds utilized in drug delivery systems for cancer therapy. Biomed Pharmacother 2022;155:113707. [PMID: 36122520 DOI: 10.1016/j.biopha.2022.113707] [Reference Citation Analysis]
40 Wang J, Guo N, Hou W, Qin H. Coating bacteria for anti-tumor therapy. Front Bioeng Biotechnol 2022;10:1020020. [DOI: 10.3389/fbioe.2022.1020020] [Reference Citation Analysis]
41 Mossenta M, Busato D, Dal Bo M, Macor P, Toffoli G. Novel Nanotechnology Approaches to Overcome Drug Resistance in the Treatment of Hepatocellular Carcinoma: Glypican 3 as a Useful Target for Innovative Therapies. Int J Mol Sci 2022;23:10038. [PMID: 36077433 DOI: 10.3390/ijms231710038] [Reference Citation Analysis]
42 Bahutair WN, Abuwatfa WH, Husseini GA. Ultrasound Triggering of Liposomal Nanodrugs for Cancer Therapy: A Review. Nanomaterials (Basel) 2022;12:3051. [PMID: 36080088 DOI: 10.3390/nano12173051] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
43 Sadi KS, Mahmoudi A, Jaafari MR, Moosavian SA, Malaekeh-nikouei B. The effect of AS1411 aptamer on anti-tumor effects of dendrimers containing SN38. Journal of Drug Delivery Science and Technology 2022;75:103624. [DOI: 10.1016/j.jddst.2022.103624] [Reference Citation Analysis]
44 Tong X, Li X, Pratt NL, Hillen JB, Stanford T, Ward M, Roughead EE, Lai EC, Shin J, Cheng FW, Peng K, Lau CS, Leung WK, Wong IC. Monoclonal antibodies and Fc-fusion protein biologic medicines: A multinational cross-sectional investigation of accessibility and affordability in Asia Pacific regions between 2010 and 2020. The Lancet Regional Health - Western Pacific 2022;26:100506. [DOI: 10.1016/j.lanwpc.2022.100506] [Reference Citation Analysis]
45 Onakpojeruo EP, Uzun B, Ozsahin I, Ozsahin DU. Evaluation of the Treatment Alternatives for Spinal Cord Tumors Using Analytical Evaluation Models.. [DOI: 10.21203/rs.3.rs-2009799/v1] [Reference Citation Analysis]
46 Bazeed AY, Day CM, Garg S. Pancreatic Cancer: Challenges and Opportunities in Locoregional Therapies. Cancers 2022;14:4257. [DOI: 10.3390/cancers14174257] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
47 Miguel RDA, Hirata AS, Jimenez PC, Lopes LB, Costa-lotufo LV. Beyond Formulation: Contributions of Nanotechnology for Translation of Anticancer Natural Products into New Drugs. Pharmaceutics 2022;14:1722. [DOI: 10.3390/pharmaceutics14081722] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Pavlova N, Miloshev GY, Georgieva AV, Traykovska M, Penchovsky R. Versatile tools of synthetic biology applied to drug discovery and production. Future Med Chem 2022. [PMID: 35975897 DOI: 10.4155/fmc-2022-0063] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Stratton D, Malibha-Pinchbeck M, Inal J. Extremely low-frequency magnetic fields significantly enhance the cytotoxicity of methotrexate and can reduce migration of cancer cell lines via transiently induced plasma membrane damage. Biochem Biophys Res Commun 2022;626:192-9. [PMID: 35994829 DOI: 10.1016/j.bbrc.2022.08.035] [Reference Citation Analysis]
50 Li P, Xiao W. Circ_0005758 impedes gastric cancer progression through miR-1229-3p/GCNT4 feedback loop. Toxicol In Vitro 2022;:105454. [PMID: 35970245 DOI: 10.1016/j.tiv.2022.105454] [Reference Citation Analysis]
51 Zheng Q, Cheng K, Jin H, Zhang W, Rao GW. New application of novel tetrazine derivatives as potent VEGFR-2 kinase inhibitors and anti-cancer agents. Future Med Chem 2022. [PMID: 35950486 DOI: 10.4155/fmc-2022-0054] [Reference Citation Analysis]
52 Cai L, Xu X, Chen W. The Current State of the Art in PARP Inhibitor-Based Delivery Nanosystems. Pharmaceutics 2022;14:1647. [DOI: 10.3390/pharmaceutics14081647] [Reference Citation Analysis]
53 Kumbhar P, Kole K, Khadake V, Marale P, Manjappa A, Nadaf S, Jadhav R, Patil A, Singh SK, Dua K, Jha NK, Disouza J, Patravale V. Nanoparticulate drugs and vaccines: Breakthroughs and bottlenecks of repurposing in breast cancer. J Control Release 2022;349:812-30. [PMID: 35914614 DOI: 10.1016/j.jconrel.2022.07.039] [Reference Citation Analysis]
54 Zare M, Pemmada R, Madhavan M, Shailaja A, Ramakrishna S, Kandiyil SP, Donahue JM, Thomas V. Encapsulation of miRNA and siRNA into Nanomaterials for Cancer Therapeutics. Pharmaceutics 2022;14:1620. [DOI: 10.3390/pharmaceutics14081620] [Reference Citation Analysis]
55 Zhang L, Guan X, Xiao X, Chen Z, Zhou G, Fan Y. Dual-phase injectable thermosensitive hydrogel incorporating Fe3O4@PDA with pH and NIR triggered drug release for synergistic tumor therapy. European Polymer Journal 2022;176:111424. [DOI: 10.1016/j.eurpolymj.2022.111424] [Reference Citation Analysis]
56 Ying G, Zhang G, Yang J, Hao Z, Xing W, Lu D, Zhang S, Yan L. Biomineralization and biotechnological applications of bacterial magnetosomes. Colloids Surf B Biointerfaces 2022;216:112556. [PMID: 35605573 DOI: 10.1016/j.colsurfb.2022.112556] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
57 Zhou X, Wang R, Sun W, Bonnet S. Gene therapy of brain cancer by drug delivery nanocapsules. Matter 2022;5:2502-4. [DOI: 10.1016/j.matt.2022.06.038] [Reference Citation Analysis]
58 Seif MN, Balk TJ, Beck MJ. Deducing surface chemistry and annealing conditions from observed nanoparticle shapes: A study of scandate cathodes. Applied Surface Science 2022. [DOI: 10.1016/j.apsusc.2022.154541] [Reference Citation Analysis]
59 Wu H, Wei M, Xu Y, Li Y, Zhai X, Su P, Ma Q, Zhang H. . IJN 2022;Volume 17:3751-75. [DOI: 10.2147/ijn.s378217] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
60 Chen M, Xie Y, Luo Q, Xu J, Ren Y, Liu R, Zhao H, Chen Y, Feng H, Du Y, Li J, Wang G, Lu W. Switchable nanoparticles complexing cisplatin for circumventing glutathione depletion in breast cancer chemotherapy. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.107744] [Reference Citation Analysis]
61 Lin W, Lin Z, Zhang M. The Therapy of Osimertinib for EGFR Mutation—Non-small Cell Lung Cancer. HSET 2022;6:219-229. [DOI: 10.54097/hset.v6i.964] [Reference Citation Analysis]
62 Godínez-Loyola Y, Gracia-Mora J, Rojas-Montoya ID, Hernández-Ayala LF, Reina M, Ortiz-Frade LA, Rascón-Valenzuela LA, Robles-Zepeda RE, Gómez-Vidales V, Bernad-Bernad MJ, Ruiz-Azuara L. Casiopeinas® third generation, with indomethacin: synthesis, characterization, DFT studies, antiproliferative activity, and nanoencapsulation. RSC Adv 2022;12:21662-73. [PMID: 35975050 DOI: 10.1039/d2ra03346a] [Reference Citation Analysis]
63 Wan P, Li T, Zhou L, Zhang J, Rao X, Pan J. Eukaryotic Translation Initiation Factor 5A Independently Predicts Poor Prognosis of Cholangiocarcinoma Patients and Regulates the Ferroptosis and Mitochondrial Apoptosis. Journal of Oncology 2022;2022:1-15. [DOI: 10.1155/2022/4250531] [Reference Citation Analysis]
64 Zhu R, Zhang F, Peng Y, Xie T, Wang Y, Lan Y. Current Progress in Cancer Treatment Using Nanomaterials. Front Oncol 2022;12:930125. [DOI: 10.3389/fonc.2022.930125] [Reference Citation Analysis]
65 Gore K, Bhattacharya S, G. Prajapati B. Recent Pharmaceutical Developments in the Treatment of Cancer Using Nanosponges. Advances in Drug Delivery Methods [Working Title] 2022. [DOI: 10.5772/intechopen.105817] [Reference Citation Analysis]
66 Sangweni NF, van Vuuren D, Mabasa L, Gabuza K, Huisamen B, Naidoo S, Barry R, Johnson R. Prevention of Anthracycline-Induced Cardiotoxicity: The Good and Bad of Current and Alternative Therapies. Front Cardiovasc Med 2022;9:907266. [PMID: 35811736 DOI: 10.3389/fcvm.2022.907266] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
67 Qayyum S, Jabeen A, Aslam Z, Kanwal T, Shah MR, Faizi S. Synthesis and Characterization of Novel Lecithin Derived Nano-Formulation of Octyl and Dodecyl Gallate for Targeting B Cell Associated Non-Hodgkin’s Lymphoma. J Clust Sci. [DOI: 10.1007/s10876-022-02302-w] [Reference Citation Analysis]
68 Liu W, Semcheddine F, Jiang H, Wang X. Acid-Responsive Multifunctional Zeolitic Imidazolate Framework-8 (ZIF-8) Nanocomposites for Tumor Chemo-Photothermal Synergistic Therapy. Bioconjug Chem 2022. [PMID: 35797716 DOI: 10.1021/acs.bioconjchem.2c00246] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
69 Alhodieb FS, Barkat MA, Barkat HA, Hadi HA, Khan MI, Ashfaq F, Rahman MA, Hassan MZ, Alanezi AA. Chitosan-modified nanocarriers as carriers for anticancer drug delivery: Promises and hurdles. Int J Biol Macromol 2022;217:457-69. [PMID: 35798082 DOI: 10.1016/j.ijbiomac.2022.06.201] [Reference Citation Analysis]
70 Cheralayikkal S, Manoj K, Safna Hussan KP. Formulation and evaluation of a smart drug delivery system of 5-fluorouracil for pH-sensitive chemotherapy. Heliyon 2022;8:e09926. [PMID: 35855997 DOI: 10.1016/j.heliyon.2022.e09926] [Reference Citation Analysis]
71 Papadimitriou L, Theodorou A, Papageorgiou M, Voutyritsa E, Papagiannaki A, Velonia K, Ranella A. pH responsive biohybrid BSA-poly(DPA) nanoparticles for interlysosomal drug delivery. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103591] [Reference Citation Analysis]
72 Barman R, Rajdev P, Mondal T, Dey P, Ghosh S. Amphiphilic Alternating Copolymers with an Adjustable Lower Critical Solution Temperature (LCST) and Correlation with Nonspecific Protein Adsorption. ACS Appl Polym Mater . [DOI: 10.1021/acsapm.2c00938] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
73 Zhao F, Qian Y, Li H, Yang Y, Wang J, Yu W, Li M, Cheng W, Shan L. Amentoflavone-loaded nanoparticles enhanced chemotherapy efficacy by inhibition of AKR1B10. Nanotechnology 2022;33. [PMID: 35697009 DOI: 10.1088/1361-6528/ac7810] [Reference Citation Analysis]
74 Li Z, Li X, Ai S, Liu S, Guan W. Glucose Metabolism Intervention-Facilitated Nanomedicine Therapy. Int J Nanomedicine 2022;17:2707-31. [PMID: 35747168 DOI: 10.2147/IJN.S364840] [Reference Citation Analysis]
75 Zheng S, Zheng H, Zhang R, Piao X, Hu J, Zhu Y, Wang Y. Immunomodulatory Effect of Ginsenoside Rb2 Against Cyclophosphamide-Induced Immunosuppression in Mice. Front Pharmacol 2022;13:927087. [DOI: 10.3389/fphar.2022.927087] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
76 Tabatabaeain SF, Karimi E, Hashemi M. Satureja khuzistanica Essential Oil-Loaded Solid Lipid Nanoparticles Modified With Chitosan-Folate: Evaluation of Encapsulation Efficiency, Cytotoxic and Pro-apoptotic Properties. Front Chem 2022;10:904973. [DOI: 10.3389/fchem.2022.904973] [Reference Citation Analysis]
77 Zhao M, Jiang W, Xie X, Jaiswal Y, Williams L, Wei M, Mo Y, Guan Y, Yang H. Preparation and Release of pH-Sensitive β-Cyclodextrin Derivative Micelles Loaded with Paclitaxel. Polymers (Basel) 2022;14:2482. [PMID: 35746058 DOI: 10.3390/polym14122482] [Reference Citation Analysis]
78 Zhang JN, Ding DY, Yang SY, Tao QF, Yang Y, Zhou WP. The role of Tripartite motif containing 59 (TRIM59) in the proliferation and prognosis of intrahepatic cholangiocarcinoma. Pathol Res Pract 2022;236:153989. [PMID: 35753134 DOI: 10.1016/j.prp.2022.153989] [Reference Citation Analysis]
79 Li Y, Wu J, Lu Q, Liu X, Wen J, Qi X, Liu J, Lian B, Zhang B, Sun H, Tian G. GA&HA-Modified Liposomes for Co-Delivery of Aprepitant and Curcumin to Inhibit Drug-Resistance and Metastasis of Hepatocellular Carcinoma. Int J Nanomedicine 2022;17:2559-75. [PMID: 35698562 DOI: 10.2147/IJN.S366180] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
80 Li SR, Huo FY, Wang HQ, Wang J, Xu C, Liu B, Bu LL. Recent advances in porous nanomaterials-based drug delivery systems for cancer immunotherapy. J Nanobiotechnology 2022;20:277. [PMID: 35701847 DOI: 10.1186/s12951-022-01489-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
81 Perko N, Mousa SA. Management of Pancreatic Cancer and Its Microenvironment: Potential Impact of Nano-Targeting. Cancers (Basel) 2022;14:2879. [PMID: 35740545 DOI: 10.3390/cancers14122879] [Reference Citation Analysis]
82 Del Genio V, Bellavita R, Falanga A, Hervé-Aubert K, Chourpa I, Galdiero S. Peptides to Overcome the Limitations of Current Anticancer and Antimicrobial Nanotherapies. Pharmaceutics 2022;14:1235. [PMID: 35745807 DOI: 10.3390/pharmaceutics14061235] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
83 Pham DT, Tran TQ, Van Chinh L, Nguyen LP, An TNT, Anh NHT, Nguyen DT. Anti-tumor effect of liposomes containing extracted Murrayafoline A against liver cancer cells in 2D and 3D cultured models. Open Chemistry 2022;20:463-73. [DOI: 10.1515/chem-2022-0122] [Reference Citation Analysis]
84 Song Y, Yuan Y, Peng X, Peng Z, Liu H, Zhou Y, Zhang X, Zhou F, Song J, Qu J. Promising Colloidal Rhenium Disulfide Nanosheets: Preparation and Applications for In Vivo Breast Cancer Therapy. Nanomaterials 2022;12:1937. [DOI: 10.3390/nano12111937] [Reference Citation Analysis]
85 Ren K, He J, Qiu Y, Xu Z, Wang X, Li J, Zang S, Yang Y, Li J, Long Y, Zhang Z, Li M, He Q. A neutrophil-mediated carrier regulates tumor stemness by inhibiting autophagy to prevent postoperative triple-negative breast cancer recurrence and metastasis. Acta Biomater 2022;145:185-99. [PMID: 35447368 DOI: 10.1016/j.actbio.2022.04.017] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
86 Zeng Y, Zhang C, Du D, Li Y, Sun L, Han Y, He X, Dai J, Shi L. Metal-organic framework-based hydrogel with structurally dynamic properties as a stimuli-responsive localized drug delivery system for cancer therapy. Acta Biomater 2022;145:43-51. [PMID: 35398545 DOI: 10.1016/j.actbio.2022.04.003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
87 Jaquilin P J R, Oluwafemi OS, Thomas S, Oyedeji AO. Recent advances in drug delivery nanocarriers incorporated in temperature-sensitive Pluronic F-127–A critical review. Journal of Drug Delivery Science and Technology 2022;72:103390. [DOI: 10.1016/j.jddst.2022.103390] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
88 Singh AP, Prakash O, Kumar S, Shukla A, Maiti P. Poly(lactic acid-co-glycolic acid) as sustained drug delivery vehicle for melanoma therapy. Materials Today Communications 2022;31:103661. [DOI: 10.1016/j.mtcomm.2022.103661] [Reference Citation Analysis]
89 Hu Q, Wang Z, Fan C, Wang Q, Luan T, Wu A, Wang Z, Hu X, Zhang G, Wang T, Li Q. Biosynthetic Luminescent Ag Nanoparticles in Functionalization for Breast Cancer Therapy. j biomed nanotechnol 2022;18:1553-1561. [DOI: 10.1166/jbn.2022.3361] [Reference Citation Analysis]
90 Hunis AP. General Principles of Medical Cancer Treatment. J Inter Med Emer Res 2022. [DOI: 10.37191/mapsci-2582-7367-3(2)-044] [Reference Citation Analysis]
91 Mengual D, Medrano LE, Villamizar-villamizar W, Osorio-llanes E, Mendoza-torres E, Bolívar S. Novel Effects of Statins on Cancer via Autophagy. Pharmaceuticals 2022;15:648. [DOI: 10.3390/ph15060648] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
92 George R, Hehlgans S, Fleischmann M, Rödel C, Fokas E, Rödel F. Advances in nanotechnology-based platforms for survivin-targeted drug discovery. Expert Opin Drug Discov 2022. [PMID: 35593177 DOI: 10.1080/17460441.2022.2077329] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
93 Kostka L, Sivák L, Šubr V, Kovářová J, Šírová M, Říhová B, Sedlacek R, Etrych T, Kovář M. Simultaneous Delivery of Doxorubicin and Protease Inhibitor Derivative to Solid Tumors via Star-Shaped Polymer Nanomedicines Overcomes P-gp- and STAT3-Mediated Chemoresistance. Biomacromolecules 2022. [PMID: 35584053 DOI: 10.1021/acs.biomac.2c00256] [Reference Citation Analysis]
94 Tiburcius S, Krishnan K, Jose L, Patel V, Ghosh A, Sathish CI, Weidenhofer J, Yang JH, Verrills NM, Karakoti A, Vinu A. Egg-yolk core-shell mesoporous silica nanoparticles for high doxorubicin loading and delivery to prostate cancer cells. Nanoscale 2022;14:6830-45. [PMID: 35441642 DOI: 10.1039/d2nr00783e] [Reference Citation Analysis]
95 Surve C, Banerjee A, S A, Chakraborty R, Kumar D, Butti R, Gorain M, Parida S, Kundu GC, Shidhaye S, Patnaik S. Antiproliferative and apoptotic potential of methotrexate lipid nanoparticle in murine breast cancer model. Nanomedicine. [DOI: 10.2217/nnm-2021-0446] [Reference Citation Analysis]
96 Wang X, Wu C, Liu S, Peng D. Combinatorial therapeutic strategies for enhanced delivery of therapeutics to brain cancer cells through nanocarriers: current trends and future perspectives. Drug Deliv 2022;29:1370-83. [PMID: 35532094 DOI: 10.1080/10717544.2022.2069881] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
97 Panigrahi AR, Srinivas L, Panda J. Exosomes: Insights and therapeutic applications in cancer. Transl Oncol 2022;21:101439. [PMID: 35551002 DOI: 10.1016/j.tranon.2022.101439] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
98 Hwang JS, Kim SG, Shin TH, Jang YE, Kwon DH, Lee G. Development of Anticancer Peptides Using Artificial Intelligence and Combinational Therapy for Cancer Therapeutics. Pharmaceutics 2022;14:997. [DOI: 10.3390/pharmaceutics14050997] [Reference Citation Analysis]
99 Peng J, Liu K, Cao L, Duan D, Song G, Liu S, Wang L, Li J, Zhang X, Huang K, Zhao Y, Niu Y, Han G. Adenoviral Vector for Enhanced Prostate Cancer Specific Transferrin Conjugated Drug Targeted Therapy. Nano Lett 2022. [PMID: 35522032 DOI: 10.1021/acs.nanolett.2c00931] [Reference Citation Analysis]
100 Rioja-Blanco E, Arroyo-Solera I, Álamo P, Casanova I, Gallardo A, Unzueta U, Serna N, Sánchez-García L, Quer M, Villaverde A, Vázquez E, Mangues R, Alba-Castellón L, León X. Self-assembling protein nanocarrier for selective delivery of cytotoxic polypeptides to CXCR4+ head and neck squamous cell carcinoma tumors. Acta Pharm Sin B 2022;12:2578-91. [PMID: 35646535 DOI: 10.1016/j.apsb.2021.09.030] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
101 Yang Y, Zheng X, Chen L, Gong X, Yang H, Duan X, Zhu Y. Multifunctional Gold Nanoparticles in Cancer Diagnosis and Treatment. IJN 2022;Volume 17:2041-67. [DOI: 10.2147/ijn.s355142] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
102 Huang J, Huo H, Chen M, Wang L, Li N, Huang Z, Yang L. Nanoparticle Albumin-Bound Paclitaxel is More Effective Than Paclitaxel in Experimental Endometrial Cancer. sci adv mater 2022;14:829-835. [DOI: 10.1166/sam.2022.4251] [Reference Citation Analysis]
103 Zhang W, Li G, Li Y, Fan Y, Sun X, Zhang Q, Hou B, Xu W, Jin N, Feng X, Liu J. Water-soluble porphyrin photosensitizers containing electron-withdrawing and electron-donating groups for photodynamic therapy. J Porphyrins Phthalocyanines 2022;26:384-91. [DOI: 10.1142/s1088424622500304] [Reference Citation Analysis]
104 Puri R, Arora V, Kabra A, Dureja H, Hamaal S, Velmurugan P. Magnetosomes: A Tool for Targeted Drug Delivery in the Management of Cancer. Journal of Nanomaterials 2022;2022:1-12. [DOI: 10.1155/2022/6414585] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
105 Sun H, Sun R, Song X, Gu W, Shao Y. Mechanism and clinical value of exosomes and exosomal contents in regulating solid tumor radiosensitivity. J Transl Med 2022;20:189. [PMID: 35484557 DOI: 10.1186/s12967-022-03392-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
106 Ding J, Guo Y. Recent Advances in Chitosan and its Derivatives in Cancer Treatment. Front Pharmacol 2022;13:888740. [DOI: 10.3389/fphar.2022.888740] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
107 Chaudhuri A, Kumar DN, Dehari D, Singh S, Kumar P, Bolla PK, Kumar D, Agrawal AK. Emergence of Nanotechnology as a Powerful Cavalry against Triple-Negative Breast Cancer (TNBC). Pharmaceuticals 2022;15:542. [DOI: 10.3390/ph15050542] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
108 Habeeb Rahuman HB, Dhandapani R, Narayanan S, Palanivel V, Paramasivam R, Subbarayalu R, Thangavelu S, Muthupandian S. Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. IET Nanobiotechnology. [DOI: 10.1049/nbt2.12078] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
109 Bukhari SNA. Emerging Nanotherapeutic Approaches to Overcome Drug Resistance in Cancers with Update on Clinical Trials. Pharmaceutics 2022;14:866. [PMID: 35456698 DOI: 10.3390/pharmaceutics14040866] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
110 Liu J, Li J, Su Y, Ma Z, Yu S, Meng X. CircTMEM59 Serves as miR-410-3p Sponge to Inhibit the Proliferation and Metastasis of Colorectal Cancer by Regulating HOXD8. Biochem Genet. [DOI: 10.1007/s10528-022-10224-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
111 Lin P, Xue Y, Mu X, Shao Y, Lu Q, Jin X, Yinwang E, Zhang Z, Zhou H, Teng W, Sun H, Chen W, Shi W, Shi C, Zhou X, Jiang X, Yu X, Ye Z. Tumor Customized 2D Supramolecular Nanodiscs for Ultralong Tumor Retention and Precise Photothermal Therapy of Highly Heterogeneous Cancers. Small 2022;:e2200179. [PMID: 35396783 DOI: 10.1002/smll.202200179] [Reference Citation Analysis]
112 Luiz MT, Dutra JAP, Tofani LB, de Araújo JTC, Di Filippo LD, Marchetti JM, Chorilli M. Targeted Liposomes: A Nonviral Gene Delivery System for Cancer Therapy. Pharmaceutics 2022;14:821. [DOI: 10.3390/pharmaceutics14040821] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
113 Zhang Y, Wang Y, Xin Q, Li M, Yu P, Luo J, Xu X, Chen X, Li J. Zwitterionic choline phosphate conjugated folate-poly (ethylene glycol): a general decoration of erythrocyte membrane-coated nanoparticles for enhanced tumor-targeting drug delivery. J Mater Chem B 2022;10:2497-503. [PMID: 35019930 DOI: 10.1039/d1tb02493k] [Reference Citation Analysis]
114 Cai J, Wu D, Jin Y, Bao S. Effect of CMB Carrying PTX and CRISPR/Cas9 on Endometrial Cancer Naked Mouse Model. J Healthc Eng 2022;2022:7119195. [PMID: 35368966 DOI: 10.1155/2022/7119195] [Reference Citation Analysis]
115 Avula LR, Grodzinski P. Nanotechnology-aided advancement in the combating of cancer metastasis. Cancer Metastasis Rev 2022. [PMID: 35366154 DOI: 10.1007/s10555-022-10025-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
116 Sharma M, Bakshi AK, Mittapelly N, Gautam S, Marwaha D, Rai N, Singh N, Tiwari P, Aggarwal N, Kumar A, Mishra PR. Recent updates on innovative approaches to overcome drug resistance for better outcomes in cancer. Journal of Controlled Release 2022. [DOI: 10.1016/j.jconrel.2022.04.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
117 Xu W, Zhao T, Chen H, Huang N, Gong H, Zhang J, Yang Y, Li T, Zhang G, Gong C, Yang M, Xiao H. Pan-mTOR inhibitors sensitize the senolytic activity of Navitoclax via mTORC2 inhibition-mediated apoptotic signaling. Biochemical Pharmacology 2022. [DOI: 10.1016/j.bcp.2022.115045] [Reference Citation Analysis]
118 Xu Y, Yu X, Sun Z, He Y, Guo W. Roles of lncRNAs Mediating Wnt/β-Catenin Signaling in HCC. Front Oncol 2022;12:831366. [PMID: 35356220 DOI: 10.3389/fonc.2022.831366] [Reference Citation Analysis]
119 Khan N, Ruchika, Kumar Dhritlahre R, Saneja A. Recent advances in dual-ligand targeted nanocarriers for cancer therapy. Drug Discovery Today 2022. [DOI: 10.1016/j.drudis.2022.04.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
120 Janani B, Vijayakumar M, Priya K, Kim JH, Prabakaran DS, Shahid M, Al-ghamdi S, Alsaidan M, Othman Bahakim N, Hassan Abdelzaher M, Ramesh T. EGFR-Based Targeted Therapy for Colorectal Cancer—Promises and Challenges. Vaccines 2022;10:499. [DOI: 10.3390/vaccines10040499] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
121 Mirzaeinia S, Zeinali S, Budisa N, Karbalaei-heidari HR. Targeted Codelivery of Prodigiosin and Simvastatin Using Smart BioMOF: Functionalization by Recombinant Anti-VEGFR1 scFv. Front Bioeng Biotechnol 2022;10:866275. [DOI: 10.3389/fbioe.2022.866275] [Reference Citation Analysis]
122 Chen M, Hu C, Zhang S, Wu D, Mao Z, Zheng X. The Construction of Cucurbit[7]uril-Based Supramolecular Nanomedicine for Glioma Therapy. Front Chem 2022;10:867815. [DOI: 10.3389/fchem.2022.867815] [Reference Citation Analysis]
123 Li J, Liu Y, Abdelhakim HE. Drug Delivery Applications of Coaxial Electrospun Nanofibres in Cancer Therapy. Molecules 2022;27:1803. [PMID: 35335167 DOI: 10.3390/molecules27061803] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]
124 Guan X, Bao G, Liang J, Yao Y, Xiang Y, Zhong X. Evolution of small cell lung cancer tumor mutation: from molecular mechanisms to novel viewpoints. Seminars in Cancer Biology 2022. [DOI: 10.1016/j.semcancer.2022.03.015] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
125 Abuwatfa WH, Awad NS, Pitt WG, Husseini GA. Thermosensitive Polymers and Thermo-Responsive Liposomal Drug Delivery Systems. Polymers 2022;14:925. [DOI: 10.3390/polym14050925] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
126 Stanicki D, Vangijzegem T, Ternad I, Laurent S. An update on the applications and characteristics of magnetic iron oxide nanoparticles for drug delivery. Expert Opin Drug Deliv 2022. [PMID: 35202551 DOI: 10.1080/17425247.2022.2047020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
127 Essa ML, Elashkar AA, Hanafy NAN, Saied EM, El-Kemary M. Dual targeting nanoparticles based on hyaluronic and folic acids as a promising delivery system of the encapsulated 4-Methylumbelliferone (4-MU) against invasiveness of lung cancer in vivo and in vitro. Int J Biol Macromol 2022:S0141-8130(22)00341-5. [PMID: 35202638 DOI: 10.1016/j.ijbiomac.2022.02.095] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
128 Teixeira S, Carvalho MA, Castanheira EMS. Functionalized Liposome and Albumin-Based Systems as Carriers for Poorly Water-Soluble Anticancer Drugs: An Updated Review. Biomedicines 2022;10:486. [DOI: 10.3390/biomedicines10020486] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
129 Li M, Bian X, Chen X, Fan N, Zou H, Bao Y, Zhou Y. Multifunctional liposome for photoacoustic/ultrasound imaging-guided chemo/photothermal retinoblastoma therapy. Drug Deliv 2022;29:519-33. [PMID: 35156504 DOI: 10.1080/10717544.2022.2032876] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
130 Zhang D, Yang J, Ye S, Wang Y, Liu C, Zhang Q, Liu R. Combination of Photothermal Therapy with Anti‐Inflammation Therapy Attenuates the Inflammation Tumor Microenvironment and Weakens Immunosuppression for Enhancement Antitumor Treatment. Small. [DOI: 10.1002/smll.202107071] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
131 Phillips MC, Mousa SA. Clinical application of nano-targeting for enhancing chemotherapeutic efficacy and safety in cancer management. Nanomedicine (Lond) 2022. [PMID: 35118878 DOI: 10.2217/nnm-2021-0361] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
132 Robertson I, Wai Hau T, Sami F, Sajid Ali M, Badgujar V, Murtuja S, Saquib Hasnain M, Khan A, Majeed S, Tahir Ansari M. The science of resveratrol, formulation, pharmacokinetic barriers and its chemotherapeutic potential. International Journal of Pharmaceutics 2022. [DOI: 10.1016/j.ijpharm.2022.121605] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
133 Narayanan G, Shen J, Matai I, Sachdev A, Boy R, Tonelli AE. Cyclodextrin-based nanostructures. Progress in Materials Science 2022;124:100869. [DOI: 10.1016/j.pmatsci.2021.100869] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
134 Zengin M, Unsal Tan O, Arafa RK, Balkan A. Design and Synthesis of New 2-Oxoquinoxalinyl-1,2,4-triazoles as Antitumor VEGFR-2 Inhibitors. Bioorganic Chemistry 2022. [DOI: 10.1016/j.bioorg.2022.105696] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
135 Auychaipornlert S, Lawanprasert PP, Piriyaprasarth S, Sithisarn P, Mangmool S. Design of Turmeric Rhizome Extract Nano-Formula for Delivery to Cancer Cells. Molecules 2022;27:896. [PMID: 35164159 DOI: 10.3390/molecules27030896] [Reference Citation Analysis]
136 Zhang C, Xie H, Zhang Z, Wen B, Cao H, Bai Y, Che Q, Guo J, Su Z. Applications and Biocompatibility of Mesoporous Silica Nanocarriers in the Field of Medicine. Front Pharmacol 2022;13:829796. [DOI: 10.3389/fphar.2022.829796] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
137 Chen L, Wang L, Zhu L, Xu Z, Liu Y, Li Z, Zhou J, Luo F. Exosomes as Drug Carriers in Anti-Cancer Therapy. Front Cell Dev Biol 2022;10:728616. [DOI: 10.3389/fcell.2022.728616] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
138 Carvalheiro M, Ferreira-Silva M, Holovanchuk D, Marinho HS, Moreira JN, Soares H, Corvo ML, Cruz MEM. Antagonist G-targeted liposomes for improved delivery of anticancer drugs in small cell lung carcinoma. Int J Pharm 2022;612:121380. [PMID: 34915142 DOI: 10.1016/j.ijpharm.2021.121380] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
139 Jiang Y, Huo Z, Qi X, Zuo T, Wu Z. Copper-induced tumor cell death mechanisms and antitumor theragnostic applications of copper complexes. Nanomedicine (Lond) 2022. [PMID: 35060391 DOI: 10.2217/nnm-2021-0374] [Cited by in Crossref: 22] [Cited by in F6Publishing: 30] [Article Influence: 22.0] [Reference Citation Analysis]
140 Milan A, Mioc A, Prodea A, Mioc M, Buzatu R, Ghiulai R, Racoviceanu R, Caruntu F, Şoica C. The Optimized Delivery of Triterpenes by Liposomal Nanoformulations: Overcoming the Challenges. Int J Mol Sci 2022;23:1140. [PMID: 35163063 DOI: 10.3390/ijms23031140] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
141 Şeker Karatoprak G, Küpeli Akkol E, Yücel Ç, Bahadır Acıkara Ö, Sobarzo-sánchez E, Malaguti M. Advances in Understanding the Role of Aloe Emodin and Targeted Drug Delivery Systems in Cancer. Oxidative Medicine and Cellular Longevity 2022;2022:1-20. [DOI: 10.1155/2022/7928200] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
142 Mokhtarian F, Rastegari B, Zeinali S, Tohidi M, Karbalaei-heidari HR, Cornu D. Theranostic Effect of Folic Acid Functionalized MIL-100(Fe) for Delivery of Prodigiosin and Simultaneous Tracking-Combating Breast Cancer. Journal of Nanomaterials 2022;2022:1-16. [DOI: 10.1155/2022/1108865] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
143 Miatmoko A, Mianing EA, Sari R, Hendradi E. Nanoparticles use for Delivering Ursolic Acid in Cancer Therapy: A Scoping Review. Front Pharmacol 2021;12:787226. [PMID: 35002719 DOI: 10.3389/fphar.2021.787226] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
144 Sadat SMA, Wuest M, Paiva IM, Munira S, Sarrami N, Sanaee F, Yang X, Paladino M, Binkhathlan Z, Karimi-Busheri F, Martin GR, Jirik FR, Murray D, Gamper AM, Hall DG, Weinfeld M, Lavasanifar A. Nano-Delivery of a Novel Inhibitor of Polynucleotide Kinase/Phosphatase (PNKP) for Targeted Sensitization of Colorectal Cancer to Radiation-Induced DNA Damage. Front Oncol 2021;11:772920. [PMID: 35004293 DOI: 10.3389/fonc.2021.772920] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
145 Gurba A, Taciak P, Sacharczuk M, Młynarczuk-Biały I, Bujalska-Zadrożny M, Fichna J. Gold (III) Derivatives in Colon Cancer Treatment. Int J Mol Sci 2022;23:724. [PMID: 35054907 DOI: 10.3390/ijms23020724] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
146 Liu Y, Li Q, Gu M, Lu D, Xiong X, Zhang Z, Pan Y, Liao Y, Ding Q, Gong W, Chen DS, Guan M, Wu J, Tian Z, Deng H, Gu L, Hong X, Xiao Y. A Second Near-Infrared Ru(II) Polypyridyl Complex for Synergistic Chemo-Photothermal Therapy. J Med Chem 2022. [PMID: 34994554 DOI: 10.1021/acs.jmedchem.1c01736] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 12.0] [Reference Citation Analysis]
147 Karim S, Dasgupta S, Parveen R, Biswas S, Das D. A mechanistic approach for in‐vitro anticancer activity via nucleic acid fragmentation by copper(II) complex anchored on MCM‐41. Applied Organom Chemis. [DOI: 10.1002/aoc.6571] [Reference Citation Analysis]
148 Lu J, Ding J, Liu Z, Chen T. Retrospective analysis of the preparation and application of immunotherapy in cancer treatment (Review). Int J Oncol 2022;60:12. [PMID: 34981814 DOI: 10.3892/ijo.2022.5302] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
149 Teli A, Gaikwad P, Chakave S, Kane A, Dey T. Nanomedicines for Tumor-Associated Macrophages. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects 2022. [DOI: 10.1007/978-981-16-5422-0_265] [Reference Citation Analysis]
150 Carità E. Herbal Medicines and Supplements. Pharmacological Treatment of Alzheimer's Disease 2022. [DOI: 10.1007/978-3-030-94383-7_7] [Reference Citation Analysis]
151 Ranjan Misra S, Panda S, Mohanty N. Current trends in theranostic approaches using nanotechnology for oral squamous cell carcinoma. Advanced Nanomaterials for Point of Care Diagnosis and Therapy 2022. [DOI: 10.1016/b978-0-323-85725-3.00003-9] [Reference Citation Analysis]
152 Suffian IFBM, Al-Jamal KT. Bioengineering of virus-like particles as dynamic nanocarriers for in vivo delivery and targeting to solid tumours. Adv Drug Deliv Rev 2022;180:114030. [PMID: 34736988 DOI: 10.1016/j.addr.2021.114030] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
153 Garg P. Radiobioconjugate targeted therapy in cancer, using radiolabeled mediated biological analogs: Desired qualities and selective targeting approach. Biomed Biotechnol Res J 2022;6:40. [DOI: 10.4103/bbrj.bbrj_282_21] [Reference Citation Analysis]
154 Weigl F, Schuster M. Cloud point extraction hyphenated to single-particle ICP-MS minimizes background signals and improves particle size detection limit for ultra trace analysis of nanoparticulate rhodium. J Anal At Spectrom . [DOI: 10.1039/d2ja00068g] [Reference Citation Analysis]
155 Shveid Gerson D, Shalkow Klincovstein J. Nanomedicina y nanopartículas en una nueva era oncológica. Anales Médicos de la Asociación Médica del Centro Médico ABC 2022;67:131-136. [DOI: 10.35366/106028] [Reference Citation Analysis]
156 Raina N, Pal AK, Rani R, Sharma A, Gupta M. Functional nanomaterials and nanocomposite in cancer vaccines. Nanotherapeutics in Cancer Vaccination and Challenges 2022. [DOI: 10.1016/b978-0-12-823686-4.00016-1] [Reference Citation Analysis]
157 Nahvi I, Nahvi I, Rehman S. Nanotechnology and Multidrug Resistance. Nanotechnology for Infectious Diseases 2022. [DOI: 10.1007/978-981-16-9190-4_14] [Reference Citation Analysis]
158 Li Y, Wang S, Chen L, Feng Y, Shen Z, Chen X, Huang G, Ni Y. Sequential Administrations of a Vascular-Disrupting Agent, High-Intensity Focused Ultrasound, and a Radioactively labeled Necrosis Avid Compound for Eradicating Solid Malignancies. Technol Cancer Res Treat 2022;21:153303382211367. [DOI: 10.1177/15330338221136716] [Reference Citation Analysis]
159 Bhatti GK, Pahwa P, Gupta A, Sidhu IS, Navik US, Reddy PH, Bhatti JS. Targeting Tumors Through Enhancers of Oxidative Stress. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects 2022. [DOI: 10.1007/978-981-16-5422-0_175] [Reference Citation Analysis]
160 Ana ID. Hybrid Biomaterials in Drug Delivery and Biomedical Applications. Functional Biomaterials 2022. [DOI: 10.1007/978-981-16-7152-4_15] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
161 Padhi S, Behera A, Hasnain MS, Nayak AK. Uses of chitosan in drug delivery. Chitosan in Biomedical Applications 2022. [DOI: 10.1016/b978-0-12-821058-1.00015-0] [Reference Citation Analysis]
162 Teli A, Gaikwad P, Chakave S, Kane A, Dey T. Nanomedicines for Tumor-Associated Macrophages. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects 2022. [DOI: 10.1007/978-981-16-1247-3_265-1] [Reference Citation Analysis]
163 Daramola OO, Adara P, Adewuyi BO, Sadiku ER, Kupolati WK. Polymer nanoparticles (nanomedicine) for therapeutic applications. Polymeric Biomaterials for Healthcare Applications 2022. [DOI: 10.1016/b978-0-323-85233-3.00003-3] [Reference Citation Analysis]
164 More MP, Deshmukh PK, Patil PO, Nangare SN, Tade RS, Patil AG, Pandey A, Mutalik S, Patil PB, Khan ZG, Borse VB. Passive and Active Targeting for Solid Tumors. Environmental Chemistry for a Sustainable World 2022. [DOI: 10.1007/978-3-031-14848-4_5] [Reference Citation Analysis]
165 Kenguva G, Rout SR, Fatima M, Dubey SK, Alexander A, Abourehab MA, Kesharwani P, Dandela R. Solubility enhancement and drug release mechanism of polymeric micelles. Polymeric Micelles for Drug Delivery 2022. [DOI: 10.1016/b978-0-323-89868-3.00006-9] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
166 Bajaj S, Manchanda S. Nutraceutical and Functional Foods in Cancer Management and Therapy. Research Anthology on Recent Advancements in Ethnopharmacology and Nutraceuticals 2022. [DOI: 10.4018/978-1-6684-3546-5.ch055] [Reference Citation Analysis]
167 Sharma P, Poonia A, Jangra M, Ankur. Application of Stimuli-Responsive Polymers in Cancer Therapy. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects 2022. [DOI: 10.1007/978-981-16-1247-3_50-1] [Reference Citation Analysis]
168 Tinku, Gautam P, Choudhary S. Physicochemical insights into the micelle-based drug-delivery of bioactive compounds to the carrier protein. New J Chem . [DOI: 10.1039/d2nj04244d] [Reference Citation Analysis]
169 Ferreira (Noronha) N, Cancino-bernardi J, Cardoso VMDO, Comparetti EJ, Miranda RR, Ferreira LMB, Zucolotto V. Smart systems in bio-encapsulation for cancer therapy. Smart Nanomaterials for Bioencapsulation 2022. [DOI: 10.1016/b978-0-323-91229-7.00015-5] [Reference Citation Analysis]
170 Chandrawanshi NK, Koreti D, Kosre A, Mahish PK. Mushroom-Derived Bioactive-Based Nanoemulsion. Handbook of Research on Nanoemulsion Applications in Agriculture, Food, Health, and Biomedical Sciences 2022. [DOI: 10.4018/978-1-7998-8378-4.ch016] [Reference Citation Analysis]
171 Mir MA, Aisha S, Mehraj U. Different drug delivery approaches in combinational therapy in TNBC. Combinational Therapy in Triple Negative Breast Cancer 2022. [DOI: 10.1016/b978-0-323-96136-3.00012-1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
172 Bhatti GK, Pahwa P, Gupta A, Navik US, Reddy PH, Bhatti JS. Targeting Mitochondria as a Novel Disease-Modifying Therapeutic Strategy in Cancer. Handbook of Oxidative Stress in Cancer: Mechanistic Aspects 2022. [DOI: 10.1007/978-981-15-9411-3_21] [Reference Citation Analysis]
173 Sharma P, Poonia A, Jangra M, Ankur. Application of Stimuli-Responsive Polymers in Cancer Therapy. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects 2022. [DOI: 10.1007/978-981-16-5422-0_50] [Reference Citation Analysis]
174 Misra C, Raza K. Polymers-drug-conjugates strategies in drug delivery. Multifunctional Nanocarriers 2022. [DOI: 10.1016/b978-0-323-85041-4.00001-9] [Reference Citation Analysis]
175 Wang J, Yang J, Kopeček J. Nanomedicines in B cell-targeting therapies. Acta Biomater 2022;137:1-19. [PMID: 34687954 DOI: 10.1016/j.actbio.2021.10.024] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
176 Zhu J, Chen W, Sun Y, Huang X, Chu R, Wang R, Zhou D, Ye S. Recent advances on drug delivery nanoplatforms for the treatment of autoimmune inflammatory diseases. Mater Adv 2022. [DOI: 10.1039/d2ma00814a] [Reference Citation Analysis]
177 Kobylinska L, Mitina N, Zaichenko A, Stoika R. Controlled Delivery and Reduced Side Effects of Anticancer Drugs Complexed with Polymeric Nanocarrier. Biomedical Nanomaterials 2022. [DOI: 10.1007/978-3-030-76235-3_5] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
178 Shah MR, Imran M, Ullah S. Nanocarriers in drug delivery: Classification, properties, and targeted drug delivery applications. Nanocarriers for Organ-Specific and Localized Drug Delivery 2022. [DOI: 10.1016/b978-0-12-821093-2.00004-9] [Reference Citation Analysis]
179 Kahraman DT, Karaküçük-iyidoğan A, Saygideger Y, Oruç-emre EE, Taskin-tok T, Başaran E, İlhan S, Demir BS, Üren A, Bayram H. Discovery of new chiral sulfonamides bearing benzoxadiazole as HIF inhibitors for non-small cell lung cancer therapy: design, microwave-assisted synthesis, binding affinity, in vitro antitumoral activities and in silico studies. New J Chem 2022;46:2777-91. [DOI: 10.1039/d1nj03809e] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
180 Gultekin Y, Tekin T, Kocas M, Capan Y, Sahin A. PLGA-Based Nanomaterials for Cancer Therapy. Nanotechnology for Biomedical Applications 2022. [DOI: 10.1007/978-981-16-7483-9_13] [Reference Citation Analysis]
181 M.y. K, O.n. D, E.a. S, K.k. A, A.a. E. ON ANTITUMOR ACTIVITY OF A NOVEL COMPOUND – A PYRIDINE DERIVATIVE. Vestnik "Biomedicina i sociologiya" 2021. [DOI: 10.26787/nydha-2618-8783-2021-6-4-52-59] [Reference Citation Analysis]
182 Jiang S, Fu Y, Zhang X, Yu T, Lu B, Du J. Research Progress of Carrier-Free Antitumor Nanoparticles Based on Phytochemicals. Front Bioeng Biotechnol 2021;9:799806. [PMID: 34957085 DOI: 10.3389/fbioe.2021.799806] [Reference Citation Analysis]
183 Kenchegowda M, Rahamathulla M, Hani U, Begum MY, Guruswamy S, Osmani RAM, Gowrav MP, Alshehri S, Ghoneim MM, Alshlowi A, Gowda DV. Smart Nanocarriers as an Emerging Platform for Cancer Therapy: A Review. Molecules 2021;27:146. [PMID: 35011376 DOI: 10.3390/molecules27010146] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
184 He J, Ding H, Li H, Pan Z, Chen Q. Intra-Tumoral Expression of SLC7A11 Is Associated with Immune Microenvironment, Drug Resistance, and Prognosis in Cancers: A Pan-Cancer Analysis. Front Genet 2021;12:770857. [PMID: 34938318 DOI: 10.3389/fgene.2021.770857] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
185 Saiding Q, Cui W. Functional nanoparticles in electrospun fibers for biomedical applications. Nano Select. [DOI: 10.1002/nano.202100335] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
186 Gao M, Du J, Han Z, Wang Z, Zhao Y, Zou X, Sun L. Precise Preparation of Various Morphological Silver Sulfide Nanostructures, Investigation of Formation Mechanism, and Comparative Study of Photothermal Performance for Cancer Treatment. Part & Part Syst Charact 2022;39:2100240. [DOI: 10.1002/ppsc.202100240] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
187 Morás AM, Henn JG, Steffens Reinhardt L, Lenz G, Moura DJ. Recent developments in drug delivery strategies for targeting DNA damage response in glioblastoma. Life Sci 2021;287:120128. [PMID: 34774874 DOI: 10.1016/j.lfs.2021.120128] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
188 Yadav A, Singh S, Sohi H, Dang S. Advances in Delivery of Chemotherapeutic Agents for Cancer Treatment. AAPS PharmSciTech 2021;23:25. [PMID: 34907501 DOI: 10.1208/s12249-021-02174-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
189 Porębska N, Knapik A, Poźniak M, Krzyścik MA, Zakrzewska M, Otlewski J, Opaliński Ł. Intrinsically Fluorescent Oligomeric Cytotoxic Conjugates Toxic for FGFR1-Overproducing Cancers. Biomacromolecules 2021;22:5349-62. [PMID: 34855396 DOI: 10.1021/acs.biomac.1c01280] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
190 Li R, Peng Y, Pu Y, Zhao Y, Nie R, Guo L, Wu Y. Fructose and biotin co-modified liposomes for dual-targeting breast cancer. J Liposome Res 2021;:1-10. [PMID: 34895001 DOI: 10.1080/08982104.2021.1894171] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
191 Villarreal-Otalvaro C, Coburn JM. Fabrication Methods and Form Factors of Gellan Gum-Based Materials for Drug Delivery and Anti-Cancer Applications. ACS Biomater Sci Eng 2021. [PMID: 34898174 DOI: 10.1021/acsbiomaterials.1c00685] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
192 Wang Y, Lv S, Cao F, Ding Z, Liu J, Chen Q, Gao J, Huang X. Investigations on the influence of the structural flexibility of nanoliposomes on their properties. J Liposome Res 2021;:1-12. [PMID: 34890290 DOI: 10.1080/08982104.2021.1998106] [Reference Citation Analysis]
193 Hirata AS, Rezende-Teixeira P, Machado-Neto JA, Jimenez PC, Clair JJ, Fenical W, Costa-Lotufo LV. Seriniquinones as Therapeutic Leads for Treatment of BRAF and NRAS Mutant Melanomas. Molecules 2021;26:7362. [PMID: 34885944 DOI: 10.3390/molecules26237362] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
194 Tegaw EM, Geraily G, Gholami S, Shojaei M, Tadesse GF. Gold-nanoparticle-enriched breast tissue in breast cancer treatment using the INTRABEAM® system: a Monte Carlo study. Radiat Environ Biophys 2021. [PMID: 34860272 DOI: 10.1007/s00411-021-00954-2] [Reference Citation Analysis]
195 Guo S, Shi Y, Liang Y, Liu L, Sun K, Li Y. Relationship and improvement strategies between drug nanocarrier characteristics and hemocompatibility: What can we learn from the literature. Asian J Pharm Sci 2021;16:551-76. [PMID: 34849162 DOI: 10.1016/j.ajps.2020.12.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
196 Ma X, Wang X, Liu C, Ge B, He H, Dai Q, Zhang Z, Yu J, Nau WM, Huang F. Self-assembled theranostic microcarrier targeting tumor cells with high metastatic potential. Materials & Design 2021;212:110196. [DOI: 10.1016/j.matdes.2021.110196] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
197 Li Z, Huang J, Du T, Lai Y, Li K, Luo M, Zhu D, Wu J, Huang H. Targeting the Rac1 pathway for improved prostate cancer therapy using polymeric nanoparticles to deliver of NSC23766. Chinese Chemical Letters 2021. [DOI: 10.1016/j.cclet.2021.11.078] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
198 Garg J, Kakkar V, Pawar SV. Resealed erythrocytes: Towards a novel approach for anticancer therapy. Journal of the Indian Chemical Society 2021;98:100257. [DOI: 10.1016/j.jics.2021.100257] [Reference Citation Analysis]
199 Li Y, Li G, zhang Q, Li Y, Jia Q, Zhang W, Feng X, Xu W, Liu J. Heavy atom effect on water-soluble porphyrin photosensitizers for photodynamic therapy. Chemical Physics Letters 2021;784:139091. [DOI: 10.1016/j.cplett.2021.139091] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
200 L. Pérez R, E. Ayala C, M. Warner I. Group of Uniform Materials Based on Organic Salts (GUMBOS): A Review of Their Solid State Properties and Applications. Ionic Liquids - Thermophysical Properties and Applications 2021. [DOI: 10.5772/intechopen.96417] [Reference Citation Analysis]
201 Krishnan N, Fang RH, Zhang L. Engineering of stimuli-responsive self-assembled biomimetic nanoparticles. Adv Drug Deliv Rev 2021;179:114006. [PMID: 34655662 DOI: 10.1016/j.addr.2021.114006] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]
202 Sohrabi N, Alihosseini A, Piroozfar V, Zamani Pedram M, Central Tehran Branch, Islamic Azad University, Central Tehran Branch, Islamic Azad University, Central Tehran Branch, Islamic Azad University, KN Toosi University of Technology. Design of the optimal magnetic field in application of functionalized CNT-based drug delivery toward the cell membrane: Computational Analysis. JoC 2021;15:13-22. [DOI: 10.52547/joc.15.3.13] [Reference Citation Analysis]
203 Makhani EY, Zhang A, Haun JB. Quantifying and controlling bond multivalency for advanced nanoparticle targeting to cells. Nano Converg 2021;8:38. [PMID: 34846580 DOI: 10.1186/s40580-021-00288-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
204 Demirtürk N, Bilensoy E. Nanocarriers targeting the diseases of the pancreas. Eur J Pharm Biopharm 2021:S0939-6411(21)00337-4. [PMID: 34852262 DOI: 10.1016/j.ejpb.2021.11.006] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
205 Wang J, Su X, Zhao P, Gao D, Chen R, Wang L. Cancer photothermal therapy based on near infrared fluorescent CdSeTe/ZnS quantum dots. Anal Methods 2021;13:5509-15. [PMID: 34749393 DOI: 10.1039/d1ay01635k] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
206 Meylina L, Muchtaridi M, Joni IM, Mohammed AFA, Wathoni N. Nanoformulations of α-Mangostin for Cancer Drug Delivery System. Pharmaceutics 2021;13:1993. [PMID: 34959275 DOI: 10.3390/pharmaceutics13121993] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
207 Chabria Y, Duffy GP, Lowery AJ, Dwyer RM. Hydrogels: 3D Drug Delivery Systems for Nanoparticles and Extracellular Vesicles. Biomedicines 2021;9:1694. [PMID: 34829923 DOI: 10.3390/biomedicines9111694] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
208 Bender G, Fahrioglu Yamaci R, Taneri B. CRISPR and KRAS: a match yet to be made. J Biomed Sci 2021;28:77. [PMID: 34781949 DOI: 10.1186/s12929-021-00772-0] [Reference Citation Analysis]
209 Bayram NN, Topuzoğulları M, İşoğlu İA, Dinçer İşoğlu S. RAFT-synthesized POEGMA-b-P4VP block copolymers: preparation of nanosized micelles for anticancer drug release. Polym Bull . [DOI: 10.1007/s00289-021-03964-8] [Reference Citation Analysis]
210 Ebrahimnejad P, Sodagar Taleghani A, Asare-Addo K, Nokhodchi A. An updated review of folate-functionalized nanocarriers: A promising ligand in cancer. Drug Discov Today 2021:S1359-6446(21)00490-6. [PMID: 34781032 DOI: 10.1016/j.drudis.2021.11.011] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
211 Alagöz MA, Karakurt A, Hepokur C, Şalva E, Önkol T, Ghoneim MM, Abdelgawad MA, Khames A, Kim H, Mathew B. Synthesis of New 1-Aryl-2-(3,5-dimethylpyrazol-1-yl)ethanone Oxime Ether Derivatives and Investigation of Their Cytotoxic Effects. Processes 2021;9:2019. [DOI: 10.3390/pr9112019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
212 Terehova MM, Abashkin VM, Zhogla VA, Halets-bui IV, Loznikova SZ, Bryshewska M, Ionov M, Waczulikova I, Majoral J, Shcharbin DG. Interaction of polyamidoamine dendrimers and amphiphylic dendrons with lipid membranes. Vescì Akademìì navuk Belarusì Seryâ biâlagičnyh navuk 2021;66:497-512. [DOI: 10.29235/1029-8940-2021-66-4-497-512] [Reference Citation Analysis]
213 Cheng Y, Li S, Gao L, Zhi K, Ren W. The Molecular Basis and Therapeutic Aspects of Cisplatin Resistance in Oral Squamous Cell Carcinoma. Front Oncol 2021;11:761379. [PMID: 34746001 DOI: 10.3389/fonc.2021.761379] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
214 Tacchi F, Orozco-Aguilar J, Gutiérrez D, Simon F, Salazar J, Vilos C, Cabello-Verrugio C. Scaffold biomaterials and nano-based therapeutic strategies for skeletal muscle regeneration. Nanomedicine (Lond) 2021. [PMID: 34743611 DOI: 10.2217/nnm-2021-0224] [Reference Citation Analysis]
215 Yang H, Yu Z, Ji S, Huo Q, Yan J, Gao Y, Niu Y, Xu M, Liu Y. Targeting bone microenvironments for treatment and early detection of cancer bone metastatic niches. J Control Release 2021:S0168-3659(21)00597-6. [PMID: 34748870 DOI: 10.1016/j.jconrel.2021.11.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
216 Siemer S, Bauer TA, Scholz P, Breder C, Fenaroli F, Harms G, Dietrich D, Dietrich J, Rosenauer C, Barz M, Becker S, Strieth S, Reinhardt C, Fauth T, Hagemann J, Stauber RH. Targeting Cancer Chemotherapy Resistance by Precision Medicine-Driven Nanoparticle-Formulated Cisplatin. ACS Nano 2021. [PMID: 34739225 DOI: 10.1021/acsnano.1c08632] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
217 Saberinasab A, Raissi H, Hashemzadeh H. Molecular insight into the role of polyethylene glycol and cholesterol on the performance of graphene-based nanomaterials in Blood-brain barrier delivery. Journal of Molecular Liquids 2021;341:117446. [DOI: 10.1016/j.molliq.2021.117446] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
218 Kheraldine H, Rachid O, Habib AM, Al Moustafa AE, Benter IF, Akhtar S. Emerging innate biological properties of nano-drug delivery systems: A focus on PAMAM dendrimers and their clinical potential. Adv Drug Deliv Rev 2021;178:113908. [PMID: 34390777 DOI: 10.1016/j.addr.2021.113908] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 12.0] [Reference Citation Analysis]
219 Sun Z, Deng G, Peng X, Xu X, Liu L, Peng J, Ma Y, Zhang P, Wen A, Wang Y, Yang Z, Gong P, Jiang W, Cai L. Intelligent photothermal dendritic cells restart the cancer immunity cycle through enhanced immunogenic cell death. Biomaterials 2021;279:121228. [PMID: 34717198 DOI: 10.1016/j.biomaterials.2021.121228] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
220 Al-Nemrawi NK, Altawabeyeh RM, Darweesh RS. Preparation and Characterization of Docetaxel-PLGA Nanoparticles Coated with Folic Acid-chitosan Conjugate for Cancer Treatment. J Pharm Sci 2021:S0022-3549(21)00596-7. [PMID: 34728172 DOI: 10.1016/j.xphs.2021.10.034] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
221 Bayram NN, Ulu GT, Topuzoğulları M, Baran Y, Dinçer İşoğlu S. HER2-Targeted, Degradable Core Cross-Linked Micelles for Specific and Dual pH-Sensitive DOX Release. Macromol Biosci 2021;:e2100375. [PMID: 34708562 DOI: 10.1002/mabi.202100375] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
222 Mamnoon B, Feng L, Froberg J, Choi Y, Sathish V, Taratula O, Taratula O, Mallik S. Targeting Estrogen Receptor-Positive Breast Microtumors with Endoxifen-Conjugated, Hypoxia-Sensitive Polymersomes. ACS Omega 2021;6:27654-67. [PMID: 34722965 DOI: 10.1021/acsomega.1c02250] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
223 Han W, Ke J, Guo F, Meng F, Li H, Wang L. Construction and antitumor properties of a targeted nano-drug carrier system responsive to the tumor microenvironment. Int J Pharm 2021;608:121066. [PMID: 34481009 DOI: 10.1016/j.ijpharm.2021.121066] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
224 Loh JS, Tan LKS, Lee WL, Ming LC, How CW, Foo JB, Kifli N, Goh BH, Ong YS. Do Lipid-based Nanoparticles Hold Promise for Advancing the Clinical Translation of Anticancer Alkaloids? Cancers (Basel) 2021;13:5346. [PMID: 34771511 DOI: 10.3390/cancers13215346] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
225 Yang X, Xie Y. Recent advances in polymeric core-shell nanocarriers for targeted delivery of chemotherapeutic drugs. Int J Pharm 2021;608:121094. [PMID: 34534631 DOI: 10.1016/j.ijpharm.2021.121094] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
226 López-Urrutia E, Padilla-Benavides T, Pérez-Plasencia C, Campos-Parra AD. Editorial: Repurposed Drugs Targeting Cancer Signaling Pathways: Dissecting New Mechanism of Action Through In Vitro and In Vivo Analyses. Front Oncol 2021;11:773429. [PMID: 34671566 DOI: 10.3389/fonc.2021.773429] [Reference Citation Analysis]
227 Tay ZW, Chandrasekharan P, Fellows BD, Arrizabalaga IR, Yu E, Olivo M, Conolly SM. Magnetic Particle Imaging: An Emerging Modality with Prospects in Diagnosis, Targeting and Therapy of Cancer. Cancers (Basel) 2021;13:5285. [PMID: 34771448 DOI: 10.3390/cancers13215285] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
228 Qiao L, Yuan X, Peng H, Shan G, Gao M, Yi X, He X. Targeted delivery and stimulus-responsive release of anticancer drugs for efficient chemotherapy. Drug Deliv 2021;28:2218-28. [PMID: 34668829 DOI: 10.1080/10717544.2021.1986602] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
229 Ayoub NM, Ibrahim DR, Alkhalifa AE. Overcoming resistance to targeted therapy using MET inhibitors in solid cancers: evidence from preclinical and clinical studies. Med Oncol 2021;38:143. [PMID: 34665336 DOI: 10.1007/s12032-021-01596-6] [Reference Citation Analysis]
230 Miele D, Xia X, Catenacci L, Sorrenti M, Rossi S, Sandri G, Ferrari F, Rossi JJ, Bonferoni MC. Chitosan Oleate Coated PLGA Nanoparticles as siRNA Drug Delivery System. Pharmaceutics 2021;13:1716. [PMID: 34684009 DOI: 10.3390/pharmaceutics13101716] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
231 Shakil MS, Mahmud KM, Sayem M, Niloy MS, Halder SK, Hossen MS, Uddin MF, Hasan MA. Using Chitosan or Chitosan Derivatives in Cancer Therapy. Polysaccharides 2021;2:795-816. [DOI: 10.3390/polysaccharides2040048] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
232 Yu J, Wang S, Qi J, Yu Z, Xian Y, Liu W, Wang X, Liu C, Wei M. Mannose-modified liposome designed for epitope peptide drug delivery in cancer immunotherapy. Int Immunopharmacol 2021;101:108148. [PMID: 34653955 DOI: 10.1016/j.intimp.2021.108148] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
233 Huntošová V, Datta S, Lenkavská L, Máčajová M, Bilčík B, Kundeková B, Čavarga I, Kronek J, Jutková A, Miškovský P, Jancura D. Alkyl Chain Length in Poly(2-oxazoline)-Based Amphiphilic Gradient Copolymers Regulates the Delivery of Hydrophobic Molecules: A Case of the Biodistribution and the Photodynamic Activity of the Photosensitizer Hypericin. Biomacromolecules 2021;22:4199-216. [PMID: 34494830 DOI: 10.1021/acs.biomac.1c00768] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
234 Bognanni N, Viale M, Distefano A, Tosto R, Bertola N, Loiacono F, Ponassi M, Spinelli D, Pappalardo G, Vecchio G. Cyclodextrin Polymers as Delivery Systems for Targeted Anti-Cancer Chemotherapy. Molecules 2021;26:6046. [PMID: 34641590 DOI: 10.3390/molecules26196046] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
235 Kumar K, Chawla R. Nanocarriers-mediated therapeutics as a promising approach for treatment and diagnosis of lung cancer. Journal of Drug Delivery Science and Technology 2021;65:102677. [DOI: 10.1016/j.jddst.2021.102677] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
236 Murali M, Kumar AR, Nair B, Pavithran K, Devan AR, Pradeep GK, Nath LR. Antibody-drug conjugate as targeted therapeutics against hepatocellular carcinoma: preclinical studies and clinical relevance. Clin Transl Oncol 2021. [PMID: 34595736 DOI: 10.1007/s12094-021-02707-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
237 Sacco F, Tarchi M, Ferraro G, Merlino A, Facchetti G, Rimoldi I, Messori L, Massai L. Reactions with Proteins of Three Novel Anticancer Platinum(II) Complexes Bearing N-Heterocyclic Ligands. Int J Mol Sci 2021;22:10551. [PMID: 34638887 DOI: 10.3390/ijms221910551] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
238 Yu XY, Jin X, Shou ZX. Surface-engineered smart nanocarrier-based inhalation formulations for targeted lung cancer chemotherapy: a review of current practices. Drug Deliv 2021;28:1995-2010. [PMID: 34569401 DOI: 10.1080/10717544.2021.1981492] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
239 Zhang B, Shao CW, Zhou KM, Li Q, Duan YT, Yang YS, Zhu HL. A NIR-triggered multifunctional nanoplatform mediated by Hsp70 siRNA for chemo-hypothermal photothermal synergistic therapy. Biomater Sci 2021;9:6501-9. [PMID: 34582538 DOI: 10.1039/d1bm01006a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
240 Xu L, Liu C, Ye Z, Wu C, Ding Y, Huang J. Overexpressed LINC00467 promotes the viability and proliferation yet inhibits apoptosis of gastric cancer cells via raising ITGB3 level. Tissue Cell 2021;73:101644. [PMID: 34555778 DOI: 10.1016/j.tice.2021.101644] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
241 Cheng X, Wei J, Ge Q, Xing D, Zhou X, Qian Y, Jiang G. The optimized drug delivery systems of treating cancer bone metastatic osteolysis with nanomaterials. Drug Deliv 2021;28:37-53. [PMID: 33336610 DOI: 10.1080/10717544.2020.1856225] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
242 Egea-Benavente D, Ovejero JG, Morales MDP, Barber DF. Understanding MNPs Behaviour in Response to AMF in Biological Milieus and the Effects at the Cellular Level: Implications for a Rational Design That Drives Magnetic Hyperthermia Therapy toward Clinical Implementation. Cancers (Basel) 2021;13:4583. [PMID: 34572810 DOI: 10.3390/cancers13184583] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
243 Cellot G, Franceschi Biagioni A, Ballerini L. Nanomedicine and graphene-based materials: advanced technologies for potential treatments of diseases in the developing nervous system. Pediatr Res 2021. [PMID: 34480086 DOI: 10.1038/s41390-021-01681-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
244 Luengo Morato Y, Ovejero Paredes K, Lozano Chamizo L, Marciello M, Filice M. Recent Advances in Multimodal Molecular Imaging of Cancer Mediated by Hybrid Magnetic Nanoparticles. Polymers (Basel) 2021;13:2989. [PMID: 34503029 DOI: 10.3390/polym13172989] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
245 Sohrabi Kashani A, Packirisamy M. Cancer-Nano-Interaction: From Cellular Uptake to Mechanobiological Responses. Int J Mol Sci 2021;22:9587. [PMID: 34502495 DOI: 10.3390/ijms22179587] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
246 Singh V, Sahebkar A, Kesharwani P. Poly (propylene imine) dendrimer as an emerging polymeric nanocarrier for anticancer drug and gene delivery. European Polymer Journal 2021;158:110683. [DOI: 10.1016/j.eurpolymj.2021.110683] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 29.0] [Reference Citation Analysis]
247 Hashemzadeh A, Drummen GPC, Avan A, Darroudi M, Khazaei M, Khajavian R, Rangrazi A, Mirzaei M. When metal-organic framework mediated smart drug delivery meets gastrointestinal cancers. J Mater Chem B 2021;9:3967-82. [PMID: 33908592 DOI: 10.1039/d1tb00155h] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
248 Xiong Y, Xiao C, Li Z, Yang X. Engineering nanomedicine for glutathione depletion-augmented cancer therapy. Chem Soc Rev 2021;50:6013-41. [PMID: 34027953 DOI: 10.1039/d0cs00718h] [Cited by in Crossref: 101] [Cited by in F6Publishing: 116] [Article Influence: 101.0] [Reference Citation Analysis]
249 Gu W, Qu R, Meng F, Cornelissen JJLM, Zhong Z. Polymeric nanomedicines targeting hematological malignancies. J Control Release 2021;337:571-88. [PMID: 34364920 DOI: 10.1016/j.jconrel.2021.08.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
250 Chung SW, Xie Y, Suk JS. Overcoming physical stromal barriers to cancer immunotherapy. Drug Deliv Transl Res 2021. [PMID: 34351575 DOI: 10.1007/s13346-021-01036-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
251 Lisik K, Krokosz A. Application of Carbon Nanoparticles in Oncology and Regenerative Medicine. Int J Mol Sci 2021;22:8341. [PMID: 34361101 DOI: 10.3390/ijms22158341] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
252 El-sheshtawy HS, Hefni HHH, Aboutaleb WA, Elaasser MM, Mady MF, El-shiekh HH. Green Synthesis of Chitosan Bio-Nanocomposites and Investigation of their Antimicrobial and Antitumor Effects. Iran J Sci Technol Trans Sci 2021;45:1247-1261. [DOI: 10.1007/s40995-021-01147-8] [Reference Citation Analysis]
253 Pérez-Herrero E, Fernández-Medarde A. The reversed intra- and extracellular pH in tumors as a unified strategy to chemotherapeutic delivery using targeted nanocarriers. Acta Pharm Sin B 2021;11:2243-64. [PMID: 34522586 DOI: 10.1016/j.apsb.2021.01.012] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 12.0] [Reference Citation Analysis]
254 Peixoto D, Pereira I, Pereira-silva M, Veiga F, Hamblin MR, Lvov Y, Liu M, Paiva-santos AC. Emerging role of nanoclays in cancer research, diagnosis, and therapy. Coordination Chemistry Reviews 2021;440:213956. [DOI: 10.1016/j.ccr.2021.213956] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 18.0] [Reference Citation Analysis]
255 Zhang W, Li B, Zhu Y, Yao X, Tian X, Li S, Tian Y, Li D. A simple therapeutic nanoplatform in the second near-infrared window for synergistic phototherapy. Dyes and Pigments 2021;192:109450. [DOI: 10.1016/j.dyepig.2021.109450] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
256 Alghamdi SS, Suliman RS, Almutairi K, Kahtani K, Aljatli D. Imidazole as a Promising Medicinal Scaffold: Current Status and Future Direction. Drug Des Devel Ther 2021;15:3289-312. [PMID: 34354342 DOI: 10.2147/DDDT.S307113] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 21.0] [Reference Citation Analysis]
257 Tang L, Li J, Zhao Q, Pan T, Zhong H, Wang W. Advanced and Innovative Nano-Systems for Anticancer Targeted Drug Delivery. Pharmaceutics 2021;13:1151. [PMID: 34452113 DOI: 10.3390/pharmaceutics13081151] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 24.0] [Reference Citation Analysis]
258 Demeule M, Charfi C, Currie JC, Larocque A, Zgheib A, Kozelko S, Béliveau R, Marsolais C, Annabi B. TH1902, a new docetaxel-peptide conjugate for the treatment of sortilin-positive triple-negative breast cancer. Cancer Sci 2021. [PMID: 34314556 DOI: 10.1111/cas.15086] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
259 Tang H, Pang P, Qin Z, Zhao Z, Wu Q, Song S, Li F. The CPNE Family and Their Role in Cancers. Front Genet 2021;12:689097. [PMID: 34367247 DOI: 10.3389/fgene.2021.689097] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
260 Hui Y, Tang T, Wang J, Zhao H, Yang HY, Xi J, Zhang B, Fang J, Gao K, Wu Y. Fusaricide is a Novel Iron Chelator that Induces Apoptosis through Activating Caspase-3. J Nat Prod 2021;84:2094-103. [PMID: 34292737 DOI: 10.1021/acs.jnatprod.0c01322] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
261 Rizwanullah M, Perwez A, Mir SR, Alam Rizvi MM, Amin S. Exemestane encapsulated polymer-lipid hybrid nanoparticles for improved efficacy against breast cancer: optimization,in vitrocharacterization and cell culture studies. Nanotechnology 2021;32. [PMID: 34198267 DOI: 10.1088/1361-6528/ac1098] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
262 Lan H, Zhang W, Jin K, Liu Y, Wang Z. Modulating barriers of tumor microenvironment through nanocarrier systems for improved cancer immunotherapy: a review of current status and future perspective. Drug Deliv 2020;27:1248-62. [PMID: 32865029 DOI: 10.1080/10717544.2020.1809559] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
263 Ghosh S, Javia A, Shetty S, Bardoliwala D, Maiti K, Banerjee S, Khopade A, Misra A, Sawant K, Bhowmick S. Triple negative breast cancer and non-small cell lung cancer: Clinical challenges and nano-formulation approaches. J Control Release 2021;337:27-58. [PMID: 34273417 DOI: 10.1016/j.jconrel.2021.07.014] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 12.0] [Reference Citation Analysis]
264 Yuan M, Liang S, Zhou Y, Xiao X, Liu B, Yang C, Ma P, Cheng Z, Lin J. A Robust Oxygen-Carrying Hemoglobin-Based Natural Sonosensitizer for Sonodynamic Cancer Therapy. Nano Lett 2021;21:6042-50. [PMID: 34254814 DOI: 10.1021/acs.nanolett.1c01220] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 24.0] [Reference Citation Analysis]
265 Alves ACS, Bruinsmann FA, Guterres SS, Pohlmann AR. Organic Nanocarriers for Bevacizumab Delivery: An Overview of Development, Characterization and Applications. Molecules 2021;26:4127. [PMID: 34299401 DOI: 10.3390/molecules26144127] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
266 Wang X, Yang B, Li L, Liu T, Zuo S, Chi D, He Z, Sun B, Sun J. Probing the fluorination effect on the self-assembly characteristics, in vivo fate and antitumor efficacy of paclitaxel prodrug nanoassemblies. Theranostics 2021;11:7896-910. [PMID: 34335971 DOI: 10.7150/thno.61337] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
267 Pashkina EA, Grishina LV, Aktanova AA, Kozlov VA. Antitumor activity of supramolecular complexes of cucurbituril with platinum(II) compounds. Inorganica Chimica Acta 2021;522:120370. [DOI: 10.1016/j.ica.2021.120370] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
268 Cao J, Zhang M, Wang B, Zhang L, Fang M, Zhou F. Chemoresistance and Metastasis in Breast Cancer Molecular Mechanisms and Novel Clinical Strategies. Front Oncol 2021;11:658552. [PMID: 34277408 DOI: 10.3389/fonc.2021.658552] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
269 Lou X, Zhang D, Ling H, He Z, Sun J, Sun M, Liu D. Pure redox-sensitive paclitaxel-maleimide prodrug nanoparticles: Endogenous albumin-induced size switching and improved antitumor efficiency. Acta Pharm Sin B 2021;11:2048-58. [PMID: 34386337 DOI: 10.1016/j.apsb.2020.12.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]
270 Zhao X, Ye Y, Ge S, Sun P, Yu P. Cellular and Molecular Targeted Drug Delivery in Central Nervous System Cancers: Advances in Targeting Strategies. Curr Top Med Chem 2020;20:2762-76. [PMID: 32851962 DOI: 10.2174/1568026620666200826122402] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
271 Catala A, Dzieciatkowska M, Wang G, Gutierrez-Hartmann A, Simberg D, Hansen KC, D'Alessandro A, Catalano CE. Targeted Intracellular Delivery of Trastuzumab Using Designer Phage Lambda Nanoparticles Alters Cellular Programs in Human Breast Cancer Cells. ACS Nano 2021. [PMID: 34189924 DOI: 10.1021/acsnano.1c02864] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
272 Chadar R, Afsana, Kesharwani P. Nanotechnology-based siRNA delivery strategies for treatment of triple negative breast cancer. Int J Pharm 2021;605:120835. [PMID: 34197908 DOI: 10.1016/j.ijpharm.2021.120835] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 18.0] [Reference Citation Analysis]
273 Morshedi K, Borran S, Ebrahimi MS, Masoud Khooy MJ, Seyedi ZS, Amiri A, Abbasi-Kolli M, Fallah M, Khan H, Sahebkar A, Mirzaei H. Therapeutic effect of curcumin in gastrointestinal cancers: A comprehensive review. Phytother Res 2021. [PMID: 34173992 DOI: 10.1002/ptr.7119] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
274 Kandekar U, Pujari R. Nanocarrier based precise approaches for anticancer agents in treatment of breast cancer. Hacettepe University Journal of the Faculty of Pharmacy 2021. [DOI: 10.52794/hujpharm.891355] [Reference Citation Analysis]
275 Bajpai S, Tiwary SK, Sonker M, Joshi A, Gupta V, Kumar Y, Shreyash N, Biswas S. Recent Advances in Nanoparticle-Based Cancer Treatment: A Review. ACS Appl Nano Mater 2021;4:6441-70. [DOI: 10.1021/acsanm.1c00779] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 17.0] [Reference Citation Analysis]
276 Prieto-Montero R, Prieto-Castañeda A, Katsumiti A, Cajaraville MP, Agarrabeitia AR, Ortiz MJ, Martínez-Martínez V. Functionalization of Photosensitized Silica Nanoparticles for Advanced Photodynamic Therapy of Cancer. Int J Mol Sci 2021;22:6618. [PMID: 34205599 DOI: 10.3390/ijms22126618] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
277 Khaiwa N, Maarouf NR, Darwish MH, Alhamad DWM, Sebastian A, Hamad M, Omar HA, Orive G, Al-Tel TH. Camptothecin's journey from discovery to WHO Essential Medicine: Fifty years of promise. Eur J Med Chem 2021;223:113639. [PMID: 34175539 DOI: 10.1016/j.ejmech.2021.113639] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 17.0] [Reference Citation Analysis]
278 Han B, He XH, Liu YQ, He G, Peng C, Li JL. Asymmetric organocatalysis: an enabling technology for medicinal chemistry. Chem Soc Rev 2021;50:1522-86. [PMID: 33496291 DOI: 10.1039/d0cs00196a] [Cited by in Crossref: 81] [Cited by in F6Publishing: 90] [Article Influence: 81.0] [Reference Citation Analysis]
279 Sun C, Wang Z, Yang K, Yue L, Cheng Q, Ma YL, Lu S, Chen G, Wang R. Polyamine-Responsive Morphological Transformation of a Supramolecular Peptide for Specific Drug Accumulation and Retention in Cancer Cells. Small 2021;:e2101139. [PMID: 34114343 DOI: 10.1002/smll.202101139] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 13.0] [Reference Citation Analysis]
280 Luo J, Fan M, Xiong L, Hao Q, Jiang M, He Q, Su C. 1T-Phase Dirac Semimetal PdTe2 Nanoparticles for Efficient Photothermal Therapy in the NIR-II Biowindow. ACS Appl Mater Interfaces 2021;13:27963-71. [PMID: 34110773 DOI: 10.1021/acsami.1c06740] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
281 Wang F, Li Y, Jiang H, Li C, Li Z, Qi C, Li Z, Gao Z, Zhang B, Wu J. Dual-Ligand-Modified Liposomes Co-Loaded with Anti-Angiogenic and Chemotherapeutic Drugs for Inhibiting Tumor Angiogenesis and Metastasis. Int J Nanomedicine 2021;16:4001-16. [PMID: 34135585 DOI: 10.2147/IJN.S309804] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
282 Magalhães JA, Arruda DC, Baptista MS, Tada DB. Co-Encapsulation of Methylene Blue and PARP-Inhibitor into Poly(Lactic-Co-Glycolic Acid) Nanoparticles for Enhanced PDT of Cancer. Nanomaterials (Basel) 2021;11:1514. [PMID: 34201069 DOI: 10.3390/nano11061514] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
283 Grosso R, de-Paz MV. Thiolated-Polymer-Based Nanoparticles as an Avant-Garde Approach for Anticancer Therapies-Reviewing Thiomers from Chitosan and Hyaluronic Acid. Pharmaceutics 2021;13:854. [PMID: 34201403 DOI: 10.3390/pharmaceutics13060854] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
284 Yang J, Jia C, Yang J. Designing Nanoparticle-based Drug Delivery Systems for Precision Medicine. Int J Med Sci 2021;18:2943-9. [PMID: 34220321 DOI: 10.7150/ijms.60874] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
285 Cheng Z, Li M, Dey R, Chen Y. Nanomaterials for cancer therapy: current progress and perspectives. J Hematol Oncol 2021;14:85. [PMID: 34059100 DOI: 10.1186/s13045-021-01096-0] [Cited by in Crossref: 88] [Cited by in F6Publishing: 103] [Article Influence: 88.0] [Reference Citation Analysis]
286 Rayhan MA, Hossen MS, Niloy MS, Bhuiyan MH, Paul S, Shakil MS. Biopolymer and Biomaterial Conjugated Iron Oxide Nanomaterials as Prostate Cancer Theranostic Agents: A Comprehensive Review. Symmetry 2021;13:974. [DOI: 10.3390/sym13060974] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
287 He Z, Tian S, Gao Y, Meng F, Luo L. Luminescent AIE Dots for Anticancer Photodynamic Therapy. Front Chem 2021;9:672917. [PMID: 34113602 DOI: 10.3389/fchem.2021.672917] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
288 Teli G, Chawla PA. Hybridization of Imidazole with Various Heterocycles in Targeting Cancer: A Decade's Work. ChemistrySelect 2021;6:4803-36. [DOI: 10.1002/slct.202101038] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
289 Morani D, Patil P, Jain A. Recapitulation of Cancer Nanotherapeutics. CNANOM 2021;11:3-15. [DOI: 10.2174/2468187311666210121143501] [Reference Citation Analysis]
290 Li Z, Fu X, Huang J, Zeng P, Huang Y, Chen X, Liang C. Advances in Screening and Development of Therapeutic Aptamers Against Cancer Cells. Front Cell Dev Biol 2021;9:662791. [PMID: 34095130 DOI: 10.3389/fcell.2021.662791] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
291 Chen Q, Li X, Xie Y, Hu W, Cheng Z, Zhong H, Zhu H. Azo modified hyaluronic acid based nanocapsules: CD44 targeted, UV-responsive decomposition and drug release in liver cancer cells. Carbohydr Polym 2021;267:118152. [PMID: 34119127 DOI: 10.1016/j.carbpol.2021.118152] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
292 Faraji N, Esrafili A, Esfandiari B, Abednezhad A, Naghizadeh M, Arasteh J. Synthesis of pH-sensitive hyaluronic acid nanogels loaded with paclitaxel and interferon gamma: Characterization and effect on the A549 lung carcinoma cell line. Colloids Surf B Biointerfaces 2021;205:111845. [PMID: 34015733 DOI: 10.1016/j.colsurfb.2021.111845] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
293 Wiśniewski M, Czarnecka J, Bolibok P, Świdziński M, Roszek K. New Insight into the Fluorescence Quenching of Nitrogen-Containing Carbonaceous Quantum Dots-From Surface Chemistry to Biomedical Applications. Materials (Basel) 2021;14:2454. [PMID: 34065161 DOI: 10.3390/ma14092454] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
294 Yi X, Duan QY, Wu FG. Low-Temperature Photothermal Therapy: Strategies and Applications. Research (Wash D C) 2021;2021:9816594. [PMID: 34041494 DOI: 10.34133/2021/9816594] [Cited by in Crossref: 25] [Cited by in F6Publishing: 30] [Article Influence: 25.0] [Reference Citation Analysis]
295 Tran K, Brice R, Yao L. Bioscaffold-based study of glioblastoma cell behavior and drug delivery for tumor therapy. Neurochem Int 2021;147:105049. [PMID: 33945833 DOI: 10.1016/j.neuint.2021.105049] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
296 Fernández-Medarde A, De Las Rivas J, Santos E. 40 Years of RAS-A Historic Overview. Genes (Basel) 2021;12:681. [PMID: 34062774 DOI: 10.3390/genes12050681] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
297 Liao Z, Song G, Yang Z, Ren H. Adsorption and desorption behaviors of hydroxyurea drug on delivery systems of B 12 N 12 fullerene and its Al-, Si- and P-dopings from theoretical perspective. Molecular Physics 2021;119:e1921296. [DOI: 10.1080/00268976.2021.1921296] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
298 Zheng S, Jin S, Jiao M, Wang W, Zhou X, Xu J, Wang Y, Dou P, Jin Z, Wu C, Li J, Ge X, Xu K. Tumor-targeted Gd-doped mesoporous Fe3O4 nanoparticles for T1/T2 MR imaging guided synergistic cancer therapy. Drug Deliv 2021;28:787-99. [PMID: 33866915 DOI: 10.1080/10717544.2021.1909177] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
299 Li N, Duan Z, Wang L, Guo C, Zhang H, Gu Z, Gong Q, Luo K. An Amphiphilic PEGylated Peptide Dendron-Gemcitabine Prodrug-Based Nanoagent for Cancer Therapy. Macromol Rapid Commun 2021;42:e2100111. [PMID: 33871122 DOI: 10.1002/marc.202100111] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
300 Bagherifar R, Kiaie SH, Hatami Z, Ahmadi A, Sadeghnejad A, Baradaran B, Jafari R, Javadzadeh Y. Nanoparticle-mediated synergistic chemoimmunotherapy for tailoring cancer therapy: recent advances and perspectives. J Nanobiotechnology 2021;19:110. [PMID: 33865432 DOI: 10.1186/s12951-021-00861-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
301 Huang M, Li T, Wang Q, Li C, Zhou H, Deng S, Lv Z, He Y, Hou B, Zhu G. Silencing circPVT1 enhances radiosensitivity in non-small cell lung cancer by sponging microRNA-1208. Cancer Biomark 2021;31:263-79. [PMID: 33896835 DOI: 10.3233/CBM-203252] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
302 Grudén S, Brunmark C, Holmqvist B, Brenndörfer ED, Johansson M, Liu J, Zhao Y, Axén N, Hassan M. Biodistribution of fluorescence-labelled EGF protein from slow release NanoZolid depots in mouse. Int J Pharm 2021;601:120588. [PMID: 33845148 DOI: 10.1016/j.ijpharm.2021.120588] [Reference Citation Analysis]
303 Neha Desai, Momin M, Khan T, Gharat S, Ningthoujam RS, Omri A. Metallic nanoparticles as drug delivery system for the treatment of cancer. Expert Opin Drug Deliv 2021;18:1261-90. [PMID: 33793359 DOI: 10.1080/17425247.2021.1912008] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 19.0] [Reference Citation Analysis]
304 Mansur AAP, Mansur HS, Leonel AG, Carvalho IC, Lage MCG, Carvalho SM, Krambrock K, Lobato ZIP. Supramolecular magnetonanohybrids for multimodal targeted therapy of triple-negative breast cancer cells. J Mater Chem B 2020;8:7166-88. [PMID: 32614035 DOI: 10.1039/d0tb01175d] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 15.0] [Reference Citation Analysis]
305 Sivák L, Šubr V, Kovářová J, Dvořáková B, Šírová M, Říhová B, Randárová E, Kraus M, Tomala J, Studenovský M, Vondráčková M, Sedláček R, Makovický P, Fučíková J, Vošáhlíková Š, Špíšek R, Kostka L, Etrych T, Kovář M. Polymer-ritonavir derivate nanomedicine with pH-sensitive activation possesses potent anti-tumor activity in vivo via inhibition of proteasome and STAT3 signaling. J Control Release 2021;332:563-80. [PMID: 33722611 DOI: 10.1016/j.jconrel.2021.03.015] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
306 Bansal K, Devi N, Aqdas M, Sharma RK, Agrewala JN, Katare O, Nishimawangoo. Protein transduction domain functionalized gold nanoparticles for effective delivery of potent cytotoxic agent in cancer cells. Journal of Molecular Liquids 2021;328:115385. [DOI: 10.1016/j.molliq.2021.115385] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
307 Yang S, Wallach M, Krishna A, Kurmasheva R, Sridhar S. Recent Developments in Nanomedicine for Pediatric Cancer. J Clin Med 2021;10:1437. [PMID: 33916177 DOI: 10.3390/jcm10071437] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
308 Liu H, Yuan M, Liu Y, Guo Y, Xiao H, Guo L, Liu F. Self-Monitoring and Self-Delivery of Self-Assembled Fluorescent Nanoparticles in Cancer Therapy. Int J Nanomedicine 2021;16:2487-99. [PMID: 33824587 DOI: 10.2147/IJN.S294279] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
309 Arshad R, Barani M, Rahdar A, Sargazi S, Cucchiarini M, Pandey S, Kang M. Multi-Functionalized Nanomaterials and Nanoparticles for Diagnosis and Treatment of Retinoblastoma. Biosensors (Basel) 2021;11:97. [PMID: 33810621 DOI: 10.3390/bios11040097] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 34.0] [Reference Citation Analysis]
310 Sun S, Ding Z, Yang X, Zhao X, Zhao M, Gao L, Chen Q, Xie S, Liu A, Yin S, Xu Z, Lu X. Nanobody: A Small Antibody with Big Implications for Tumor Therapeutic Strategy. Int J Nanomedicine 2021;16:2337-56. [PMID: 33790553 DOI: 10.2147/IJN.S297631] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
311 Zheng Y, Kng J, Yang C, Hedrick JL, Yang YY. Cationic polymer synergizing with chemotherapeutics and re-purposing antibiotics against cancer cells. Biomater Sci 2021;9:2174-82. [PMID: 33502409 DOI: 10.1039/d0bm02155e] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
312 Han HS, Choi KY. Advances in Nanomaterial-Mediated Photothermal Cancer Therapies: Toward Clinical Applications. Biomedicines 2021;9:305. [PMID: 33809691 DOI: 10.3390/biomedicines9030305] [Cited by in Crossref: 52] [Cited by in F6Publishing: 58] [Article Influence: 52.0] [Reference Citation Analysis]
313 Weng XL, Liu JY. Strategies for maximizing photothermal conversion efficiency based on organic dyes. Drug Discov Today 2021;26:2045-52. [PMID: 33741495 DOI: 10.1016/j.drudis.2021.03.009] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
314 de Oliveira SA, Borges R, Dos Santos Rosa D, de Souza ACS, Seabra AB, Baino F, Marchi J. Strategies for Cancer Treatment Based on Photonic Nanomedicine. Materials (Basel) 2021;14:1435. [PMID: 33809479 DOI: 10.3390/ma14061435] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
315 Chen Q, Sun S, Lin H, Li Z, Wu A, Liu X, Wu FG, Zhang W. Supra-Carbon Dots Formed by Fe3+-Driven Assembly for Enhanced Tumor-Specific Photo-Mediated and Chemodynamic Synergistic Therapy. ACS Appl Bio Mater 2021;4:2759-68. [PMID: 35014315 DOI: 10.1021/acsabm.0c01663] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
316 Dong W, Zhao L, Zhang S, Zhang S, Si H. Circ-KIAA0907 inhibits the progression of oral squamous cell carcinoma by regulating the miR-96-5p/UNC13C axis. World J Surg Oncol 2021;19:75. [PMID: 33715625 DOI: 10.1186/s12957-021-02184-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
317 Ahmad E, Ali A, Fatima MT, Nimisha, Apurva, Kumar A, Sumi MP, Sattar RSA, Mahajan B, Saluja SS. Ligand decorated biodegradable nanomedicine in the treatment of cancer. Pharmacol Res 2021;167:105544. [PMID: 33722711 DOI: 10.1016/j.phrs.2021.105544] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
318 Karade VC, Sharma A, Dhavale RP, Dhavale RP, Shingte SR, Patil PS, Kim JH, Zahn DRT, Chougale AD, Salvan G, Patil PB. APTES monolayer coverage on self-assembled magnetic nanospheres for controlled release of anticancer drug Nintedanib. Sci Rep 2021;11:5674. [PMID: 33707549 DOI: 10.1038/s41598-021-84770-0] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 19.0] [Reference Citation Analysis]
319 Nami S, Aghebati-Maleki A, Aghebati-Maleki L. Current applications and prospects of nanoparticles for antifungal drug delivery. EXCLI J 2021;20:562-84. [PMID: 33883983 DOI: 10.17179/excli2020-3068] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
320 Refat MS, Altalhi T, Hassan RF. Synthesis, spectroscopic, structural and morphological characterizations of magnesium(II), calcium(II), strontium(II) and barium(II) folate complexes. Journal of Molecular Structure 2021;1227:129519. [DOI: 10.1016/j.molstruc.2020.129519] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
321 He Y, Yi C, Zhang X, Zhao W, Yu D. Magnetic graphene oxide: Synthesis approaches, physicochemical characteristics, and biomedical applications. TrAC Trends in Analytical Chemistry 2021;136:116191. [DOI: 10.1016/j.trac.2021.116191] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 15.0] [Reference Citation Analysis]
322 Lv Z, He S, Wang Y, Zhu X. Noble Metal Nanomaterials for NIR-Triggered Photothermal Therapy in Cancer. Adv Healthc Mater 2021;10:e2001806. [PMID: 33470542 DOI: 10.1002/adhm.202001806] [Cited by in Crossref: 66] [Cited by in F6Publishing: 70] [Article Influence: 66.0] [Reference Citation Analysis]
323 de Araújo JTC, Duarte JL, Di Filippo LD, Araújo VHS, Carvalho GC, Chorilli M. Nanosystem functionalization strategies for prostate cancer treatment: a review. J Drug Target 2021;29:808-21. [PMID: 33645369 DOI: 10.1080/1061186X.2021.1892121] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
324 Notabi MK, Arnspang EC, Andersen MØ. Antibody conjugated lipid nanoparticles as a targeted drug delivery system for hydrophobic pharmaceuticals. Eur J Pharm Sci 2021;161:105777. [PMID: 33647401 DOI: 10.1016/j.ejps.2021.105777] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
325 Ahmadi F, Engel M, Baradarani MM. Synthesis, biological evaluation and molecular docking studies of indeno [1, 2-c] pyrazol derivatives as inhibitors of mitochondrial malate dehydrogenase 2 (MDH2). Bioorg Chem 2021;110:104779. [PMID: 33689977 DOI: 10.1016/j.bioorg.2021.104779] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
326 Liu D, Huang H, Zhao B, Guo W. Natural Melanin-Based Nanoparticles With Combined Chemo/Photothermal/Photodynamic Effect Induce Immunogenic Cell Death (ICD) on Tumor. Front Bioeng Biotechnol 2021;9:635858. [PMID: 33681171 DOI: 10.3389/fbioe.2021.635858] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
327 Qi L, Pan T, Ou L, Ye Z, Yu C, Bao B, Wu Z, Cao D, Dai L. Biocompatible nucleus-targeted graphene quantum dots for selective killing of cancer cells via DNA damage. Commun Biol 2021;4:214. [PMID: 33594275 DOI: 10.1038/s42003-021-01713-1] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 17.0] [Reference Citation Analysis]
328 Cetin EO, Salmanoglu DS, Ozden I, Ors-Kumoglu G, Akar S, Demirozer M, Karabey F, Kilic KD, Kirilmaz L, Uyanikgil Y, Sevimli-Gur C. Preparation of Ethanol Extract of Propolis Loaded Niosome Formulation and Evaluation of Effects on Different Cancer Cell Lines. Nutr Cancer 2021;:1-13. [PMID: 33590797 DOI: 10.1080/01635581.2021.1876889] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
329 Angeline N, Choo S, Kim C, Bhang SH, Kim T. Precise Electrical Detection of Curcumin Cytotoxicity in Human Liver Cancer Cells. BioChip J 2021;15:52-60. [DOI: 10.1007/s13206-021-00002-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
330 Zhao Y, Sun Y, Yang J, Zhu Z, Jia X. WITHDRAWN: Circ_0000517 contributes to hepatocellular carcinoma progression by upregulating ARID4B via sponging miR-328-3p. Cell Signal 2021;:109950. [PMID: 33582185 DOI: 10.1016/j.cellsig.2021.109950] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
331 Gagliardi A, Giuliano E, Venkateswararao E, Fresta M, Bulotta S, Awasthi V, Cosco D. Biodegradable Polymeric Nanoparticles for Drug Delivery to Solid Tumors. Front Pharmacol 2021;12:601626. [PMID: 33613290 DOI: 10.3389/fphar.2021.601626] [Cited by in Crossref: 81] [Cited by in F6Publishing: 87] [Article Influence: 81.0] [Reference Citation Analysis]
332 Singh A, Hua Hsu M, Gupta N, Khanra P, Kumar P, Prakash Verma V, Kapoor M. Derivatized Carbon Nanotubes for Gene Therapy in Mammalian and Plant Cells. Chempluschem 2020;85:466-75. [PMID: 32159284 DOI: 10.1002/cplu.201900678] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
333 Thambiraj S, Vijayalakshmi R, Ravi Shankaran D. An effective strategy for development of docetaxel encapsulated gold nanoformulations for treatment of prostate cancer. Sci Rep 2021;11:2808. [PMID: 33531521 DOI: 10.1038/s41598-020-80529-1] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 16.0] [Reference Citation Analysis]
334 Aramini B, Masciale V, Grisendi G, Banchelli F, D'Amico R, Maiorana A, Morandi U, Dominici M, Haider KH. Cancer stem cells and macrophages: molecular connections and future perspectives against cancer. Oncotarget 2021;12:230-50. [PMID: 33613850 DOI: 10.18632/oncotarget.27870] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
335 Seif MN, Beck MJ. Surface excess free energies and equilibrium Wulff shapes in variable chemical environments at finite temperatures. Applied Surface Science 2021;540:148383. [DOI: 10.1016/j.apsusc.2020.148383] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
336 Uma Maheswari P, Muthappa R, Bindhya KP, Meera Sheriffa Begum K. Evaluation of folic acid functionalized BSA-CaFe2O4 nanohybrid carrier for the controlled delivery of natural cytotoxic drugs hesperidin and eugenol. Journal of Drug Delivery Science and Technology 2021;61:102105. [DOI: 10.1016/j.jddst.2020.102105] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
337 Kazemi M, Jafarzadeh A, Nemati M, Taghipour F, Oladpour O, Rezayati MT, Khorramdelazad H, Hassan ZM. Zingerone improves the immune responses in an animal model of breast cancer. J Complement Integr Med 2021;18:303-10. [PMID: 33544516 DOI: 10.1515/jcim-2019-0135] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
338 Khatoon R, Alam MA, Sharma PK. Current approaches and prospective drug targeting to brain. Journal of Drug Delivery Science and Technology 2021;61:102098. [DOI: 10.1016/j.jddst.2020.102098] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
339 Malta R, Loureiro JB, Costa P, Sousa E, Pinto M, Saraiva L, Amaral MH. Development of lipid nanoparticles containing the xanthone LEM2 for topical treatment of melanoma. Journal of Drug Delivery Science and Technology 2021;61:102226. [DOI: 10.1016/j.jddst.2020.102226] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 9.0] [Reference Citation Analysis]
340 Fonseca M, Prior JAV. Microwave Aqueous Dissolution of Potato Starch for the Synthesis of Starch Capped Silver Nanoparticles. Starch ‐ Stärke 2021;73:2000205. [DOI: 10.1002/star.202000205] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
341 Housein Z, Kareem TS, Salihi A. In vitro anticancer activity of hydrogen sulfide and nitric oxide alongside nickel nanoparticle and novel mutations in their genes in CRC patients. Sci Rep 2021;11:2536. [PMID: 33510426 DOI: 10.1038/s41598-021-82244-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
342 Wu J, Wang Q, Dong X, Xu M, Yang J, Yi X, Chen B, Dong X, Wang Y, Lou X, Xia F, Wang S, Dai J. Biocompatible AIEgen/p-glycoprotein siRNA@reduction-sensitive paclitaxel polymeric prodrug nanoparticles for overcoming chemotherapy resistance in ovarian cancer. Theranostics 2021;11:3710-24. [PMID: 33664857 DOI: 10.7150/thno.53828] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
343 Jahan S, Karim ME, Chowdhury EH. Nanoparticles Targeting Receptors on Breast Cancer for Efficient Delivery of Chemotherapeutics. Biomedicines 2021;9:114. [PMID: 33530291 DOI: 10.3390/biomedicines9020114] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 16.0] [Reference Citation Analysis]
344 Yau A, Lee J, Chen Y. Nanomaterials for Protein Delivery in Anticancer Applications. Pharmaceutics 2021;13:155. [PMID: 33503889 DOI: 10.3390/pharmaceutics13020155] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 12.0] [Reference Citation Analysis]
345 Wang D, Zhou N, Zhang N, Zhi Z, Shao Y, Meng L, Yu D. Facile preparation of pH/redox dual-responsive biodegradable polyphosphazene prodrugs for effective cancer chemotherapy. Colloids Surf B Biointerfaces 2021;200:111573. [PMID: 33476954 DOI: 10.1016/j.colsurfb.2021.111573] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
346 Li S, Liu M, Ma H, Jin Q, Ma Y, Wang C, Ren J, Liu G, Dai Y. Ameliorative effect of recombinant human lactoferrin on the premature ovarian failure in rats after cyclophosphamide treatments. J Ovarian Res 2021;14:17. [PMID: 33478578 DOI: 10.1186/s13048-020-00763-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
347 Li H, Lv J, Guo J, Wang S, Liu S, Ma Y, Liang Z, Wang Y, Qi W, Qiu W. 5-Fluorouracil enhances the chemosensitivity of gastric cancer to TRAIL via inhibition of the MAPK pathway. Biochem Biophys Res Commun 2021;540:108-15. [PMID: 33476960 DOI: 10.1016/j.bbrc.2021.01.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
348 Cheng C, Chen H, Tong L, Li Z, Yang Y, Wu S, Wiseman JS, Han Y. Mathermycin, an anti-cancer molecule that targets cell surface phospholipids. Toxicol Appl Pharmacol 2021;413:115410. [PMID: 33476679 DOI: 10.1016/j.taap.2021.115410] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
349 Piscatelli JA, Ban J, Lucas AT, Zamboni WC. Complex Factors and Challenges that Affect the Pharmacology, Safety and Efficacy of Nanocarrier Drug Delivery Systems. Pharmaceutics 2021;13:114. [PMID: 33477395 DOI: 10.3390/pharmaceutics13010114] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
350 Shi YJ, Zheng HX, Hong ZP, Wang HB, Wang Y, Li MY, Li ZH. Antitumor effects of different Ganoderma lucidum spore powder in cell- and zebrafish-based bioassays. J Integr Med 2021;19:177-84. [PMID: 33495135 DOI: 10.1016/j.joim.2021.01.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
351 Hagaman DE, Damasco JA, Perez JVD, Rojo RD, Melancon MP. Recent Advances in Nanomedicine for the Diagnosis and Treatment of Prostate Cancer Bone Metastasis. Molecules 2021;26:E384. [PMID: 33450939 DOI: 10.3390/molecules26020384] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
352 Abd Elrazik NA, El-Mesery M, El-Karef A, Eissa LA, El Gayar AM. Sesamol Upregulates Death Receptors and Acts as a Chemosensitizer in Solid Ehrlich Carcinoma Model in Mice. Nutr Cancer 2021;:1-15. [PMID: 33439054 DOI: 10.1080/01635581.2020.1871496] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
353 Yang J, Wang Q, Wang C, Yang R, Ahmed M, Kumaran S, Velu P, Li B. Pseudomonas aeruginosa synthesized silver nanoparticles inhibit cell proliferation and induce ROS mediated apoptosis in thyroid cancer cell line (TPC1). Artif Cells Nanomed Biotechnol 2020;48:800-9. [PMID: 32432484 DOI: 10.1080/21691401.2019.1687495] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 13.0] [Reference Citation Analysis]
354 Mostafazadeh M, Samadi N, Kahroba H, Baradaran B, Haiaty S, Nouri M. Potential roles and prognostic significance of exosomes in cancer drug resistance. Cell Biosci 2021;11:1. [PMID: 33407894 DOI: 10.1186/s13578-020-00515-y] [Cited by in Crossref: 28] [Cited by in F6Publishing: 34] [Article Influence: 28.0] [Reference Citation Analysis]
355 Chang WT, Bow YD, Fu PJ, Li CY, Wu CY, Chang YH, Teng YN, Li RN, Lu MC, Liu YC, Chiu CC. A Marine Terpenoid, Heteronemin, Induces Both the Apoptosis and Ferroptosis of Hepatocellular Carcinoma Cells and Involves the ROS and MAPK Pathways. Oxid Med Cell Longev 2021;2021:7689045. [PMID: 33488943 DOI: 10.1155/2021/7689045] [Cited by in Crossref: 29] [Cited by in F6Publishing: 33] [Article Influence: 29.0] [Reference Citation Analysis]
356 Luengo Morato Y, Marciello M, Lozano Chamizo L, Ovejero Paredes K, Filice M. Hybrid magnetic nanoparticles for multimodal molecular imaging of cancer. Magnetic Nanoparticle-Based Hybrid Materials 2021. [DOI: 10.1016/b978-0-12-823688-8.00008-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
357 Lins PMP, Ribovski L, Sampaio I, Santos OA, Zucolotto V, Cancino-bernardi J. Inorganic Nanoparticles for Biomedical Applications. Nanocarriers for Drug Delivery 2021. [DOI: 10.1007/978-3-030-63389-9_3] [Reference Citation Analysis]
358 Huang HY, Chen LQ, Sun W, Du HH, Dong S, Ahmed AMQ, Cao D, Cui JH, Zhang Y, Cao QR. Collagenase IV and clusterin-modified polycaprolactone-polyethylene glycol nanoparticles for penetrating dense tumor tissues. Theranostics 2021;11:906-24. [PMID: 33391512 DOI: 10.7150/thno.47446] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
359 Wang R, Zhao H, Huang J, Wang H, Li J, Lu Y, Di L. Challenges and strategies in progress of drug delivery system for traditional Chinese medicine Salviae Miltiorrhizae Radix et Rhizoma (Danshen). Chinese Herbal Medicines 2021;13:78-89. [DOI: 10.1016/j.chmed.2020.08.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
360 Xia L. Importance of nanostructured surfaces. Bioceramics 2021. [DOI: 10.1016/b978-0-08-102999-2.00002-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
361 Bhatti GK, Pahwa P, Gupta A, Sidhu IS, Navik US, Reddy PH, Bhatti JS. Targeting Mitochondria as a Novel Disease-Modifying Therapeutic Strategy in Cancer. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects 2021. [DOI: 10.1007/978-981-16-1247-3_175-1] [Reference Citation Analysis]
362 Amreddy N, Munshi A, Ramesh R. Multifunctional dendrimers for theranostic applications. Dendrimer-Based Nanotherapeutics 2021. [DOI: 10.1016/b978-0-12-821250-9.00010-x] [Reference Citation Analysis]
363 Karpenko DV. Comparison of the effect of silver nanoparticles and other nanoparticle types on the process of barley malting. Silver Nanomaterials for Agri-Food Applications 2021. [DOI: 10.1016/b978-0-12-823528-7.00016-0] [Reference Citation Analysis]
364 Kifle ZD, Tadele M, Alemu E, Gedamu T, Ayele AG. A recent development of new therapeutic agents and novel drug targets for cancer treatment. SAGE Open Medicine 2021;9:205031212110670. [DOI: 10.1177/20503121211067083] [Reference Citation Analysis]
365 Saini S. Target drug delivery in cancer. Advanced Drug Delivery Systems in the Management of Cancer 2021. [DOI: 10.1016/b978-0-323-85503-7.00009-2] [Reference Citation Analysis]
366 Voltà-Durán E, Serna N, Sánchez-García L, Aviñó A, Sánchez JM, López-Laguna H, Cano-Garrido O, Casanova I, Mangues R, Eritja R, Vázquez E, Villaverde A, Unzueta U. Design and engineering of tumor-targeted, dual-acting cytotoxic nanoparticles. Acta Biomater 2021;119:312-22. [PMID: 33189955 DOI: 10.1016/j.actbio.2020.11.018] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
367 Dahiya S, Dahiya R. Organic nanocarriers for targeted delivery of anticancer agents. Advanced Drug Delivery Systems in the Management of Cancer 2021. [DOI: 10.1016/b978-0-323-85503-7.00010-9] [Reference Citation Analysis]
368 Shah DP. Fundamentals of Nanocarriers and Drug Targeting. Nanocarriers: Drug Delivery System 2021. [DOI: 10.1007/978-981-33-4497-6_1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
369 Bhatti GK, Pahwa P, Gupta A, Navik US, Reddy PH, Bhatti JS. Targeting Mitochondria as a Novel Disease Modifying Therapeutic Strategy in Cancer. Handbook of Oxidative Stress in Cancer: Mechanistic Aspects 2021. [DOI: 10.1007/978-981-15-4501-6_21-1] [Reference Citation Analysis]
370 Rasul A, Hussain G, Zahoor AF, Riaz A, Sarfraz I, Shah MA, Asrar M, Zara R, Bushra G, Adem Ş. Curcuma and Breast Cancer: A Focus on Cell Signaling Pathways. Food Bioactive Ingredients 2021. [DOI: 10.1007/978-3-030-74035-1_9] [Reference Citation Analysis]
371 Mekaru H, Ichiyanagi Y, Tamanoi F. Magnetic Nanoparticles and Alternating Magnetic Field for Cancer Therapy. Cell-Inspired Materials and Engineering 2021. [DOI: 10.1007/978-3-030-55924-3_7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
372 Dispenza C, Giacomazza D, Jonsson M. Micro- to Nanoscale Bio-Hybrid Hydrogels Engineered by Ionizing Radiation. Biomolecules 2020;11:47. [PMID: 33396401 DOI: 10.3390/biom11010047] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
373 Liu H, Laan AC, Plomp J, Parnell SR, Men Y, Dalgliesh RM, Eelkema R, Denkova AG. Ionizing Radiation-Induced Release from Poly(ε-caprolactone- b -ethylene glycol) Micelles. ACS Appl Polym Mater 2021;3:968-75. [DOI: 10.1021/acsapm.0c01258] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
374 Murjan S, Saeedi S, Nabid MR. Dual Redox/pH-Sensitive Micelles Self-Assembled From Star-Like Amphiphilic Copolymers Based On Sucrose For Controlled Doxorubicin Delivery. J Pharm Sci 2021;110:2196-209. [PMID: 33373606 DOI: 10.1016/j.xphs.2020.12.029] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
375 Beagan AM, Alghamdi AA, Lahmadi SS, Halwani MA, Almeataq MS, Alhazaa AN, Alotaibi KM, Alswieleh AM. Folic Acid-Terminated Poly(2-Diethyl Amino Ethyl Methacrylate) Brush-Gated Magnetic Mesoporous Nanoparticles as a Smart Drug Delivery System. Polymers (Basel) 2020;13:E59. [PMID: 33375759 DOI: 10.3390/polym13010059] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 11.0] [Reference Citation Analysis]
376 Hersh J, Broyles D, Capcha JMC, Dikici E, Shehadeh LA, Daunert S, Deo S. Peptide-Modified Biopolymers for Biomedical Applications. ACS Appl Bio Mater 2021;4:229-51. [PMID: 34250454 DOI: 10.1021/acsabm.0c01145] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
377 Heidarpoor Saremi L, Dadashi Noshahr K, Ebrahimi A, Khalegian A, Abdi K, Lagzian M. Multi-stage screening to predict the specific anticancer activity of Ni(II) mixed-ligand complex on gastric cancer cells; biological activity, FTIR spectrum, DNA binding behavior and simulation studies. Spectrochim Acta A Mol Biomol Spectrosc 2021;251:119377. [PMID: 33440284 DOI: 10.1016/j.saa.2020.119377] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
378 Anbazhagan R, Muthusamy G, Krishnamoorthi R, Kumaresan S, Rajendra Prasad N, Lai JY, Yang JM, Tsai HC. PAMAM G4.5 dendrimers for targeted delivery of ferulic acid and paclitaxel to overcome P-glycoprotein-mediated multidrug resistance. Biotechnol Bioeng 2021;118:1213-23. [PMID: 33289076 DOI: 10.1002/bit.27645] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
379 Zhao Z, Li D, Wu Z, Wang Q, Ma Z, Zhang C. Research Progress and Prospect of Nanoplatforms for Treatment of Oral Cancer. Front Pharmacol 2020;11:616101. [PMID: 33391000 DOI: 10.3389/fphar.2020.616101] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
380 Yadollahpour A. Nanotechnology in Targeted Drug Delivery in Medical Theranostics: From Lab to Bed. Curr Top Med Chem 2020;20:2735-6. [PMID: 33292118 DOI: 10.2174/156802662030201110091740] [Reference Citation Analysis]
381 Xu L, Song Q, Ouyang Z, Zhang X, Zhang C. let7f‑5p attenuates inflammatory injury in in vitro pneumonia models by targeting MAPK6. Mol Med Rep 2021;23:95. [PMID: 33300070 DOI: 10.3892/mmr.2020.11734] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
382 Chakravarti AR, Pacelli S, Paul A. Investigation of human adipose stem cell-derived nanoparticles as a biomimetic carrier for intracellular drug delivery. Nanoscale 2020;12:24273-84. [PMID: 33295935 DOI: 10.1039/d0nr06571d] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
383 Jarrell DK, Drake S, Brown MA. Advancing Therapies for Cancer—From Mustard Gas to CAR T. Sci 2020;2:90. [DOI: 10.3390/sci2040090] [Reference Citation Analysis]
384 Huda S, Alam MA, Sharma PK. Smart nanocarriers-based drug delivery for cancer therapy: An innovative and developing strategy. Journal of Drug Delivery Science and Technology 2020;60:102018. [DOI: 10.1016/j.jddst.2020.102018] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 11.5] [Reference Citation Analysis]
385 Ahmad A, Mubarak N, Naseem K, Tabassum H, Rizwan M, Najda A, Kashif M, Bin-jumah M, Hussain A, Shaheen A, Abdel-daim MM, Ali S, Hussain S. Recent advancement and development of chitin and chitosan-based nanocomposite for drug delivery: Critical approach to clinical research. Arabian Journal of Chemistry 2020;13:8935-64. [DOI: 10.1016/j.arabjc.2020.10.019] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 15.0] [Reference Citation Analysis]
386 Ribeiro E, Marques F, Gano L, Correia JD, Santos I, Fernandes C. Docetaxel-loaded block copolymer micelles labeled with 188Re for combined radiochemotherapy. Journal of Drug Delivery Science and Technology 2020;60:101898. [DOI: 10.1016/j.jddst.2020.101898] [Reference Citation Analysis]
387 Vanza JD, Patel RB, Patel MR. Nanocarrier centered therapeutic approaches: Recent developments with insight towards the future in the management of lung cancer. Journal of Drug Delivery Science and Technology 2020;60:102070. [DOI: 10.1016/j.jddst.2020.102070] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
388 Ashfaq A, Clochard MC, Coqueret X, Dispenza C, Driscoll MS, Ulański P, Al-Sheikhly M. Polymerization Reactions and Modifications of Polymers by Ionizing Radiation. Polymers (Basel) 2020;12:E2877. [PMID: 33266261 DOI: 10.3390/polym12122877] [Cited by in Crossref: 79] [Cited by in F6Publishing: 83] [Article Influence: 39.5] [Reference Citation Analysis]
389 Rodríguez-Prieto T, Hernández-Breijo B, Ortega MA, Gómez R, Sánchez-Nieves J, Guijarro LG. Dendritic Nanotheranostic for the Delivery of Infliximab: A Potential Carrier in Rheumatoid Arthritis Therapy. Int J Mol Sci 2020;21:E9101. [PMID: 33266032 DOI: 10.3390/ijms21239101] [Reference Citation Analysis]
390 Gao Y, Zhai H, She X, Si H. Quantitative Structure-activity Relationships; Studying the Toxicity of Metal Nanoparticles. CTMC 2020;20:2506-17. [DOI: 10.2174/1568026620666200722112113] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
391 Sebak AA, Gomaa IEO, ElMeshad AN, Farag MH, Breitinger U, Breitinger HG, AbdelKader MH. Distinct Proteins in Protein Corona of Nanoparticles Represent a Promising Venue for Endogenous Targeting - Part I: In vitro Release and Intracellular Uptake Perspective. Int J Nanomedicine 2020;15:8845-62. [PMID: 33204091 DOI: 10.2147/IJN.S273713] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
392 Ferreira LM, Sari MHM, Cervi VF, Prado VC, Nadal JM, Azambuja JH, da Silveira EF, Nogueira CW, Farago PV, Braganhol E, Cruz L. Design of Pegylated-Nanocapsules to Diphenyl Diselenide Administration: In Vitro Evidence of Hemocompatible and Selective Antiglioma Formulation. AAPS PharmSciTech 2020;21:307. [PMID: 33151442 DOI: 10.1208/s12249-020-01845-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
393 Florczak A, Grzechowiak I, Deptuch T, Kucharczyk K, Kaminska A, Dams-Kozlowska H. Silk Particles as Carriers of Therapeutic Molecules for Cancer Treatment. Materials (Basel) 2020;13:E4946. [PMID: 33158060 DOI: 10.3390/ma13214946] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
394 Kaur M, Loveleen, Kumar R. Inhibition of histone deacetylases, topoisomerases and epidermal growth factor receptor by metal-based anticancer agents: Design & synthetic strategies and their medicinal attributes. Bioorg Chem 2020;105:104396. [PMID: 33130345 DOI: 10.1016/j.bioorg.2020.104396] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
395 Liang S, Deng X, Ma P, Cheng Z, Lin J. Recent Advances in Nanomaterial-Assisted Combinational Sonodynamic Cancer Therapy. Adv Mater 2020;32:e2003214. [PMID: 33064322 DOI: 10.1002/adma.202003214] [Cited by in Crossref: 132] [Cited by in F6Publishing: 137] [Article Influence: 66.0] [Reference Citation Analysis]
396 Musa N, Wong TW. Design of polysaccharidic nano-in-micro soft agglomerates as primary oral drug delivery vehicle for colon-specific targeting. Carbohydrate Polymers 2020;247:116673. [DOI: 10.1016/j.carbpol.2020.116673] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
397 Zhang Y, Ma Y, Zhao C, Zhang H, Pu Y, Yin L. Synergistic Carcinogenesis of HPV18 and MNNG in Het-1A Cells through p62-KEAP1-NRF2 and PI3K/AKT/mTOR Pathway. Oxid Med Cell Longev 2020;2020:6352876. [PMID: 33123313 DOI: 10.1155/2020/6352876] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
398 Abdullah Alagöz M, Özdemir Z, Hepokur C, Bostancı HE, Önkol T. Synthesis, molecular modeling and evaluation of anticancer activities of some 1-substituted-4-phenyl piperazine derivatives. Maced Pharm Bull 2020;66:53-54. [DOI: 10.33320/maced.pharm.bull.2020.66.03.026] [Reference Citation Analysis]
399 Sadat SMA, Vakili MR, Paiva IM, Weinfeld M, Lavasanifar A. Development of Self-Associating SN-38-Conjugated Poly(ethylene oxide)-Poly(ester) Micelles for Colorectal Cancer Therapy. Pharmaceutics 2020;12:E1033. [PMID: 33138058 DOI: 10.3390/pharmaceutics12111033] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
400 Singh A, Neupane YR, Mangla B, Shafi S, Kohli K. PEGylated Nanoliposomes Potentiated Oral Combination Therapy for Effective Cancer Treatment. CDD 2020;17:728-35. [DOI: 10.2174/1567201817666200724170708] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
401 Weidong L, Sanna L, Bordoni V, Tiansheng Z, Chengxun L, Murineddu G, Pinna GA, Kelvin DJ, Bagella L. Target identification of a novel unsymmetrical 1,3,4-oxadiazole derivative with antiproliferative properties. J Cell Physiol 2021;236:3789-99. [PMID: 33089499 DOI: 10.1002/jcp.30120] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
402 Wathoni N, Nguyen AN, Rusdin A, Umar AK, Mohammed AFA, Motoyama K, Joni IM, Muchtaridi M. Enteric-Coated Strategies in Colorectal Cancer Nanoparticle Drug Delivery System. Drug Des Devel Ther 2020;14:4387-405. [PMID: 33116423 DOI: 10.2147/DDDT.S273612] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
403 Zuo S, Sun B, Yang Y, Zhou S, Zhang Y, Guo M, Sun M, Luo C, He Z, Sun J. Probing the Superiority of Diselenium Bond on Docetaxel Dimeric Prodrug Nanoassemblies: Small Roles Taking Big Responsibilities. Small 2020;16:e2005039. [PMID: 33078579 DOI: 10.1002/smll.202005039] [Cited by in Crossref: 35] [Cited by in F6Publishing: 39] [Article Influence: 17.5] [Reference Citation Analysis]
404 Sohrabi N, Alihosseini A, Pirouzfar V, Pedram MZ. Analysis of Dynamics Targeting CNT-Based Drug Delivery through Lung Cancer Cells: Design, Simulation, and Computational Approach. Membranes (Basel) 2020;10:E283. [PMID: 33066362 DOI: 10.3390/membranes10100283] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
405 Yang B, Dong Y, Wang F, Zhang Y. Nanoformulations to Enhance the Bioavailability and Physiological Functions of Polyphenols. Molecules 2020;25:4613. [DOI: 10.3390/molecules25204613] [Cited by in Crossref: 40] [Cited by in F6Publishing: 45] [Article Influence: 20.0] [Reference Citation Analysis]
406 Lan MY, Hsu YB, Lan MC, Chen JP, Lu YJ. Polyethylene Glycol-Coated Graphene Oxide Loaded with Erlotinib as an Effective Therapeutic Agent for Treating Nasopharyngeal Cancer Cells. Int J Nanomedicine 2020;15:7569-82. [PMID: 33116488 DOI: 10.2147/IJN.S265437] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
407 Al-warhi T, Sabt A, Elkaeed EB, Eldehna WM. Recent advancements of coumarin-based anticancer agents: An up-to-date review. Bioorganic Chemistry 2020;103:104163. [DOI: 10.1016/j.bioorg.2020.104163] [Cited by in Crossref: 59] [Cited by in F6Publishing: 50] [Article Influence: 29.5] [Reference Citation Analysis]
408 Gajbhiye KR, Chaudhari BP, Pokharkar VB, Pawar A, Gajbhiye V. Stimuli-responsive biodegradable polyurethane nano-constructs as a potential triggered drug delivery vehicle for cancer therapy. International Journal of Pharmaceutics 2020;588:119781. [DOI: 10.1016/j.ijpharm.2020.119781] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
409 Hattab D, Bakhtiar A. Bioengineered siRNA-Based Nanoplatforms Targeting Molecular Signaling Pathways for the Treatment of Triple Negative Breast Cancer: Preclinical and Clinical Advancements. Pharmaceutics 2020;12:E929. [PMID: 33003468 DOI: 10.3390/pharmaceutics12100929] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
410 Prieto-Montero R, Katsumiti A, Cajaraville MP, López-Arbeloa I, Martínez-Martínez V. Functionalized Fluorescent Silica Nanoparticles for Bioimaging of Cancer Cells. Sensors (Basel) 2020;20:E5590. [PMID: 33003513 DOI: 10.3390/s20195590] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
411 Wei QY, Xu YM, Lau ATY. Recent Progress of Nanocarrier-Based Therapy for Solid Malignancies. Cancers (Basel). 2020;12. [PMID: 32998391 DOI: 10.3390/cancers12102783] [Cited by in Crossref: 39] [Cited by in F6Publishing: 38] [Article Influence: 19.5] [Reference Citation Analysis]
412 Li J, Tan T, Zhao L, Liu M, You Y, Zeng Y, Chen D, Xie T, Zhang L, Fu C, Zeng Z. Recent Advancements in Liposome-Targeting Strategies for the Treatment of Gliomas: A Systematic Review. ACS Appl Bio Mater 2020;3:5500-28. [PMID: 35021787 DOI: 10.1021/acsabm.0c00705] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
413 Bleker de Oliveira M, Koshkin V, Liu G, Krylov SN. Analytical Challenges in Development of Chemoresistance Predictors for Precision Oncology. Anal Chem 2020;92:12101-10. [PMID: 32790291 DOI: 10.1021/acs.analchem.0c02644] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
414 Zhang L, Zhang Y, Zhao G, Yang H, Wang X, Yu R, Liu H, Li S. Preparation of Poly(MTZ) n -(DMAEMA) m Micelles and Study on Their Antibacterial Property. ACS Omega 2020;5:23053-61. [PMID: 32954155 DOI: 10.1021/acsomega.0c02774] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
415 Shi K, Wang Y, Zhou X, Gui H, Xu N, Wu S, He C, Zhao Z. Tumor microenvironment targeting with dual stimuli-responsive nanoparticles based on small heat shock proteins for antitumor drug delivery. Acta Biomater 2020;114:369-83. [PMID: 32688090 DOI: 10.1016/j.actbio.2020.07.031] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
416 Liu X, Zhou Y, Xie W, Liu S, Zhao Q, Huang W. Construction of Smart Manganese Dioxide‐Based All‐in‐One Nanoplatform for Cancer Diagnosis and Therapy. Small Methods 2020;4:2000566. [DOI: 10.1002/smtd.202000566] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 13.5] [Reference Citation Analysis]
417 Raeisi E, Aazami MH, Aghamiri SMR, Satari A, Hosseinzadeh S, Lemoigne Y, Heidarian E. Bromelain-based chemo-herbal combination effect on human cancer cells: in-vitro study on AGS and MCF7 proliferation and apoptosis. Current Issues in Pharmacy and Medical Sciences 2020;33:155-61. [DOI: 10.2478/cipms-2020-0028] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
418 Salama L, Pastor ER, Stone T, Mousa SA. Emerging Nanopharmaceuticals and Nanonutraceuticals in Cancer Management. Biomedicines 2020;8:E347. [PMID: 32932737 DOI: 10.3390/biomedicines8090347] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 9.0] [Reference Citation Analysis]
419 Jarrell DK, Drake S, Brown MA. Advancing Therapies for Cancer—From Mustard Gas to CAR T. Sci 2020;2:70. [DOI: 10.3390/sci2030070] [Reference Citation Analysis]
420 Moreno-Lanceta A, Medrano-Bosch M, Melgar-Lesmes P. Single-Walled Carbon Nanohorns as Promising Nanotube-Derived Delivery Systems to Treat Cancer. Pharmaceutics 2020;12:E850. [PMID: 32906852 DOI: 10.3390/pharmaceutics12090850] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
421 Yuan P, Yang T, Liu T, Yu X, Bai Y, Zhang Y, Chen X. Nanocomposite hydrogel with NIR/magnet/enzyme multiple responsiveness to accurately manipulate local drugs for on-demand tumor therapy. Biomaterials 2020;262:120357. [PMID: 32911253 DOI: 10.1016/j.biomaterials.2020.120357] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 10.5] [Reference Citation Analysis]
422 Mirrahimi M, Beik J, Mirrahimi M, Alamzadeh Z, Teymouri S, Mahabadi VP, Eslahi N, Ebrahimi Tazehmahalleh F, Ghaznavi H, Shakeri-zadeh A, Moustakis C. Triple combination of heat, drug and radiation using alginate hydrogel co-loaded with gold nanoparticles and cisplatin for locally synergistic cancer therapy. International Journal of Biological Macromolecules 2020;158:617-26. [DOI: 10.1016/j.ijbiomac.2020.04.272] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 17.0] [Reference Citation Analysis]
423 Sohrabi N, Pedram MZ, Ghafar-zadeh E, Magierowski S. Dynamics Targeting Through Cell Membrane: MD Simulation Approach in CNT-Based Drug Delivery Application. 2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE) 2020. [DOI: 10.1109/ccece47787.2020.9255749] [Reference Citation Analysis]
424 Yang H, Tong Z, Sun S, Mao Z. Enhancement of tumour penetration by nanomedicines through strategies based on transport processes and barriers. J Control Release 2020;328:28-44. [PMID: 32858072 DOI: 10.1016/j.jconrel.2020.08.024] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
425 Sun X, Ni N, Ma Y, Wang Y, Leong DT. Retooling Cancer Nanotherapeutics’ Entry into Tumors to Alleviate Tumoral Hypoxia. Small 2020;16:2003000. [DOI: 10.1002/smll.202003000] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 11.0] [Reference Citation Analysis]
426 Augustus E, Granderson I, Rocke KD. The Impact of a Ketogenic Dietary Intervention on the Quality of Life of Stage II and III Cancer Patients: A Randomized Controlled Trial in the Caribbean. Nutr Cancer 2021;73:1590-600. [PMID: 32791011 DOI: 10.1080/01635581.2020.1803930] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
427 Dalpiaz A, Paganetto G, Botti G, Pavan B. Cancer stem cells and nanomedicine: new opportunities to combat multidrug resistance? Drug Discov Today 2020;25:1651-67. [PMID: 32763499 DOI: 10.1016/j.drudis.2020.07.023] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
428 Shalaby TI, El-refaie WM, Shams El-din RS, Hassanein SA. Smart Ultrasound-Triggered Doxorubicin-Loaded Nanoliposomes With Improved Therapeutic Response: A Comparative Study. Journal of Pharmaceutical Sciences 2020;109:2567-76. [DOI: 10.1016/j.xphs.2020.05.008] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
429 Izraylit V, Hommes-schattmann PJ, Neffe AT, Gould OE, Lendlein A. Polyester urethane functionalizable through maleimide side-chains and cross-linkable by polylactide stereocomplexes. European Polymer Journal 2020;137:109916. [DOI: 10.1016/j.eurpolymj.2020.109916] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
430 Cheng X, He L, Xu J, Fang Q, Yang L, Xue Y, Wang X, Tang R. Oxygen-producing catalase-based prodrug nanoparticles overcoming resistance in hypoxia-mediated chemo-photodynamic therapy. Acta Biomater 2020;112:234-49. [PMID: 32502633 DOI: 10.1016/j.actbio.2020.05.035] [Cited by in Crossref: 42] [Cited by in F6Publishing: 43] [Article Influence: 21.0] [Reference Citation Analysis]
431 Wan Z, Xie F, Wang L, Zhang G, Zhang H. Preparation and Evaluation of Cabazitaxel-Loaded Bovine Serum Albumin Nanoparticles for Prostate Cancer. Int J Nanomedicine 2020;15:5333-44. [PMID: 32801692 DOI: 10.2147/IJN.S258856] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
432 Reuvers TGA, Kanaar R, Nonnekens J. DNA Damage-Inducing Anticancer Therapies: From Global to Precision Damage. Cancers (Basel) 2020;12:E2098. [PMID: 32731592 DOI: 10.3390/cancers12082098] [Cited by in Crossref: 22] [Cited by in F6Publishing: 26] [Article Influence: 11.0] [Reference Citation Analysis]
433 Ahuja R, Panwar N, Meena J, Singh M, Sarkar DP, Panda AK. Natural products and polymeric nanocarriers for cancer treatment: a review. Environ Chem Lett 2020;18:2021-30. [DOI: 10.1007/s10311-020-01056-z] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
434 Li Y, Shi P, Jiang D. Polymorphism rs1801516 (G > A) in the ATM gene is not associated with overall cancer risk: an updated meta-analysis. J Int Med Res 2020;48:300060520937618. [PMID: 32674635 DOI: 10.1177/0300060520937618] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
435 Wang K, Xiang Y, Pan W, Wang H, Li N, Tang B. Dual-targeted photothermal agents for enhanced cancer therapy. Chem Sci 2020;11:8055-72. [PMID: 34123080 DOI: 10.1039/d0sc03173a] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 17.5] [Reference Citation Analysis]
436 Cao Z, Liu J. Bacteria and bacterial derivatives as drug carriers for cancer therapy. J Control Release 2020;326:396-407. [PMID: 32681947 DOI: 10.1016/j.jconrel.2020.07.009] [Cited by in Crossref: 40] [Cited by in F6Publishing: 44] [Article Influence: 20.0] [Reference Citation Analysis]
437 Kollenda S, Kopp M, Wens J, Koch J, Schulze N, Papadopoulos C, Pöhler R, Meyer H, Epple M. A pH-sensitive fluorescent protein sensor to follow the pathway of calcium phosphate nanoparticles into cells. Acta Biomater 2020;111:406-17. [PMID: 32439614 DOI: 10.1016/j.actbio.2020.05.014] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
438 Mahmoud AM, Morrow JP, Pizzi D, Azizah AM, Davis TP, Tabor RF, Kempe K. Tuning Cellular Interactions of Carboxylic Acid-Side-Chain-Containing Polyacrylates: The Role of Cyanine Dye Label and Side-Chain Type. Biomacromolecules 2020;21:3007-16. [PMID: 32598140 DOI: 10.1021/acs.biomac.0c00244] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
439 Tong C, Qu K, Wang G, Liu R, Duan B, Wang X, Liu C. Knockdown of DNA-binding protein A enhances the chemotherapy sensitivity of colorectal cancer via suppressing the Wnt/β-catenin/Chk1 pathway. Cell Biol Int 2020;44:2075-85. [PMID: 32652867 DOI: 10.1002/cbin.11416] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
440 Kciuk M, Marciniak B, Kontek R. Irinotecan-Still an Important Player in Cancer Chemotherapy: A Comprehensive Overview. Int J Mol Sci 2020;21:E4919. [PMID: 32664667 DOI: 10.3390/ijms21144919] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 15.5] [Reference Citation Analysis]
441 Biswas A, Rajesh Y, Mitra P, Mandal M. ETV6 gene aberrations in non-haematological malignancies: A review highlighting ETV6 associated fusion genes in solid tumors. Biochim Biophys Acta Rev Cancer 2020;1874:188389. [PMID: 32659251 DOI: 10.1016/j.bbcan.2020.188389] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
442 Tamanoi F, Matsumoto K, Doan TLH, Shiro A, Saitoh H. Studies on the Exposure of Gadolinium Containing Nanoparticles with Monochromatic X-rays Drive Advances in Radiation Therapy. Nanomaterials (Basel) 2020;10:E1341. [PMID: 32660093 DOI: 10.3390/nano10071341] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
443 Mu W, Chu Q, Liu Y, Zhang N. A Review on Nano-Based Drug Delivery System for Cancer Chemoimmunotherapy. Nanomicro Lett 2020;12:142. [PMID: 34138136 DOI: 10.1007/s40820-020-00482-6] [Cited by in Crossref: 76] [Cited by in F6Publishing: 57] [Article Influence: 38.0] [Reference Citation Analysis]
444 Szczepanek J. Role of microRNA dysregulation in childhood acute leukemias: Diagnostics, monitoring and therapeutics: A comprehensive review. World J Clin Oncol 2020; 11(6): 348-369 [PMID: 32855905 DOI: 10.5306/wjco.v11.i6.348] [Cited by in CrossRef: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
445 Jarrell DK, Drake S, Brown MA. Advancing Therapies for Cancer—From Mustard Gas to CAR T. Sci 2020;2:42. [DOI: 10.3390/sci2020042] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
446 Das RP, Chakravarti S, Patel SS, Lakhamje P, Gurjar M, Gota V, Singh BG, Kunwar A. Tuning the pharmacokinetics and efficacy of irinotecan (IRI) loaded gelatin nanoparticles through folate conjugation. Int J Pharm 2020;586:119522. [PMID: 32534159 DOI: 10.1016/j.ijpharm.2020.119522] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
447 Barui S, Cauda V. Multimodal Decorations of Mesoporous Silica Nanoparticles for Improved Cancer Therapy. Pharmaceutics 2020;12:E527. [PMID: 32521802 DOI: 10.3390/pharmaceutics12060527] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 12.5] [Reference Citation Analysis]
448 Kharkar PS, Soni G, Rathod V, Shetty S, Gupta MK, Yadav KS. An outlook on procedures of conjugating folate to (co)polymers and drugs for effective cancer targeting. Drug Dev Res 2020;81:823-36. [DOI: 10.1002/ddr.21698] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
449 Kurmi BD, Patel P, Paliwal R, Paliwal SR. Molecular approaches for targeted drug delivery towards cancer: A concise review with respect to nanotechnology. Journal of Drug Delivery Science and Technology 2020;57:101682. [DOI: 10.1016/j.jddst.2020.101682] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
450 Bucharskaya AB, Maslyakova GN, Chekhonatskaya ML, Zakharova NB, Terentyuk GS, Navolokin NA, Khlebtsov BN, Khlebtsov NG, Genin VD, Bashkatov AN, Genina EA, Tuchin VV. Efficiency of Plasmonic Photothermal Therapy of Experimental Tumors. Opt Spectrosc 2020;128:849-854. [DOI: 10.1134/s0030400x2006003x] [Reference Citation Analysis]
451 Nawaz W, Xu S, Li Y, Huang B, Wu X, Wu Z. Nanotechnology and immunoengineering: How nanotechnology can boost CAR-T therapy. Acta Biomater 2020;109:21-36. [PMID: 32294554 DOI: 10.1016/j.actbio.2020.04.015] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 11.5] [Reference Citation Analysis]
452 Zhang X, Wei X, Wang B, Yao J. TheXRCC4rs1805377 polymorphism is not associated with the risk of cancer: An updated meta-analysis. J Int Med Res 2020;48:030006052092636. [DOI: 10.1177/0300060520926364] [Reference Citation Analysis]
453 González MI, Martín-Duque P, Desco M, Salinas B. Radioactive Labeling of Milk-Derived Exosomes with 99mTc and In Vivo Tracking by SPECT Imaging. Nanomaterials (Basel) 2020;10:E1062. [PMID: 32486215 DOI: 10.3390/nano10061062] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 14.0] [Reference Citation Analysis]
454 Zhu Y, Xu D, Liu Z, Tian T, Deng F, Tang W, Wu Y, Zhang W, Tang J. The Synthesis of Glutamine-Functionalized Block Polymer and Its Application in Triple-Negative Breast Cancer Treatment. Journal of Nanomaterials 2020;2020:1-13. [DOI: 10.1155/2020/4943270] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
455 Ramezani P, Abnous K, Taghdisi SM, Zahiri M, Ramezani M, Alibolandi M. Targeted MMP-2 responsive chimeric polymersomes for therapy against colorectal cancer. Colloids Surf B Biointerfaces 2020;193:111135. [PMID: 32447200 DOI: 10.1016/j.colsurfb.2020.111135] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 13.0] [Reference Citation Analysis]
456 John GSM, Vuttaradhi VK, Takeuchi S, Pitani RS, Venkatraman G, Rayala SK. Facile synthesis and nanoscale features of a nanostructured nordihydroguaiaretic acid analog for therapeutic applications. J Nanobiotechnology 2020;18:74. [PMID: 32410712 DOI: 10.1186/s12951-020-00628-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
457 Abu-Khudir R, Ismail GA, Diab T. Antimicrobial, Antioxidant, and Anti-Tumor Activities of Sargassum linearifolium and Cystoseira crinita from Egyptian Mediterranean Coast. Nutr Cancer 2021;73:829-44. [PMID: 32406258 DOI: 10.1080/01635581.2020.1764069] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
458 Sayed N, Ameen M, Wu JC. Personalized medicine in cardio-oncology: the role of induced pluripotent stem cell. Cardiovasc Res 2019;115:949-59. [PMID: 30768178 DOI: 10.1093/cvr/cvz024] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 15.5] [Reference Citation Analysis]
459 de Cristo Soares Alves A, Lavayen V, Figueiró F, Dallemole DR, de Fraga Dias A, Cé R, Battastini AMO, Guterres SS, Pohlmann AR. Chitosan-Coated Lipid-Core Nanocapsules Functionalized with Gold-III and Bevacizumab Induced In Vitro Cytotoxicity against C6 Cell Line and In Vivo Potent Antiangiogenic Activity. Pharm Res 2020;37:91. [PMID: 32385723 DOI: 10.1007/s11095-020-02804-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
460 Choi PJ, Cooper E, Schweder P, Mee E, Turner C, Faull R, Denny WA, Dragunow M, Park TI, Jose J. PARP inhibitor cyanine dye conjugate with enhanced cytotoxic and antiproliferative activity in patient derived glioblastoma cell lines. Bioorg Med Chem Lett 2020;30:127252. [PMID: 32527552 DOI: 10.1016/j.bmcl.2020.127252] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
461 Chen H, Luo Q, Wang J, He H, Luo W, Zhang L, Xiao Q, Chen T, Xu X, Niu W, Ke Y, Wang Y. Response of pH-Sensitive Doxorubicin Nanoparticles on Complex Tumor Microenvironments by Tailoring Multiple Physicochemical Properties. ACS Appl Mater Interfaces 2020;12:22673-86. [PMID: 32337980 DOI: 10.1021/acsami.0c05724] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
462 Lee XJ, Lim HN, Gowthaman N, Rahman MBA, Che Abdullah CA, Muthoosamy K. In-situ surface functionalization of superparamagnetic reduced graphene oxide – Fe3O4 nanocomposite via Ganoderma lucidum extract for targeted cancer therapy application. Applied Surface Science 2020;512:145738. [DOI: 10.1016/j.apsusc.2020.145738] [Cited by in Crossref: 30] [Cited by in F6Publishing: 20] [Article Influence: 15.0] [Reference Citation Analysis]
463 Sanli S, Moulahoum H, Ugurlu O, Ghorbanizamani F, Gumus ZP, Evran S, Coskunol H, Timur S. Screen printed electrode-based biosensor functionalized with magnetic cobalt/single-chain antibody fragments for cocaine biosensing in different matrices. Talanta 2020;217:121111. [PMID: 32498832 DOI: 10.1016/j.talanta.2020.121111] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
464 Lv S, Miao Y, Liu D, Song F. Recent Development of Photothermal Agents (PTAs) Based on Small Organic Molecular Dyes. Chembiochem 2020;21:2098-110. [PMID: 32202062 DOI: 10.1002/cbic.202000089] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 13.5] [Reference Citation Analysis]
465 Wu P, Zhu H, Zhuang Y, Sun X, Gu N. Combined Therapeutic Effects of 131I-Labeled and 5Fu-Loaded Multifunctional Nanoparticles in Colorectal Cancer. Int J Nanomedicine 2020;15:2777-87. [PMID: 32368054 DOI: 10.2147/IJN.S215137] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
466 Moumaris M, Bretagne J, Abuaf N. Nanomedical Devices and Cancer Theranostics. TONMJ 2020;6:1-11. [DOI: 10.2174/2666150002006010001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
467 Aghamiri S, Talaei S, Roshanzamiri S, Zandsalimi F, Fazeli E, Aliyu M, Kheiry Avarvand O, Ebrahimi Z, Keshavarz-Fathi M, Ghanbarian H. Delivery of genome editing tools: A promising strategy for HPV-related cervical malignancy therapy. Expert Opin Drug Deliv 2020;17:753-66. [PMID: 32281426 DOI: 10.1080/17425247.2020.1747429] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
468 Al-busairi W, Khajah M. The Principles behind Targeted Therapy for Cancer Treatment. Tumor Progression and Metastasis 2020. [DOI: 10.5772/intechopen.86729] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
469 Braga CB, Kido LA, Lima EN, Lamas CA, Cagnon VHA, Ornelas C, Pilli RA. Enhancing the Anticancer Activity and Selectivity of Goniothalamin Using pH-Sensitive Acetalated Dextran (Ac-Dex) Nanoparticles: A Promising Platform for Delivery of Natural Compounds. ACS Biomater Sci Eng 2020;6:2929-42. [PMID: 33463303 DOI: 10.1021/acsbiomaterials.0c00057] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
470 Cao M, Gao Y, Qiu N, Shen Y, Shen P. Folic acid directly modified low molecular weight of polyethyleneimine for targeted pDNA delivery. Journal of Drug Delivery Science and Technology 2020;56:101522. [DOI: 10.1016/j.jddst.2020.101522] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
471 Khan AA, Allemailem KS, Almatroodi SA, Almatroudi A, Rahmani AH. Recent strategies towards the surface modification of liposomes: an innovative approach for different clinical applications. 3 Biotech 2020;10:163. [PMID: 32206497 DOI: 10.1007/s13205-020-2144-3] [Cited by in Crossref: 38] [Cited by in F6Publishing: 45] [Article Influence: 19.0] [Reference Citation Analysis]
472 Panda MK, Panda SK, Singh YD, Jit BP, Behara RK, Dhal NK. Role of Nanoparticles and Nanomaterials in Drug Delivery: An Overview. In: Patra JK, Shukla AC, Das G, editors. Advances in Pharmaceutical Biotechnology. Singapore: Springer; 2020. pp. 247-65. [DOI: 10.1007/978-981-15-2195-9_19] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 5.5] [Reference Citation Analysis]
473 Marković K, Milačič R, Marković S, Kladnik J, Turel I, Ščančar J. Binding Kinetics of Ruthenium Pyrithione Chemotherapeutic Candidates to Human Serum Proteins Studied by HPLC-ICP-MS. Molecules 2020;25:E1512. [PMID: 32225069 DOI: 10.3390/molecules25071512] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
474 Avramović N, Mandić B, Savić-Radojević A, Simić T. Polymeric Nanocarriers of Drug Delivery Systems in Cancer Therapy. Pharmaceutics 2020;12:E298. [PMID: 32218326 DOI: 10.3390/pharmaceutics12040298] [Cited by in Crossref: 75] [Cited by in F6Publishing: 82] [Article Influence: 37.5] [Reference Citation Analysis]
475 Dewanjee S, Chakraborty P, Mukherjee B, De Feo V. Plant-Based Antidiabetic Nanoformulations: The Emerging Paradigm for Effective Therapy. Int J Mol Sci 2020;21:E2217. [PMID: 32210082 DOI: 10.3390/ijms21062217] [Cited by in Crossref: 38] [Cited by in F6Publishing: 44] [Article Influence: 19.0] [Reference Citation Analysis]
476 Malinovskaya YA, Kovalenko EI, Kovshova TS, Osipova NS, Maksimenko OO, Balabanyan VY, Razzhivina VA, Grechikhina MV, Boiko AA, Gelperina SE. CYTOTOXICITY AND HEMOCOMPATIBILITY OF DOXORUBICIN-LOADED PLGA NANOPARTICLES. Rossijskij bioterapevtičeskij žurnal 2020;19:71-80. [DOI: 10.17650/1726-9784-2019-19-1-71-80] [Reference Citation Analysis]
477 Ehrsam D, Sieber S, Oufir M, Porta F, Hamburger M, Huwyler J, Meyer Zu Schwabedissen HE. Design, Synthesis, and Characterization of a Paclitaxel Formulation Activated by Extracellular MMP9. Bioconjug Chem 2020;31:781-93. [PMID: 31894970 DOI: 10.1021/acs.bioconjchem.9b00865] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
478 Zhou Y, Chen Y, Rocha A, Sanchez CJ, Liang H. Assessment of Toxicity of Nanoparticles Using Insects as Biological Models. Methods Mol Biol 2020;2118:269-79. [PMID: 32152986 DOI: 10.1007/978-1-0716-0319-2_20] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
479 Darveau P, Maltais R, Roy J, Poirier D, Morin J. Synthesis and pharmacokinetic study of poly(ethylene oxide) triazole dendrimers decorated with aminosteroids as anticancer agent. Journal of Polymer Science 2020;58:654-661. [DOI: 10.1002/pol.20190042] [Reference Citation Analysis]
480 Yu Z, Hu M, Li Z, Dan Xu, Zhu L, Guo Y, Liu Q, Lan W, Jiang J, Wang L. Anti-G250 nanobody-functionalized nanobubbles targeting renal cell carcinoma cells for ultrasound molecular imaging. Nanotechnology 2020;31:205101. [PMID: 32107342 DOI: 10.1088/1361-6528/ab7040] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
481 Magalhães JA, Fernandes AU, Junqueira HC, Nunes BC, Cursino TAF, Formaggio DMD, da S Baptista M, Tada DB. Bimetallic nanoparticles enhance photoactivity of conjugated photosensitizer. Nanotechnology 2020;31:095102. [PMID: 31703225 DOI: 10.1088/1361-6528/ab55c0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
482 Hassan A, Saeed A, Afzal S, Shahid M, Amin I, Idrees M. Applications and hazards associated with carbon nanotubes in biomedical sciences. Inorganic and Nano-Metal Chemistry 2020;50:741-52. [DOI: 10.1080/24701556.2020.1724151] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
483 Pitucha M, Korga-Plewko A, Kozyra P, Iwan M, Kaczor AA. 2,4-Dichlorophenoxyacetic Thiosemicarbazides as a New Class of Compounds Against Stomach Cancer Potentially Intercalating with DNA. Biomolecules 2020;10:E296. [PMID: 32069994 DOI: 10.3390/biom10020296] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
484 Zhao Y, Pang B, Chen J, Xiao L, Liu H, Lian W, Sun T, Jiang Y, Lin Q. Polystyrene@poly(ar-vinylbenzyl)trimethylammonium-co-acrylic acid core/shell pH-responsive nanoparticles for active targeting and imaging of cancer cell based on aggregation induced emission. Mikrochim Acta 2020;187:166. [PMID: 32055961 DOI: 10.1007/s00604-020-4133-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
485 Zheng K, Liu H, Liu X, Wang Y, Li L, Li S, Xue J, Huang M. Tumor Targeting Chemo- and Photodynamic Therapy Packaged in Albumin for Enhanced Anti-Tumor Efficacy. Int J Nanomedicine 2020;15:151-67. [PMID: 32021171 DOI: 10.2147/IJN.S227144] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
486 Colò G, Massarini M, Cavagnaro L, Felli L, Ferracini R. Exercise therapy indications in metastatic bone patients. Minerva Ortop Traumatol 2020;71. [DOI: 10.23736/s0394-3410.19.03960-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
487 Huang D, Kidoaki S. Stiffness-optimized drug-loaded matrix for selective capture and elimination of cancer cells. Journal of Drug Delivery Science and Technology 2020;55:101414. [DOI: 10.1016/j.jddst.2019.101414] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
488 Gonçalves SDÁ, Vieira RP. Current status of ATRP-based materials for gene therapy. Reactive and Functional Polymers 2020;147:104453. [DOI: 10.1016/j.reactfunctpolym.2019.104453] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
489 Su Z, Xiao Z, Wang Y, Huang J, An Y, Wang X, Shuai X. Codelivery of Anti-PD-1 Antibody and Paclitaxel with Matrix Metalloproteinase and pH Dual-Sensitive Micelles for Enhanced Tumor Chemoimmunotherapy. Small 2020;16:e1906832. [PMID: 31990457 DOI: 10.1002/smll.201906832] [Cited by in Crossref: 46] [Cited by in F6Publishing: 49] [Article Influence: 23.0] [Reference Citation Analysis]
490 Alsehli M. Polymeric nanocarriers as stimuli-responsive systems for targeted tumor (cancer) therapy: Recent advances in drug delivery. Saudi Pharm J 2020;28:255-65. [PMID: 32194326 DOI: 10.1016/j.jsps.2020.01.004] [Cited by in Crossref: 55] [Cited by in F6Publishing: 60] [Article Influence: 27.5] [Reference Citation Analysis]
491 Spatarelu CP, Radu Chiriac AL, Cursaru B, Iordache TV, Gavrila AM, Cojocaru CT, Botez RE, Trica B, Sarbu A, Teodorescu M, Tofan V, Perrin FX, Zaharia A. Composite Nanogels Based on Zeolite-Poly(ethylene glycol) Diacrylate for Controlled Drug Delivery. Nanomaterials (Basel) 2020;10:E195. [PMID: 31979174 DOI: 10.3390/nano10020195] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
492 Marques AC, Costa PJ, Velho S, Amaral MH. Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies. J Control Release 2020;320:180-200. [PMID: 31978444 DOI: 10.1016/j.jconrel.2020.01.035] [Cited by in Crossref: 85] [Cited by in F6Publishing: 93] [Article Influence: 42.5] [Reference Citation Analysis]
493 Jiang X, Zhou Z, Yang H, Shan C, Yu H, Wojtas L, Zhang M, Mao Z, Wang M, Stang PJ. Self-Assembly of Porphyrin-Containing Metalla-Assemblies and Cancer Photodynamic Therapy. Inorg Chem 2020;59:7380-8. [PMID: 31961145 DOI: 10.1021/acs.inorgchem.9b02775] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 13.0] [Reference Citation Analysis]
494 Chauhan N, Kruse A, Newby H, Jaggi M, Yallapu MM, Chauhan SC. Pluronic Polymer-Based Ormeloxifene Nanoformulations Induce Superior Anticancer Effects in Pancreatic Cancer Cells. ACS Omega 2020;5:1147-56. [PMID: 31984272 DOI: 10.1021/acsomega.9b03382] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
495 Kusio J, Sitkowska K, Konopko A, Litwinienko G. Hydroxycinnamyl Derived BODIPY as a Lipophilic Fluorescence Probe for Peroxyl Radicals. Antioxidants (Basel) 2020;9:E88. [PMID: 31968662 DOI: 10.3390/antiox9010088] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
496 Baldissera MD, Souza CF, Velho MC, Bassotto VA, Ourique AF, Da Silva AS, Baldisserotto B. Nanospheres as a technological alternative to suppress hepatic cellular damage and impaired bioenergetics caused by nerolidol in Nile tilapia (Oreochromis niloticus). Naunyn Schmiedebergs Arch Pharmacol 2020;393:751-9. [PMID: 31953674 DOI: 10.1007/s00210-020-01824-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
497 Novoselova MV, Loh HM, Trushina DB, Ketkar A, Abakumova TO, Zatsepin TS, Kakran M, Brzozowska AM, Lau HH, Gorin DA, Antipina MN, Brichkina AI. Biodegradable Polymeric Multilayer Capsules for Therapy of Lung Cancer. ACS Appl Mater Interfaces 2020;12:5610-23. [DOI: 10.1021/acsami.9b21381] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 14.5] [Reference Citation Analysis]
498 Sasaki I, Daniel J, Marais S, Verlhac J, Vaultier M, Blanchard-desce M. Soft fluorescent organic nanodots as nanocarriers for porphyrins. J Porphyrins Phthalocyanines 2019;23:1463-9. [DOI: 10.1142/s108842461950158x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
499 Yu Z, Wang Y, Xu D, Zhu L, Hu M, Liu Q, Lan W, Jiang J, Wang L. G250 Antigen-Targeting Drug-Loaded Nanobubbles Combined with Ultrasound Targeted Nanobubble Destruction: A Potential Novel Treatment for Renal Cell Carcinoma. Int J Nanomedicine 2020;15:81-95. [PMID: 32021166 DOI: 10.2147/IJN.S230879] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
500 Vuilleumier J, Gaulier G, De Matos R, Mugnier Y, Campargue G, Wolf J, Bonacina L, Gerber‐lemaire S. Photocontrolled Release of the Anticancer Drug Chlorambucil with Caged Harmonic Nanoparticles. HCA 2020;103. [DOI: 10.1002/hlca.201900251] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
501 Tošić I, Mikov M, Stankov K. Application of nanomedical technology in breast cancer treatment. Hosp Pharm Int Multi J 2020;7:883-894. [DOI: 10.5937/hpimj2001883t] [Reference Citation Analysis]
502 Tripathy S, Kesharwani R, Patel DK, Das MK. Stimuli-Responsive Polymers for Cancer Nanomedicines. Nano Medicine and Nano Safety 2020. [DOI: 10.1007/978-981-15-6255-6_12] [Reference Citation Analysis]
503 Christensen JB. Dendrimers for pharmaceutical applications—potential and challenges. Delivery of Drugs. Elsevier; 2020. pp. 29-52. [DOI: 10.1016/b978-0-12-817776-1.00002-x] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
504 Hashimoto T, Yuba E, Harada A, Kono K. Preparation of photothermal-chemotherapy nanohybrids by complexation of gold nanorods with polyamidoamine dendrimers having poly(ethylene glycol) and hydrophobic chains. J Mater Chem B 2020;8:2826-33. [DOI: 10.1039/c9tb02163a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
505 Zhu Y, Wang L, Li Y, Huang Z, Luo S, He Y, Han H, Raza F, Wu J, Ge L. Injectable pH and redox dual responsive hydrogels based on self-assembled peptides for anti-tumor drug delivery. Biomater Sci 2020;8:5415-26. [DOI: 10.1039/d0bm01004a] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 13.5] [Reference Citation Analysis]
506 Aquib M, Juthi AZ, Farooq MA, Ali MG, Janabi AHW, Bavi S, Banerjee P, Bhosale R, Bavi R, Wang B. Advances in local and systemic drug delivery systems for post-surgical cancer treatment. J Mater Chem B 2020;8:8507-18. [DOI: 10.1039/d0tb00987c] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
507 Gao W, Corpstein CD, Li T. Delivering anticancer drugs as carrier-free nanocrystals. Biomaterials for Cancer Therapeutics 2020. [DOI: 10.1016/b978-0-08-102983-1.00004-1] [Reference Citation Analysis]
508 Jain S, Bharti S, Kaur Bhullar G, Tripathi S. pH dependent drug release from drug conjugated PEGylated CdSe/ZnS nanoparticles. Materials Chemistry and Physics 2020;240:122162. [DOI: 10.1016/j.matchemphys.2019.122162] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
509 Bignold LP. Specific aspects of cytotoxic and hormonal drug therapies. Principles of Tumors 2020. [DOI: 10.1016/b978-0-12-816920-9.00015-8] [Reference Citation Analysis]
510 Shahidian A, Ghassemi M, Mohammadi J, Hashemi M. Immunotherapy. Bio-Engineering Approaches to Cancer Diagnosis and Treatment 2020. [DOI: 10.1016/b978-0-12-817809-6.00004-2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
511 Ahuja R, Panwar N, Meena J, Sarkar DP, Panda AK. Delivery of Natural Products Using Polymeric Particles for Cancer Chemotherapeutics. Sustainable Agriculture Reviews 2020. [DOI: 10.1007/978-3-030-41838-0_3] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
512 Wang Y, Sun L, Mei Z, Zhang F, He M, Fletcher C, Wang F, Yang J, Bi D, Jiang Y, Liu P. 3D printed biodegradable implants as an individualized drug delivery system for local chemotherapy of osteosarcoma. Materials & Design 2020;186:108336. [DOI: 10.1016/j.matdes.2019.108336] [Cited by in Crossref: 48] [Cited by in F6Publishing: 50] [Article Influence: 24.0] [Reference Citation Analysis]
513 Damle MA, Shetty VG, Jakhade AP, Kaul-ghanekar R, Chikate RC. Bi-functional nature of nanoceria: pro-drug and drug-carrier potentiality towards receptor-mediated targeting of doxorubicin. New J Chem 2020;44:17013-26. [DOI: 10.1039/d0nj02895a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
514 Oliveira C, Carvalho AC, Reis RL, Neves NN, Martins A, Silva TH. Marine-derived biomaterials for cancer treatment. Biomaterials for 3D Tumor Modeling 2020. [DOI: 10.1016/b978-0-12-818128-7.00023-x] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
515 Verma S, Tonk RK. Rhomboid proteases leading to cancer: Structures, functions, and inhibition. Cancer-Leading Proteases 2020. [DOI: 10.1016/b978-0-12-818168-3.00012-7] [Reference Citation Analysis]
516 Pucci P, Yuen W, Venalainen E, Carles DR, Wang Y, Crea F. Long Non-coding RNAs and Cancer Cells’ Drug Resistance: An Unexpected Connection. RNA Technologies 2020. [DOI: 10.1007/978-3-030-44743-4_7] [Reference Citation Analysis]
517 Zhou N, Zhang N, Zhi Z, Jing X, Liu D, Shao Y, Wang D, Meng L. One-pot synthesis of acid-degradable polyphosphazene prodrugs for efficient tumor chemotherapy. J Mater Chem B 2020;8:10540-8. [DOI: 10.1039/d0tb01992e] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
518 Li Z, Pan W, Tartakovsky AM. Particle-Based Methods for Mesoscopic Transport Processes. Handbook of Materials Modeling 2020. [DOI: 10.1007/978-3-319-44680-6_64] [Reference Citation Analysis]
519 Aggarwal V, Sak K, Arora M, Iqubal A, Kumar A, Srivastava S, Pandey A, Kaur S, Tuli HS. History of Oncotherapies in Cancer Biology. Drug Targets in Cellular Processes of Cancer: From Nonclinical to Preclinical Models 2020. [DOI: 10.1007/978-981-15-7586-0_1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
520 Hollands P. Application of Nanomaterials in Stem Cells, Tissue Engineering and Regenerative Medicine. Applications of Nanomaterials in Human Health 2020. [DOI: 10.1007/978-981-15-4802-4_5] [Reference Citation Analysis]
521 Jeslin J, Dhanya BS, Chamundeeswari M. IPN Systems for Cancer Therapy. Interpenetrating Polymer Network: Biomedical Applications 2020. [DOI: 10.1007/978-981-15-0283-5_9] [Reference Citation Analysis]
522 Aggarwal V, Sak K, Aggarwal D, Parashar G, Parashar NC, Sood S, Tuorkey MJ, Kaur J, Buttar HS, Tuli HS. Designing Personalized and Innovative Novel Drug Therapies for Cancer Treatment. Drug Targets in Cellular Processes of Cancer: From Nonclinical to Preclinical Models 2020. [DOI: 10.1007/978-981-15-7586-0_11] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
523 Villa A, Sonis ST. Functional “omics” for systems medicine. Translational Systems Medicine and Oral Disease 2020. [DOI: 10.1016/b978-0-12-813762-8.00009-8] [Reference Citation Analysis]
524 Bibi N, Awan IT, Awan AT. New Adsorption-Based Biosensors for Cancer Detections and Role of Nano-medicine in Its Prognosis and Inhibition. 'Essentials of Cancer Genomic, Computational Approaches and Precision Medicine 2020. [DOI: 10.1007/978-981-15-1067-0_5] [Reference Citation Analysis]
525 Bano A, Gupta A, Sharma S, Sharma R. Recent Developments in Nanocarrier-Based Nutraceuticals for Therapeutic Purposes. Biogenic Nano-Particles and their Use in Agro-ecosystems 2020. [DOI: 10.1007/978-981-15-2985-6_20] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
526 Thorat ND, Bauer J. Nanomedicine: next generation modality of breast cancer therapeutics. Nanomedicines for Breast Cancer Theranostics 2020. [DOI: 10.1016/b978-0-12-820016-2.00001-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
527 Zhou Y, Chen D, Xue G, Yu S, Yuan C, Huang M, Jiang L. Improved therapeutic efficacy of quercetin-loaded polymeric nanoparticles on triple-negative breast cancer by inhibiting uPA. RSC Adv 2020;10:34517-26. [DOI: 10.1039/d0ra04231e] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
528 Helal-Neto E, Barros AODS, Saldanha-Gama R, Brandão-Costa R, Alencar LMR, Santos CCD, Martínez-Máñez R, Ricci-Junior E, Alexis F, Morandi V, Barja-Fidalgo C, Santos-Oliveira R. Molecular and Cellular Risk Assessment of Healthy Human Cells and Cancer Human Cells Exposed to Nanoparticles. Int J Mol Sci 2019;21:E230. [PMID: 31905708 DOI: 10.3390/ijms21010230] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
529 Zhong XC, Xu WH, Wang ZT, Guo WW, Chen JJ, Guo NN, Wang TT, Lin MT, Zhang ZT, Lu YY, Yang QY, Han M, Xu DH, Gao JQ. Doxorubicin derivative loaded acetal-PEG-PCCL micelles for overcoming multidrug resistance in MCF-7/ADR cells. Drug Dev Ind Pharm 2019;45:1556-64. [PMID: 31271317 DOI: 10.1080/03639045.2019.1640721] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
530 Khan H, Mirzaei HR, Amiri A, Kupeli Akkol E, Ashhad Halimi SM, Mirzaei H. Glyco-nanoparticles: New drug delivery systems in cancer therapy. Semin Cancer Biol 2021;69:24-42. [PMID: 31870939 DOI: 10.1016/j.semcancer.2019.12.004] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 9.7] [Reference Citation Analysis]
531 Liu J, Li Y, Zhao M, Lei Z, Guo H, Tang Y, Yan H. Redox-responsive hollow mesoporous silica nanoparticles constructed via host-guest interactions for controllable drug release. J Biomater Sci Polym Ed 2020;31:472-90. [PMID: 31791208 DOI: 10.1080/09205063.2019.1700601] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
532 Bodoki AE, Iacob BC, Bodoki E. Perspectives of Molecularly Imprinted Polymer-Based Drug Delivery Systems in Cancer Therapy. Polymers (Basel) 2019;11:E2085. [PMID: 31847103 DOI: 10.3390/polym11122085] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 7.0] [Reference Citation Analysis]
533 Pagels RF, Pinkerton NM, York AW, Prud'homme RK. Synthesis of Heterobifunctional Thiol‐poly(lactic acid)‐ b ‐poly(ethylene glycol)‐hydroxyl for Nanoparticle Drug Delivery Applications. Macromol Chem Phys 2019;221:1900396. [DOI: 10.1002/macp.201900396] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
534 Maleki H, Naghibzadeh M, Amani A, Adabi M, Khosravani M. Preparation of Paclitaxel and Etoposide Co-loaded mPEG-PLGA Nanoparticles: an Investigation with Artificial Neural Network. J Pharm Innov 2021;16:11-25. [DOI: 10.1007/s12247-019-09419-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
535 Ahali Abadeh Z, Saviano G, Ballirano P, Santonicola MG. Curcumin-loaded zeolite as anticancer drug carrier: effect of curcumin adsorption on zeolite structure. Pure and Applied Chemistry 2020;92:461-71. [DOI: 10.1515/pac-2018-1213] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
536 Ackova DG, Smilkov K, Bosnakovski D. Contemporary Formulations for Drug Delivery of Anticancer Bioactive Compounds. Recent Pat Anticancer Drug Discov 2019;14:19-31. [PMID: 30636616 DOI: 10.2174/1574892814666190111104834] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
537 Yan W, Leung SS, To KK. Updates on the use of liposomes for active tumor targeting in cancer therapy. Nanomedicine (Lond) 2020;15:303-18. [PMID: 31802702 DOI: 10.2217/nnm-2019-0308] [Cited by in Crossref: 48] [Cited by in F6Publishing: 54] [Article Influence: 16.0] [Reference Citation Analysis]
538 Sanli S, Ghorbani-zamani F, Moulahoum H, Gumus ZP, Coskunol H, Odaci Demirkol D, Timur S. Application of Biofunctionalized Magnetic Nanoparticles Based-Sensing in Abused Drugs Diagnostics. Anal Chem 2020;92:1033-40. [DOI: 10.1021/acs.analchem.9b04025] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
539 Bidram E, Esmaeili Y, Ranji-burachaloo H, Al-zaubai N, Zarrabi A, Stewart A, Dunstan DE. A concise review on cancer treatment methods and delivery systems. Journal of Drug Delivery Science and Technology 2019;54:101350. [DOI: 10.1016/j.jddst.2019.101350] [Cited by in Crossref: 36] [Cited by in F6Publishing: 40] [Article Influence: 12.0] [Reference Citation Analysis]
540 Hung W, Zheng J, Lee K, Cho E. Doxorubicin conjugated AuNP/biopolymer composites facilitate cell cycle regulation and exhibit superior tumor suppression potential in KRAS mutant colorectal cancer. Journal of Biotechnology 2019;306:149-58. [DOI: 10.1016/j.jbiotec.2019.09.015] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
541 Karimzadeh K, Elham sharifi, Bakhshi N, Ramzanpoor M. Biogenic silver nanoparticles using Oxalis corniculata characterization and their clinical implications. Journal of Drug Delivery Science and Technology 2019;54:101263. [DOI: 10.1016/j.jddst.2019.101263] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
542 Norouz Dizaji A, Ding D, Kutsal T, Turk M, Kong D, Piskin E. In vivo imaging/detection of MRSA bacterial infections in mice using fluorescence labelled polymeric nanoparticles carrying vancomycin as the targeting agent. J Biomater Sci Polym Ed 2020;31:293-309. [PMID: 31762403 DOI: 10.1080/09205063.2019.1692631] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
543 Bisol Â, de Campos PS, Lamers ML. Flavonoids as anticancer therapies: A systematic review of clinical trials. Phytother Res 2020;34:568-82. [PMID: 31752046 DOI: 10.1002/ptr.6551] [Cited by in Crossref: 37] [Cited by in F6Publishing: 40] [Article Influence: 12.3] [Reference Citation Analysis]
544 Szatmári T, Hargitai R, Sáfrány G, Lumniczky K. Extracellular Vesicles in Modifying the Effects of Ionizing Radiation. Int J Mol Sci 2019;20:E5527. [PMID: 31698689 DOI: 10.3390/ijms20225527] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 7.3] [Reference Citation Analysis]
545 Daniel J, Montaleytang M, Nagarajan S, Picard S, Clermont G, Lazar AN, Dumas N, Correard F, Braguer D, Blanchard-Desce M, Estève MA, Vaultier M. Hydrophilic Fluorescent Nanoprodrug of Paclitaxel for Glioblastoma Chemotherapy. ACS Omega 2019;4:18342-54. [PMID: 31720536 DOI: 10.1021/acsomega.9b02588] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
546 Qian Y, Zhou X, He J, Zhou C. Polycaprolactone-Based Mimetic Antimicrobial Peptide Copolymers Vesicles as an Effective Drug-Carrier for Cancer Therapy. Polymers (Basel) 2019;11:E1783. [PMID: 31683611 DOI: 10.3390/polym11111783] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
547 Morales-Cruz M, Delgado Y, Castillo B, Figueroa CM, Molina AM, Torres A, Milián M, Griebenow K. Smart Targeting To Improve Cancer Therapeutics. Drug Des Devel Ther 2019;13:3753-72. [PMID: 31802849 DOI: 10.2147/DDDT.S219489] [Cited by in Crossref: 54] [Cited by in F6Publishing: 59] [Article Influence: 18.0] [Reference Citation Analysis]
548 Abd Elrazik NA, El-mesery M, El-karef A, Eissa LA, El Gayar AM. Chlorogenic acid potentiates antitumor effect of doxorubicin through upregulation of death receptors in solid Ehrlich carcinoma model in mice. Egyptian Journal of Basic and Applied Sciences 2019;6:158-72. [DOI: 10.1080/2314808x.2019.1682331] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
549 Li S, Zhao H, Mao X, Fan Y, Liang X, Wang R, Xiao L, Wang J, Liu Q, Zhao G. Transferrin Receptor Targeted Cellular Delivery of Doxorubicin Via a Reduction-Responsive Peptide-Drug Conjugate. Pharm Res 2019;36. [DOI: 10.1007/s11095-019-2688-2] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
550 Malliappan SP, Kandasamy P, Chidambaram S, Venkatasubbu D, Perumal SK, Sugumaran A. Breast Cancer Targeted Treatment Strategies: Promising Nanocarrier Approaches. Anticancer Agents Med Chem 2020;20:1300-10. [PMID: 31642415 DOI: 10.2174/1871520619666191022175003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
551 Tolios A, De Las Rivas J, Hovig E, Trouillas P, Scorilas A, Mohr T. Computational approaches in cancer multidrug resistance research: Identification of potential biomarkers, drug targets and drug-target interactions. Drug Resist Updat 2020;48:100662. [PMID: 31927437 DOI: 10.1016/j.drup.2019.100662] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 8.0] [Reference Citation Analysis]
552 Zou Y, Sarem M, Xiang S, Hu H, Xu W, Shastri VP. Autophagy inhibition enhances Matrine derivative MASM induced apoptosis in cancer cells via a mechanism involving reactive oxygen species-mediated PI3K/Akt/mTOR and Erk/p38 signaling. BMC Cancer 2019;19:949. [PMID: 31615459 DOI: 10.1186/s12885-019-6199-7] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
553 Tian R, Zhu L, Qin Z, Wang G, Wang J, Zhang H. Glypican-3 (GPC3) targeted Fe3O4 core/Au shell nanocomplex for fluorescence/MRI/photoacoustic imaging-guided tumor photothermal therapy. Biomater Sci 2019;7:5258-69. [PMID: 31603456 DOI: 10.1039/c9bm01248f] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
554 Metcalf CA, Svenson S, Hwang J, Tripathi S, Gangal G, Kabir S, Lazarus D, Cole R, Sweryda-krawiec B, Shum P, Brown D, Case RI, van der Poll D, Rohde E, Harlfinger S, Teng C, Eliasof S. Discovery of a Novel Cabazitaxel Nanoparticle–Drug Conjugate (CRLX522) with Improved Pharmacokinetic Properties and Anticancer Effects Using a β-Cyclodextrin–PEG Copolymer Based Delivery Platform. J Med Chem 2019;62:9541-59. [DOI: 10.1021/acs.jmedchem.9b00892] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
555 Li S, Zhao H, Fan Y, Zhao G, Wang R, Wen F, Wang J, Wang X, Wang Y, Gao Y. Design, synthesis, and in vitro antitumor activity of a transferrin receptor-targeted peptide-doxorubicin conjugate. Chem Biol Drug Des 2020;95:58-65. [PMID: 31452330 DOI: 10.1111/cbdd.13613] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
556 Almeida AM, Queiroz JA, Sousa F, Sousa Â. Cervical cancer and HPV infection: ongoing therapeutic research to counteract the action of E6 and E7 oncoproteins. Drug Discovery Today 2019;24:2044-57. [DOI: 10.1016/j.drudis.2019.07.011] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 12.3] [Reference Citation Analysis]
557 Bu L, Yan J, Wang Z, Ruan H, Chen Q, Gunadhi V, Bell RB, Gu Z. Advances in drug delivery for post-surgical cancer treatment. Biomaterials 2019;219:119182. [DOI: 10.1016/j.biomaterials.2019.04.027] [Cited by in Crossref: 77] [Cited by in F6Publishing: 81] [Article Influence: 25.7] [Reference Citation Analysis]
558 Maghsoudi S, Shahraki BT, Rabiee N, Afshari R, Fatahi Y, Dinarvand R, Ahmadi S, Bagherzadeh M, Rabiee M, Tayebi L, Tahriri M. Recent Advancements in aptamer-bioconjugates: Sharpening Stones for breast and prostate cancers targeting. Journal of Drug Delivery Science and Technology 2019;53:101146. [DOI: 10.1016/j.jddst.2019.101146] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
559 Wang H, Bo Y, Liu Y, Xu M, Cai K, Wang R, Cheng J. In vivo cancer targeting via glycopolyester nanoparticle mediated metabolic cell labeling followed by click reaction. Biomaterials 2019;218:119305. [DOI: 10.1016/j.biomaterials.2019.119305] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 7.7] [Reference Citation Analysis]
560 Pandey P, Dua K, Dureja H. Erlotinib loaded chitosan nanoparticles: Formulation, physicochemical characterization and cytotoxic potential. International Journal of Biological Macromolecules 2019;139:1304-16. [DOI: 10.1016/j.ijbiomac.2019.08.084] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 8.7] [Reference Citation Analysis]
561 Matsumoto K, Saitoh H, Doan TLH, Shiro A, Nakai K, Komatsu A, Tsujimoto M, Yasuda R, Kawachi T, Tajima T, Tamanoi F. Destruction of tumor mass by gadolinium-loaded nanoparticles irradiated with monochromatic X-rays: Implications for the Auger therapy. Sci Rep 2019;9:13275. [PMID: 31570738 DOI: 10.1038/s41598-019-49978-1] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 5.7] [Reference Citation Analysis]
562 Dan VM, Varghese TS, Viswanathan G, Baby S. Ellipticine, its Derivatives: Re-evaluation of Clinical Suitability with the Aid of Drug Delivery Systems. Curr Cancer Drug Targets 2020;20:33-46. [PMID: 31560288 DOI: 10.2174/1568009619666190927150131] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
563 Akbarzadeh Khiavi M, Safary A, Barar J, Ajoolabady A, Somi MH, Omidi Y. Multifunctional nanomedicines for targeting epidermal growth factor receptor in colorectal cancer. Cell Mol Life Sci 2020;77:997-1019. [DOI: 10.1007/s00018-019-03305-z] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 7.0] [Reference Citation Analysis]
564 Chen AJ, Hu X, Conti RM, Jena AB, Goldman DP. Trends in the Price per Median and Mean Life-Year Gained Among Newly Approved Cancer Therapies 1995 to 2017. Value Health 2019;22:1387-95. [PMID: 31806195 DOI: 10.1016/j.jval.2019.08.005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
565 Şenel B, Öztürk AA. New approaches to tumor therapy with siRNA-decorated and chitosan-modified PLGA nanoparticles. Drug Development and Industrial Pharmacy 2019;45:1835-48. [DOI: 10.1080/03639045.2019.1665061] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
566 Hays E, Bonavida B. Nitric Oxide-Mediated Enhancement and Reversal of Resistance of Anticancer Therapies. Antioxidants (Basel) 2019;8:E407. [PMID: 31533363 DOI: 10.3390/antiox8090407] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 9.0] [Reference Citation Analysis]
567 Zhang X, Lin C, Chan W, Liu K, Lu A, Lin G, Hu R, Shi H, Zhang H, Yang Z. Dual-Functional Liposomes with Carbonic Anhydrase IX Antibody and BR2 Peptide Modification Effectively Improve Intracellular Delivery of Cantharidin to Treat Orthotopic Hepatocellular Carcinoma Mice. Molecules 2019;24:E3332. [PMID: 31547459 DOI: 10.3390/molecules24183332] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
568 Ehrsam D, Porta F, Hussner J, Seibert I, Meyer Zu Schwabedissen HE. PDMS-PMOXA-Nanoparticles Featuring a Cathepsin B-Triggered Release Mechanism. Materials (Basel) 2019;12:E2836. [PMID: 31484396 DOI: 10.3390/ma12172836] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
569 Harguindey S, Polo Orozco J, Alfarouk KO, Devesa J. Hydrogen Ion Dynamics of Cancer and a New Molecular, Biochemical and Metabolic Approach to the Etiopathogenesis and Treatment of Brain Malignancies. Int J Mol Sci 2019;20:E4278. [PMID: 31480530 DOI: 10.3390/ijms20174278] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
570 Li Q, Hou M, Ren J, Lu S, Xu Z, Li CM, Kang Y, Xue P. Co-delivery of chlorin e6 and doxorubicin using PEGylated hollow nanocapsules for ‘all-in-one’ tumor theranostics. Nanomedicine 2019;14:2273-92. [DOI: 10.2217/nnm-2019-0099] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
571 Yu X, Xieripu A, Xu Q, Zulipikaer A, Song Y, Cai L, Chen J. GSH-responsive curcumin/doxorubicin encapsulated Bactrian camel serum albumin nanocomposites with synergistic effect against lung cancer cells. J Biomed Res 2019;34:54-66. [PMID: 35081683 DOI: 10.7555/JBR.33.20190036] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
572 Quintão NLM, Santin JR, Stoeberl LC, Corrêa TP, Melato J, Costa R. Pharmacological Treatment of Chemotherapy-Induced Neuropathic Pain: PPARγ Agonists as a Promising Tool. Front Neurosci 2019;13:907. [PMID: 31555078 DOI: 10.3389/fnins.2019.00907] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 12.0] [Reference Citation Analysis]
573 Li R, Peng F, Cai J, Yang D, Zhang P. Redox dual-stimuli responsive drug delivery systems for improving tumor-targeting ability and reducing adverse side effects. Asian J Pharm Sci 2020;15:311-25. [PMID: 32636949 DOI: 10.1016/j.ajps.2019.06.003] [Cited by in Crossref: 44] [Cited by in F6Publishing: 48] [Article Influence: 14.7] [Reference Citation Analysis]
574 Mahmoud AM, de Jongh PAJM, Briere S, Chen M, Nowell CJ, Johnston APR, Davis TP, Haddleton DM, Kempe K. Carboxylated Cy5-Labeled Comb Polymers Passively Diffuse the Cell Membrane and Target Mitochondria. ACS Appl Mater Interfaces 2019;11:31302-10. [PMID: 31369228 DOI: 10.1021/acsami.9b09395] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 7.0] [Reference Citation Analysis]
575 Zare Kazemabadi F, Heydarinasab A, Akbarzadeh A, Ardjmand M. Preparation, characterization and in vitro evaluation of PEGylated nanoliposomal containing etoposide on lung cancer. Artificial Cells, Nanomedicine, and Biotechnology 2019;47:3222-30. [DOI: 10.1080/21691401.2019.1646265] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
576 K. Purushothaman B, Harsha S M, Maheswari PU, Sheriffa Begum KM. Magnetic assisted curcumin drug delivery using folate receptor targeted hybrid casein-calcium ferrite nanocarrier. Journal of Drug Delivery Science and Technology 2019;52:509-20. [DOI: 10.1016/j.jddst.2019.05.010] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 10.0] [Reference Citation Analysis]
577 Saluja V, Mankoo A, Saraogi GK, Tambuwala MM, Mishra V. Smart dendrimers: Synergizing the targeting of anticancer bioactives. Journal of Drug Delivery Science and Technology 2019;52:15-26. [DOI: 10.1016/j.jddst.2019.04.014] [Cited by in Crossref: 23] [Cited by in F6Publishing: 10] [Article Influence: 7.7] [Reference Citation Analysis]
578 Bu L, Zhang H, Xu K, Du B, Zhu C, Li Y. pH and reduction dual-responsive micelles based on novel polyurethanes with detachable poly(2-ethyl-2-oxazoline) shell for controlled release of doxorubicin. Drug Deliv 2019;26:300-8. [PMID: 30895837 DOI: 10.1080/10717544.2019.1580323] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 7.3] [Reference Citation Analysis]
579 Rajitha B, Malla RR, Vadde R, Kasa P, Prasad GLV, Farran B, Kumari S, Pavitra E, Kamal MA, Raju GSR, Peela S, Nagaraju GP. Horizons of nanotechnology applications in female specific cancers. Semin Cancer Biol 2021;69:376-90. [PMID: 31301361 DOI: 10.1016/j.semcancer.2019.07.005] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
580 Alasvand N, Saeidifar M, Saboury AA, Mozafari M. Controllable synthesis and characterisation of palladium (II) anticancer complex-loaded colloidal gelatin nanoparticles as a novel sustained-release delivery system in cancer therapy. IET Nanobiotechnol 2017;11:591-6. [PMID: 28745294 DOI: 10.1049/iet-nbt.2016.0164] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
581 Bielas R, Siewniak A, Skonieczna M, Adamiec M, Mielańczyk Ł, Neugebauer D. Choline based polymethacrylate matrix with pharmaceutical cations as co-delivery system for antibacterial and anti-inflammatory combined therapy. Journal of Molecular Liquids 2019;285:114-22. [DOI: 10.1016/j.molliq.2019.04.082] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 4.3] [Reference Citation Analysis]
582 Ketabat F, Pundir M, Mohabatpour F, Lobanova L, Koutsopoulos S, Hadjiiski L, Chen X, Papagerakis P, Papagerakis S. Controlled Drug Delivery Systems for Oral Cancer Treatment-Current Status and Future Perspectives. Pharmaceutics 2019;11:E302. [PMID: 31262096 DOI: 10.3390/pharmaceutics11070302] [Cited by in Crossref: 56] [Cited by in F6Publishing: 58] [Article Influence: 18.7] [Reference Citation Analysis]
583 Cao M, Long M, Chen Q, Lu Y, Luo Q, Zhao Y, Lu A, Ge C, Zhu L, Chen Z. Development of β-elemene and Cisplatin Co-Loaded Liposomes for Effective Lung Cancer Therapy and Evaluation in Patient-Derived Tumor Xenografts. Pharm Res 2019;36:121. [PMID: 31214786 DOI: 10.1007/s11095-019-2656-x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
584 Rezaei Z, Mahdi Didehvar M, Mahdavi M, Azizian H, Hamedifar H, Mohammed EHM, Ostad S, Amini M. Anticancer properties of N-alkyl-2, 4-diphenylimidazo [1, 2-a] quinoxalin-1-amine derivatives; kinase inhibitors. Bioorg Chem 2019;90:103055. [PMID: 31220669 DOI: 10.1016/j.bioorg.2019.103055] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
585 Yang X, Hu C, Tong F, Liu R, Zhou Y, Qin L, Ouyang L, Gao H. Tumor Microenvironment‐Responsive Dual Drug Dimer‐Loaded PEGylated Bilirubin Nanoparticles for Improved Drug Delivery and Enhanced Immune‐Chemotherapy of Breast Cancer. Adv Funct Mater 2019;29:1901896. [DOI: 10.1002/adfm.201901896] [Cited by in Crossref: 70] [Cited by in F6Publishing: 72] [Article Influence: 23.3] [Reference Citation Analysis]
586 Vinciguerra D, Degrassi A, Mancini L, Mura S, Mougin J, Couvreur P, Nicolas J. Drug-Initiated Synthesis of Heterotelechelic Polymer Prodrug Nanoparticles for in Vivo Imaging and Cancer Cell Targeting. Biomacromolecules 2019;20:2464-76. [DOI: 10.1021/acs.biomac.9b00148] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
587 Liu X, Yang Z, Sun J, Ma T, Hua F, Shen Z. A brief review of cytotoxicity of nanoparticles on mesenchymal stem cells in regenerative medicine. Int J Nanomedicine 2019;14:3875-92. [PMID: 31213807 DOI: 10.2147/IJN.S205574] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
588 Mashayekhi S, Yousefi B, Tohidi E, Darband SG, Mirza‐aghazadeh‐attari M, Sadighparvar S, Kaviani M, Shafiei‐irannejad V, Kafil HS, Karimian A, Jadidi‐niaragh F, Majidinia M. Overexpression of tensin homolog deleted on chromosome ten (PTEN) by ciglitazone sensitizes doxorubicin‐resistance leukemia cancer cells to treatment. J Cell Biochem 2019;120:15719-29. [DOI: 10.1002/jcb.28841] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
589 Uskoković V, Huynh E, Tang S, Jovanović S, Wu VM. Colloids or powders: Which nanoparticle formulations do cells like more? Colloids Surf B Biointerfaces 2019;181:39-47. [PMID: 31121380 DOI: 10.1016/j.colsurfb.2019.05.019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
590 Feng X, Li J, Zhang X, Liu T, Ding J, Chen X. Electrospun polymer micro/nanofibers as pharmaceutical repositories for healthcare. Journal of Controlled Release 2019;302:19-41. [DOI: 10.1016/j.jconrel.2019.03.020] [Cited by in Crossref: 173] [Cited by in F6Publishing: 180] [Article Influence: 57.7] [Reference Citation Analysis]
591 Khoee S, Mansouri Bakvand P. Synthesis of dual-responsive Janus nanovehicle via PNIPAm modified SPIONs deposition on crosslinked chitosan microparticles and decrosslinking process in the core. European Polymer Journal 2019;114:411-25. [DOI: 10.1016/j.eurpolymj.2019.03.007] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
592 Riediker M, Zink D, Kreyling W, Oberdörster G, Elder A, Graham U, Lynch I, Duschl A, Ichihara G, Ichihara S, Kobayashi T, Hisanaga N, Umezawa M, Cheng TJ, Handy R, Gulumian M, Tinkle S, Cassee F. Particle toxicology and health - where are we? Part Fibre Toxicol 2019;16:19. [PMID: 31014371 DOI: 10.1186/s12989-019-0302-8] [Cited by in Crossref: 87] [Cited by in F6Publishing: 93] [Article Influence: 29.0] [Reference Citation Analysis]
593 Anand A, Sugumaran A, Narayanasamy D. Brain targeted delivery of anticancer drugs: prospective approach using solid lipid nanoparticles. IET nanobiotechnol 2019;13:353-62. [DOI: 10.1049/iet-nbt.2018.5322] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
594 Liu Y, Bhattarai P, Dai Z, Chen X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem Soc Rev 2019;48:2053-108. [PMID: 30259015 DOI: 10.1039/c8cs00618k] [Cited by in Crossref: 1334] [Cited by in F6Publishing: 1406] [Article Influence: 444.7] [Reference Citation Analysis]
595 Hafizi M, Kalanaky S, Moaiery H, Khayamzadeh M, Noorian S, Kaveh V, Gharib B, Foudazi H, Razavi M, Jenabian A, Salimi S, Sereshki MMA, Mirzaei HR, Zarghi A, Fakharzadeh S, Nazaran MH, Akbari ME. A randomized, double-blind, placebo-controlled investigation of BCc1 nanomedicine effect on survival and quality of life in metastatic and non-metastatic gastric cancer patients. J Nanobiotechnology 2019;17:52. [PMID: 30971278 DOI: 10.1186/s12951-019-0484-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
596 Cao C, Wang Q, Liu Y. Lung cancer combination therapy: doxorubicin and β-elemene co-loaded, pH-sensitive nanostructured lipid carriers. Drug Des Devel Ther 2019;13:1087-98. [PMID: 31118562 DOI: 10.2147/DDDT.S198003] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 11.3] [Reference Citation Analysis]
597 Meka RR, Venkatesha SH, Acharya B, Moudgil KD. Peptide-targeted liposomal delivery of dexamethasone for arthritis therapy. Nanomedicine (Lond) 2019;14:1455-69. [PMID: 30938236 DOI: 10.2217/nnm-2018-0501] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
598 Wang P, Wu W, Gao R, Zhu H, Wang J, Du R, Li X, Zhang C, Cao S, Xiang R. Engineered Cell-Assisted Photoactive Nanoparticle Delivery for Image-Guided Synergistic Photodynamic/Photothermal Therapy of Cancer. ACS Appl Mater Interfaces 2019;11:13935-44. [DOI: 10.1021/acsami.9b00022] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
599 Ngen EJ, Benham Azad B, Boinapally S, Lisok A, Brummet M, Jacob D, Pomper MG, Banerjee SR. MRI Assessment of Prostate-Specific Membrane Antigen (PSMA) Targeting by a PSMA-Targeted Magnetic Nanoparticle: Potential for Image-Guided Therapy. Mol Pharmaceutics 2019;16:2060-8. [DOI: 10.1021/acs.molpharmaceut.9b00036] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
600 Alkilany AM, Zhu L, Weller H, Mews A, Parak WJ, Barz M, Feliu N. Ligand density on nanoparticles: A parameter with critical impact on nanomedicine. Adv Drug Deliv Rev 2019;143:22-36. [PMID: 31158406 DOI: 10.1016/j.addr.2019.05.010] [Cited by in Crossref: 75] [Cited by in F6Publishing: 79] [Article Influence: 25.0] [Reference Citation Analysis]
601 Hurst EA, Pang LY, Argyle DJ. The selective cyclooxygenase-2 inhibitor mavacoxib (Trocoxil) exerts anti-tumour effects in vitro independent of cyclooxygenase-2 expression levels. Vet Comp Oncol 2019;17:194-207. [PMID: 30767381 DOI: 10.1111/vco.12470] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
602 Martínez-Jothar L, Beztsinna N, van Nostrum CF, Hennink WE, Oliveira S. Selective Cytotoxicity to HER2 Positive Breast Cancer Cells by Saporin-Loaded Nanobody-Targeted Polymeric Nanoparticles in Combination with Photochemical Internalization. Mol Pharm 2019;16:1633-47. [PMID: 30817164 DOI: 10.1021/acs.molpharmaceut.8b01318] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 13.7] [Reference Citation Analysis]
603 Vanden-Hehir S, Tipping WJ, Lee M, Brunton VG, Williams A, Hulme AN. Raman Imaging of Nanocarriers for Drug Delivery. Nanomaterials (Basel) 2019;9:E341. [PMID: 30832394 DOI: 10.3390/nano9030341] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 10.0] [Reference Citation Analysis]
604 Coverdale J, Laroiya-mccarron T, Romero-canelón I. Designing Ruthenium Anticancer Drugs: What Have We Learnt from the Key Drug Candidates? Inorganics 2019;7:31. [DOI: 10.3390/inorganics7030031] [Cited by in Crossref: 72] [Cited by in F6Publishing: 76] [Article Influence: 24.0] [Reference Citation Analysis]
605 Liu S, Hu C, Liu Y, Zhao X, Pang M, Lin J. One‐Pot Synthesis of DOX@Covalent Organic Framework with Enhanced Chemotherapeutic Efficacy. Chem Eur J 2019;25:4315-9. [DOI: 10.1002/chem.201806242] [Cited by in Crossref: 69] [Cited by in F6Publishing: 69] [Article Influence: 23.0] [Reference Citation Analysis]
606 Oftedal G. The Role of “Missile” and “Targeting” Metaphors in Nanomedicine. philosophiascientiae 2019. [DOI: 10.4000/philosophiascientiae.1742] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
607 Pan D, Liang P, Zhong X, Wang D, Cao H, Wang W, He W, Yang Z, Dong X. Self-Assembled Porphyrin-Based Nanoparticles with Enhanced Near-Infrared Absorbance for Fluorescence Imaging and Cancer Photodynamic Therapy. ACS Appl Bio Mater 2019;2:999-1005. [DOI: 10.1021/acsabm.8b00530] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
608 Allaqaband H, Gutterman DD, Kadlec AO. Physiological Consequences of Coronary Arteriolar Dysfunction and Its Influence on Cardiovascular Disease. Physiology (Bethesda) 2018;33:338-47. [PMID: 30109826 DOI: 10.1152/physiol.00019.2018] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
609 Qiu J, Liu D, Yan Z, Jiang W, Zhang Q, Li N, Deng W, Ding K. Therapeutic effect and adverse reaction of sorafenib in the treatment of advanced renal cancer. Oncol Lett 2019;17:1547-50. [PMID: 30675211 DOI: 10.3892/ol.2018.9776] [Reference Citation Analysis]
610 Limeres MJ, Moretton MA, Bernabeu E, Chiappetta DA, Cuestas ML. Thinking small, doing big: Current success and future trends in drug delivery systems for improving cancer therapy with special focus on liver cancer. Materials Science and Engineering: C 2019;95:328-41. [DOI: 10.1016/j.msec.2018.11.001] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 6.7] [Reference Citation Analysis]
611 Zhao ZL, Xia L, Zhao C, Yao J. ATM rs189037 (G > A) polymorphism increased the risk of cancer: an updated meta-analysis. BMC Med Genet 2019;20:28. [PMID: 30709340 DOI: 10.1186/s12881-019-0760-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
612 Pawar A, Prabhu P. Nanosoldiers: A promising strategy to combat triple negative breast cancer. Biomedicine & Pharmacotherapy 2019;110:319-41. [DOI: 10.1016/j.biopha.2018.11.122] [Cited by in Crossref: 42] [Cited by in F6Publishing: 45] [Article Influence: 14.0] [Reference Citation Analysis]
613 Ghosh S, Lalani R, Patel V, Bardoliwala D, Maiti K, Banerjee S, Bhowmick S, Misra A. Combinatorial nanocarriers against drug resistance in hematological cancers: Opportunities and emerging strategies. Journal of Controlled Release 2019;296:114-39. [DOI: 10.1016/j.jconrel.2019.01.011] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 7.7] [Reference Citation Analysis]
614 Shariff AI, Syed S, Shelby RA, Force J, Clarke JM, D’alessio D, Corsino L. Novel cancer therapies and their association with diabetes. Journal of Molecular Endocrinology 2019;62:R187-99. [DOI: 10.1530/jme-18-0002] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
615 Al-azzawi S, Masheta D. Designing a drug delivery system for improved tumor treatment and targeting by functionalization of a cell-penetrating peptide. J Pharm Investig 2019;49:643-54. [DOI: 10.1007/s40005-018-00424-w] [Cited by in Crossref: 24] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]
616 Timur SS, Yöyen-Ermiş D, Esendağlı G, Yonat S, Horzum U, Esendağlı G, Gürsoy RN. Efficacy of a novel LyP-1-containing self-microemulsifying drug delivery system (SMEDDS) for active targeting to breast cancer. Eur J Pharm Biopharm 2019;136:138-46. [PMID: 30660694 DOI: 10.1016/j.ejpb.2019.01.017] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 7.7] [Reference Citation Analysis]
617 Tian G, Pan R, Zhang B, Qu M, Lian B, Jiang H, Gao Z, Wu J. Liver-Targeted Combination Therapy Basing on Glycyrrhizic Acid-Modified DSPE-PEG-PEI Nanoparticles for Co-delivery of Doxorubicin and Bcl-2 siRNA. Front Pharmacol 2019;10:4. [PMID: 30723405 DOI: 10.3389/fphar.2019.00004] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
618 Gupta TK, Budarapu PR, Chappidi SR, Y.b. SS, Paggi M, Bordas SP. Advances in Carbon Based Nanomaterials for Bio-Medical Applications. CMC 2019;26:6851-77. [DOI: 10.2174/0929867326666181126113605] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 7.0] [Reference Citation Analysis]
619 Dong K, Lei Q, Qi H, Zhang Y, Cui N, Wu X, Xie L, Yan X, Lu T. Amplification of Oxidative Stress in MCF-7 Cells by a Novel pH-Responsive Amphiphilic Micellar System Enhances Anticancer Therapy. Mol Pharmaceutics 2019;16:689-700. [DOI: 10.1021/acs.molpharmaceut.8b00973] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
620 Rosière R, Amighi K, Wauthoz N. Nanomedicine-Based Inhalation Treatments for Lung Cancer. Nanotechnology-Based Targeted Drug Delivery Systems for Lung Cancer. Elsevier; 2019. pp. 249-68. [DOI: 10.1016/b978-0-12-815720-6.00010-1] [Cited by in Crossref: 7] [Article Influence: 2.3] [Reference Citation Analysis]
621 Karaca M, Özsoy Y. Targeted delivery systems for treatment of pancreatic cancer. Nanoarchitectonics in Biomedicine 2019. [DOI: 10.1016/b978-0-12-816200-2.00007-4] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
622 Cowen T, Karim K, Piletsky SA. Modeling molecularly imprinted polymer mechanics. Smart Polymer Catalysts and Tunable Catalysis 2019. [DOI: 10.1016/b978-0-12-811840-5.00003-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
623 Wang J, Song Y, Zhang M, Wu Z, Xu Y, Lin J, Ling D, Sheng Y, Lu Y, Wu Q. A liposomal curcumol nanocomposite for magnetic resonance imaging and endoplasmic reticulum stress-mediated chemotherapy of human primary ovarian cancer. J Mater Chem B 2019;7:2938-47. [DOI: 10.1039/c8tb03123a] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
624 Bajaj S, Manchanda S. Nutraceutical and Functional Foods in Cancer Management and Therapy. Nutraceutical and Functional Foods in Disease Prevention 2019. [DOI: 10.4018/978-1-5225-3267-5.ch012] [Reference Citation Analysis]
625 Mctaggart M, Malardier-jugroot C. Nanomedicine and Drug Delivery Systems in Overcoming Resistance to Targeted Therapy. Resistance to Targeted Anti-Cancer Therapeutics 2019. [DOI: 10.1007/978-3-030-21477-7_10] [Reference Citation Analysis]
626 Varanda LC, Souza CGSD, Perecin CJ, Moraes DAD, Queiróz DFD, Neves HR, Souza Junior JB, Silva MFD, Albers RF, Silva TLD. Inorganic and organic–inorganic composite nanoparticles with potential biomedical applications: synthesis challenges for enhanced performance. Materials for Biomedical Engineering 2019. [DOI: 10.1016/b978-0-12-818431-8.00004-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
627 Naumczuk B, Kawęcki R, Bocian W, Bednarek E, Sitkowski J, Kozerski L. Regioselective alkylation reaction of the 2′-deoxyctidine with 9-aminomethyl derivatives of SN38. Journal of Molecular Structure 2019;1176:298-302. [DOI: 10.1016/j.molstruc.2018.08.096] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
628 Patil-sen Y, Narain A, Asawa S, Tavarna T. Nanotechnology: The Future for Cancer Treatment. Unravelling Cancer Signaling Pathways: A Multidisciplinary Approach 2019. [DOI: 10.1007/978-981-32-9816-3_16] [Reference Citation Analysis]
629 Amreddy N, Babu A, Munshi A, Ramesh R. Poly(α-hydroxy acid)-Based Nanoparticles for Drug/Gene Delivery for Cancer Therapy. Polymeric Nanoparticles as a Promising Tool for Anti-cancer Therapeutics 2019. [DOI: 10.1016/b978-0-12-816963-6.00005-4] [Reference Citation Analysis]
630 Guo Y, Wang T, Qiu H, Han M, Dong Z, Wang X, Wang Y. Hydroxycamptothecin nanoparticles based on poly/oligo (ethylene glycol): Architecture effects of nanocarriers on antitumor efficacy. European Journal of Pharmaceutics and Biopharmaceutics 2019;134:178-84. [DOI: 10.1016/j.ejpb.2018.12.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
631 Luo Y, Elumalai A, Humayun A, Mills DK. Understanding Cancer Cell Behavior Through 3D Printed Bone Microenvironments. 3D Bioprinting in Medicine 2019. [DOI: 10.1007/978-3-030-23906-0_6] [Reference Citation Analysis]
632 Shah MR, Imran M, Ullah S. Nanotechnological strategies involved in the targeted delivery of anticancer drugs. Nanocarriers for Cancer Diagnosis and Targeted Chemotherapy 2019. [DOI: 10.1016/b978-0-12-816773-1.00002-x] [Reference Citation Analysis]
633 Gheorghe I, Curutiu C, Ditu L. Therapeutic nanostructures: novel approaches. Materials for Biomedical Engineering 2019. [DOI: 10.1016/b978-0-12-818435-6.00001-3] [Reference Citation Analysis]
634 Poinern GEJ, Fawcett D. Sustainable utilization of renewable plant-based food wastes for the green synthesis of metal nanoparticles. Harnessing Nanoscale Surface Interactions 2019. [DOI: 10.1016/b978-0-12-813892-2.00001-x] [Reference Citation Analysis]
635 Galetti M, Rossi S, Caffarra C, Gerboles AG, Miragoli M. Innovation in nanomedicine and engineered nanomaterials for therapeutic purposes. Exposure to Engineered Nanomaterials in the Environment 2019. [DOI: 10.1016/b978-0-12-814835-8.00009-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
636 Yang C, Lee A, Gao S, Liu S, Hedrick JL, Yang YY. Hydrogels with prolonged release of therapeutic antibody: Block junction chemistry modification of ‘ABA’ copolymers provides superior anticancer efficacy. Journal of Controlled Release 2019;293:193-200. [DOI: 10.1016/j.jconrel.2018.11.026] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
637 De Los Santos MC, Dragomir MP, Calin GA. The role of exosomal long non-coding RNAs in cancer drug resistance. Cancer Drug Resist 2019;2:1178-92. [PMID: 31867576 DOI: 10.20517/cdr.2019.74] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
638 Kolahalam LA, Kasi Viswanath I, Diwakar BS, Govindh B, Reddy V, Murthy Y. Review on nanomaterials: Synthesis and applications. Materials Today: Proceedings 2019;18:2182-90. [DOI: 10.1016/j.matpr.2019.07.371] [Cited by in Crossref: 99] [Cited by in F6Publishing: 107] [Article Influence: 33.0] [Reference Citation Analysis]
639 Agarwal S, Dominic A, Wasnik S. An Overview of Polymeric Nanoparticles as Potential Cancer Therapeutics. Polymeric Nanoparticles as a Promising Tool for Anti-cancer Therapeutics 2019. [DOI: 10.1016/b978-0-12-816963-6.00002-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
640 Kumar A, Roy S, Srivastava A, Naikwade MM, Purohit B, Mahato K, Naidu V, Chandra P. Nanotherapeutics. Nanotechnology in Modern Animal Biotechnology. Elsevier; 2019. pp. 149-61. [DOI: 10.1016/b978-0-12-818823-1.00010-7] [Cited by in Crossref: 14] [Article Influence: 4.7] [Reference Citation Analysis]
641 Zhang J, Si D, Wang S, Chen X, Zhou H, Yang M. Photo-induced hydrogen-bonding complexes for drug periodic release. Biomater Sci 2019;7:2468-79. [DOI: 10.1039/c9bm00269c] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
642 Jain K. Nanohybrids of Dendrimers and Carbon Nanotubes: A Benefaction or Forfeit in Drug Delivery? NANOASIA 2018;9:21-9. [DOI: 10.2174/2210681208666171204163622] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
643 Barra F, Evangelisti G, Ferro Desideri L, Di Domenico S, Ferraioli D, Vellone VG, De Cian F, Ferrero S. Investigational PI3K/AKT/mTOR inhibitors in development for endometrial cancer. Expert Opinion on Investigational Drugs 2018;28:131-42. [DOI: 10.1080/13543784.2018.1558202] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 8.0] [Reference Citation Analysis]
644 Yuan Y, He Y, Bo R, Ma Z, Wang Z, Dong L, Lin TY, Xue X, Li Y. A facile approach to fabricate self-assembled magnetic nanotheranostics for drug delivery and imaging. Nanoscale 2018;10:21634-9. [PMID: 30457141 DOI: 10.1039/c8nr05141k] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
645 Vangijzegem T, Stanicki D, Laurent S. Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics. Expert Opin Drug Deliv 2019;16:69-78. [PMID: 30496697 DOI: 10.1080/17425247.2019.1554647] [Cited by in Crossref: 213] [Cited by in F6Publishing: 172] [Article Influence: 53.3] [Reference Citation Analysis]
646 Englert C, Brendel JC, Majdanski TC, Yildirim T, Schubert S, Gottschaldt M, Windhab N, Schubert US. Pharmapolymers in the 21st century: Synthetic polymers in drug delivery applications. Progress in Polymer Science 2018;87:107-64. [DOI: 10.1016/j.progpolymsci.2018.07.005] [Cited by in Crossref: 113] [Cited by in F6Publishing: 70] [Article Influence: 28.3] [Reference Citation Analysis]
647 Ma Y, Liu X, Ma Q, Liu Y. Near-infrared nanoparticles based on indocyanine green-conjugated albumin: a versatile platform for imaging-guided synergistic tumor chemo-phototherapy with temperature-responsive drug release. Onco Targets Ther 2018;11:8517-28. [PMID: 30555242 DOI: 10.2147/OTT.S183887] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
648 Chamundeeswari M, Jeslin J, Verma ML. Nanocarriers for drug delivery applications. Environ Chem Lett 2019;17:849-65. [DOI: 10.1007/s10311-018-00841-1] [Cited by in Crossref: 91] [Cited by in F6Publishing: 101] [Article Influence: 22.8] [Reference Citation Analysis]
649 Charlie-silva I, Fraceto LF, de Melo NFS. Progress in nano-drug delivery of artemisinin and its derivatives: towards to use in immunomodulatory approaches. Artificial Cells, Nanomedicine, and Biotechnology 2018;46:S611-20. [DOI: 10.1080/21691401.2018.1505739] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 6.3] [Reference Citation Analysis]
650 Andima M, Costabile G, Isert L, Ndakala AJ, Derese S, Merkel OM. Evaluation of β-Sitosterol Loaded PLGA and PEG-PLA Nanoparticles for Effective Treatment of Breast Cancer: Preparation, Physicochemical Characterization, and Antitumor Activity. Pharmaceutics 2018;10:E232. [PMID: 30445705 DOI: 10.3390/pharmaceutics10040232] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
651 Khan S, Ansari AA, Malik A, Chaudhary AA, Syed JB, Khan AA. Preparation, characterizations and in vitro cytotoxic activity of nickel oxide nanoparticles on HT-29 and SW620 colon cancer cell lines. J Trace Elem Med Biol 2019;52:12-7. [PMID: 30732872 DOI: 10.1016/j.jtemb.2018.11.003] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 4.3] [Reference Citation Analysis]
652 de Alencar MVOB, Islam MT, de Lima RMT, Paz MFCJ, dos Reis AC, da Mata AMOF, Filho JWGDO, Cerqueira GS, Ferreira PMP, e Sousa JMDC, Mubarak MS, Melo-cavalcante AADC. Phytol as an anticarcinogenic and antitumoral agent: An in vivo study in swiss mice with DMBA-Induced breast cancer: ANTICARCINOGENIC AND ANTITUMORAL EFFECTS OF PHYTOL. IUBMB Life 2019;71:200-12. [DOI: 10.1002/iub.1952] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
653 Sugiura Y, Makita Y. Ammonium Substitutional Solid Solution of Octacalcium Phosphate (OCP). Chem Lett 2018;47:1371-4. [DOI: 10.1246/cl.180636] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
654 Gambardella J, Ciccarelli M, Del Giudice C, Fiordelisi A, De Rosa M, Sala M, Pacelli R, Campiglia P, Trimarco B, Iaccarino G, Sorriento D. A Novel Small Peptide Inhibitor of NFκB, RH10, Blocks Oxidative Stress-Dependent Phenotypes in Cancer. Oxid Med Cell Longev 2018;2018:5801807. [PMID: 30524659 DOI: 10.1155/2018/5801807] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
655 Bermúdez-Méndez E, Fuglsang-Madsen A, Føns S, Lomonte B, Gutiérrez JM, Laustsen AH. Innovative Immunization Strategies for Antivenom Development. Toxins (Basel) 2018;10:E452. [PMID: 30400220 DOI: 10.3390/toxins10110452] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 10.3] [Reference Citation Analysis]
656 Rezvantalab S, Drude NI, Moraveji MK, Güvener N, Koons EK, Shi Y, Lammers T, Kiessling F. PLGA-Based Nanoparticles in Cancer Treatment. Front Pharmacol 2018;9:1260. [PMID: 30450050 DOI: 10.3389/fphar.2018.01260] [Cited by in Crossref: 226] [Cited by in F6Publishing: 235] [Article Influence: 56.5] [Reference Citation Analysis]
657 Gapale DL, Arote SA, Palve BM, Dalvi SN, Borse RY. Effect of film thickness on humidity sensing of spray deposited TiO 2 thin films. Mater Res Express 2019;6:026402. [DOI: 10.1088/2053-1591/aae970] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
658 Zhang C, Shi G, Zhang J, Niu J, Huang P, Wang Z, Wang Y, Wang W, Li C, Kong D. Redox- and light-responsive alginate nanoparticles as effective drug carriers for combinational anticancer therapy. Nanoscale 2017;9:3304-14. [PMID: 28225139 DOI: 10.1039/c7nr00005g] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 8.8] [Reference Citation Analysis]
659 Mignani S, Rodrigues J, Tomas H, Roy R, Shi X, Majoral J. Bench-to-bedside translation of dendrimers: Reality or utopia? A concise analysis. Advanced Drug Delivery Reviews 2018;136-137:73-81. [DOI: 10.1016/j.addr.2017.11.007] [Reference Citation Analysis]
660 Mignani S, Rodrigues J, Tomas H, Roy R, Shi X, Majoral JP. Bench-to-bedside translation of dendrimers: Reality or utopia? A concise analysis. Adv Drug Deliv Rev 2018;136-137:73-81. [PMID: 29155170 DOI: 10.1016/j.addr.2017.11.007] [Cited by in Crossref: 38] [Cited by in F6Publishing: 44] [Article Influence: 9.5] [Reference Citation Analysis]
661 Bi H, Xue J, Jiang H, Gao S, Yang D, Fang Y, Shi K. Current developments in drug delivery with thermosensitive liposomes. Asian J Pharm Sci 2019;14:365-79. [PMID: 32104466 DOI: 10.1016/j.ajps.2018.07.006] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
662 Ernest U, Chen HY, Xu MJ, Taghipour YD, Asad MHHB, Rahimi R, Murtaza G. Anti-Cancerous Potential of Polyphenol-Loaded Polymeric Nanotherapeutics. Molecules 2018;23:E2787. [PMID: 30373235 DOI: 10.3390/molecules23112787] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
663 Sun N, Lei R, Xu J, Kundu SC, Cai Y, Yao J, Ni Q. Fabricated porous silk fibroin particles for pH-responsive drug delivery and targeting of tumor cells. J Mater Sci 2019;54:3319-30. [DOI: 10.1007/s10853-018-3022-9] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
664 Huang J, Li N, Zhang C, Meng Z. Metal–Organic Framework as a Microreactor for in Situ Fabrication of Multifunctional Nanocomposites for Photothermal–Chemotherapy of Tumors in Vivo. ACS Appl Mater Interfaces 2018;10:38729-38. [DOI: 10.1021/acsami.8b12394] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 6.3] [Reference Citation Analysis]
665 Castillo RR, Lozano D, Vallet-Regí M. Building Block Based Construction of Membrane-Organelle Double Targeted Nanosystem for Two-Drug Delivery. Bioconjug Chem 2018;29:3677-85. [PMID: 30273483 DOI: 10.1021/acs.bioconjchem.8b00603] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
666 Ponzoni M, Curnis F, Brignole C, Bruno S, Guarnieri D, Sitia L, Marotta R, Sacchi A, Bauckneht M, Buschiazzo A, Rossi A, Di Paolo D, Perri P, Gori A, Sementa AR, Emionite L, Cilli M, Tamma R, Ribatti D, Pompa PP, Marini C, Sambuceti G, Corti A, Pastorino F. Enhancement of Tumor Homing by Chemotherapy-Loaded Nanoparticles. Small 2018;14:1802886. [DOI: 10.1002/smll.201802886] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
667 Hernandez-Delgadillo R, García-Cuéllar CM, Sánchez-Pérez Y, Pineda-Aguilar N, Martínez-Martínez MA, Rangel-Padilla EE, Nakagoshi-Cepeda SE, Solís-Soto JM, Sánchez-Nájera RI, Nakagoshi-Cepeda MAA, Chellam S, Cabral-Romero C. In vitro evaluation of the antitumor effect of bismuth lipophilic nanoparticles (BisBAL NPs) on breast cancer cells. Int J Nanomedicine 2018;13:6089-97. [PMID: 30323596 DOI: 10.2147/IJN.S179095] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
668 de Sousa Cunha F, Dos Santos Pereira LN, de Costa E Silva TP, de Sousa Luz RA, Nogueira Mendes A. Development of nanoparticulate systems with action in breast and ovarian cancer: nanotheragnostics. J Drug Target 2019;27:732-41. [PMID: 30207742 DOI: 10.1080/1061186X.2018.1523418] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
669 Huang R, Li J, Kebebe D, Wu Y, Zhang B, Liu Z. Cell penetrating peptides functionalized gambogic acid-nanostructured lipid carrier for cancer treatment. Drug Deliv 2018;25:757-65. [PMID: 29528244 DOI: 10.1080/10717544.2018.1446474] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
670 Chen Q, Wang C, Chen G, Hu Q, Gu Z. Delivery Strategies for Immune Checkpoint Blockade. Adv Healthc Mater 2018;7:e1800424. [PMID: 29978565 DOI: 10.1002/adhm.201800424] [Cited by in Crossref: 58] [Cited by in F6Publishing: 59] [Article Influence: 14.5] [Reference Citation Analysis]
671 Wang Y, Yang P, Zhao X, Gao D, Sun N, Tian Z, Ma T, Yang Z. Multifunctional Cargo-Free Nanomedicine for Cancer Therapy. Int J Mol Sci 2018;19:E2963. [PMID: 30274177 DOI: 10.3390/ijms19102963] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
672 Kalimuthu S, Gangadaran P, Rajendran RL, Zhu L, Oh JM, Lee HW, Gopal A, Baek SH, Jeong SY, Lee SW, Lee J, Ahn BC. A New Approach for Loading Anticancer Drugs Into Mesenchymal Stem Cell-Derived Exosome Mimetics for Cancer Therapy. Front Pharmacol 2018;9:1116. [PMID: 30319428 DOI: 10.3389/fphar.2018.01116] [Cited by in Crossref: 114] [Cited by in F6Publishing: 125] [Article Influence: 28.5] [Reference Citation Analysis]
673 Casadó A, Sagristá ML, Mora M. A novel microfluidic liposomal formulation for the delivery of the SN-38 camptothecin: characterization and in vitro assessment of its cytotoxic effect on two tumor cell lines. Int J Nanomedicine 2018;13:5301-20. [PMID: 30254436 DOI: 10.2147/IJN.S166219] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
674 Liu F, Chen Y, Li Y, Guo Y, Cao Y, Li P, Wang Z, Gong Y, Ran H. Folate-receptor-targeted laser-activable poly(lactide-co-glycolic acid) nanoparticles loaded with paclitaxel/indocyanine green for photoacoustic/ultrasound imaging and chemo/photothermal therapy. Int J Nanomedicine 2018;13:5139-58. [PMID: 30233177 DOI: 10.2147/IJN.S167043] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 7.8] [Reference Citation Analysis]
675 Zhang J, Yang C, Pan S, Shi M, Li J, Hu H, Qiao M, Chen D, Zhao X. Eph A10-modified pH-sensitive liposomes loaded with novel triphenylphosphine-docetaxel conjugate possess hierarchical targetability and sufficient antitumor effect both in vitro and in vivo. Drug Deliv 2018;25:723-37. [PMID: 29513049 DOI: 10.1080/10717544.2018.1446475] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
676 Kalaydina RV, Bajwa K, Qorri B, Decarlo A, Szewczuk MR. Recent advances in "smart" delivery systems for extended drug release in cancer therapy. Int J Nanomedicine 2018;13:4727-45. [PMID: 30154657 DOI: 10.2147/IJN.S168053] [Cited by in Crossref: 116] [Cited by in F6Publishing: 124] [Article Influence: 29.0] [Reference Citation Analysis]
677 Braal CL, de Bruijn P, Atrafi F, van Geijn M, Rijcken CJF, Mathijssen RHJ, Koolen SLW. A new method for the determination of total and released docetaxel from docetaxel-entrapped core-crosslinked polymeric micelles (CriPec®) by LC-MS/MS and its clinical application in plasma and tissues in patients with various tumours. J Pharm Biomed Anal 2018;161:168-74. [PMID: 30165333 DOI: 10.1016/j.jpba.2018.08.035] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
678 Haron AS, Syed Alwi SS, Saiful Yazan L, Abd Razak R, Ong YS, Zakarial Ansar FH, Roshini Alexander H. Cytotoxic Effect of Thymoquinone-Loaded Nanostructured Lipid Carrier (TQ-NLC) on Liver Cancer Cell Integrated with Hepatitis B Genome, Hep3B. Evid Based Complement Alternat Med 2018;2018:1549805. [PMID: 30186351 DOI: 10.1155/2018/1549805] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
679 Sousa I, Rodrigues F, Prazeres H, Lima RT, Soares P. Liposomal therapies in oncology: does one size fit all? Cancer Chemother Pharmacol 2018;82:741-55. [DOI: 10.1007/s00280-018-3668-7] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
680 Mehta D, Leong N, Mcleod VM, Kelly BD, Pathak R, Owen DJ, Porter CJ, Kaminskas LM. Reducing Dendrimer Generation and PEG Chain Length Increases Drug Release and Promotes Anticancer Activity of PEGylated Polylysine Dendrimers Conjugated with Doxorubicin via a Cathepsin-Cleavable Peptide Linker. Mol Pharmaceutics 2018;15:4568-76. [DOI: 10.1021/acs.molpharmaceut.8b00581] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 8.0] [Reference Citation Analysis]
681 Rao NV, Ko H, Lee J, Park JH. Recent Progress and Advances in Stimuli-Responsive Polymers for Cancer Therapy. Front Bioeng Biotechnol 2018;6:110. [PMID: 30159310 DOI: 10.3389/fbioe.2018.00110] [Cited by in Crossref: 81] [Cited by in F6Publishing: 85] [Article Influence: 20.3] [Reference Citation Analysis]
682 Meka RR, Venkatesha SH, Moudgil KD. Peptide-directed liposomal delivery improves the therapeutic index of an immunomodulatory cytokine in controlling autoimmune arthritis. J Control Release 2018;286:279-88. [PMID: 30081142 DOI: 10.1016/j.jconrel.2018.08.007] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 7.0] [Reference Citation Analysis]
683 Papadopoulos N, Lennartsson J. The PDGF/PDGFR pathway as a drug target. Molecular Aspects of Medicine 2018;62:75-88. [DOI: 10.1016/j.mam.2017.11.007] [Cited by in Crossref: 122] [Cited by in F6Publishing: 100] [Article Influence: 30.5] [Reference Citation Analysis]
684 Bhattarai N, Mathis JM, Chen M, Pérez RL, Siraj N, Magut PKS, McDonough K, Sahasrabudhe G, Warner IM. Endocytic Selective Toxicity of Rhodamine 6G nanoGUMBOS in Breast Cancer Cells. Mol Pharm 2018;15:3837-45. [PMID: 29975540 DOI: 10.1021/acs.molpharmaceut.8b00339] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
685 Kabir MF, Mohd Ali J, Haji Hashim O. Microarray gene expression profiling in colorectal (HCT116) and hepatocellular (HepG2) carcinoma cell lines treated with Melicope ptelefolia leaf extract reveals transcriptome profiles exhibiting anticancer activity. PeerJ 2018;6:e5203. [PMID: 30042885 DOI: 10.7717/peerj.5203] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
686 Roshini A, Jagadeesan S, Arivazhagan L, Cho YJ, Lim JH, Doh YH, Kim SJ, Na J, Choi KH. pH-sensitive tangeretin-ZnO quantum dots exert apoptotic and anti-metastatic effects in metastatic lung cancer cell line. Mater Sci Eng C Mater Biol Appl 2018;92:477-88. [PMID: 30184773 DOI: 10.1016/j.msec.2018.06.073] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
687 Thanuja M Y, Anupama C, Ranganath SH. Bioengineered cellular and cell membrane-derived vehicles for actively targeted drug delivery: So near and yet so far. Adv Drug Deliv Rev 2018;132:57-80. [PMID: 29935987 DOI: 10.1016/j.addr.2018.06.012] [Cited by in Crossref: 66] [Cited by in F6Publishing: 69] [Article Influence: 16.5] [Reference Citation Analysis]
688 Cheng X, Li D, Lin A, Xu J, Wu L, Gu H, Huang Z, Liu J, Zhang Y, Yin X. Fabrication of multifunctional triple-responsive platform based on CuS-capped periodic mesoporous organosilica nanoparticles for chemo-photothermal therapy. Int J Nanomedicine 2018;13:3661-77. [PMID: 29983561 DOI: 10.2147/IJN.S167407] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
689 Gouveia M, Figueira J, Jardim MG, Castro R, Tomás H, Rissanen K, Rodrigues J. Poly(alkylidenimine) Dendrimers Functionalized with the Organometallic Moiety [Ru(η⁵-C₅H₅)(PPh₃)₂]⁺ as Promising Drugs Against Cisplatin-Resistant Cancer Cells and Human Mesenchymal Stem Cells. Molecules 2018;23:E1471. [PMID: 29914219 DOI: 10.3390/molecules23061471] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 6.3] [Reference Citation Analysis]
690 Gouveia M, Figueira J, Jardim M, Castro R, Tomás H, Rissanen K, Rodrigues J. Poly(alkylidenimine) Dendrimers Functionalized with the Organometallic Moiety [Ru(η5-C5H5)(PPh3)2]+ as Promising Drugs Against Cisplatin-Resistant Cancer Cells and Human Mesenchymal Stem Cells. Molecules 2018;23:1471. [DOI: 10.3390/molecules23061471] [Reference Citation Analysis]
691 Theochari I, Papadimitriou V, Papahatjis D, Assimomytis N, Pappou E, Pratsinis H, Xenakis A, Pletsa V. Oil-In-Water Microemulsions as Hosts for Benzothiophene-Based Cytotoxic Compounds: An Effective Combination. Biomimetics (Basel) 2018;3:E13. [PMID: 31105235 DOI: 10.3390/biomimetics3020013] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
692 Yu WL, Hua ZC. Evaluation of effectiveness of granulocyte-macrophage colony-stimulating factor therapy to cancer patients after chemotherapy: a meta-analysis. Oncotarget 2018;9:28226-39. [PMID: 29963274 DOI: 10.18632/oncotarget.24890] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
693 Kim GH, Won JE, Byeon Y, Kim MG, Wi TI, Lee JM, Park Y, Lee J, Kang TH, Jung ID, Shin BC, Ahn HJ, Lee YJ, Sood AK, Han HD, Park Y. Selective delivery of PLXDC1 small interfering RNA to endothelial cells for anti-angiogenesis tumor therapy using CD44-targeted chitosan nanoparticles for epithelial ovarian cancer. Drug Delivery 2018;25:1394-402. [DOI: 10.1080/10717544.2018.1480672] [Cited by in Crossref: 39] [Cited by in F6Publishing: 31] [Article Influence: 9.8] [Reference Citation Analysis]
694 Jimenez-rosales A, Flores-merino MV. A Brief Review of the Pathophysiology of Non-melanoma Skin Cancer and Applications of Interpenetrating and Semi-interpenetrating Polymer Networks in Its Treatment. Regen Eng Transl Med 2018;4:187-205. [DOI: 10.1007/s40883-018-0061-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
695 Velusamy P, Srinivasa CM, Kumar GV, Qurishi Y, Su C, Gopinath SC. A pH stimuli thiol modified mesoporous silica nanoparticles: Doxorubicin carrier for cancer therapy. Journal of the Taiwan Institute of Chemical Engineers 2018;87:264-71. [DOI: 10.1016/j.jtice.2018.03.048] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
696 Zhou H, Lv S, Zhang D, Deng M, Zhang X, Tang Z, Chen X. A polypeptide based podophyllotoxin conjugate for the treatment of multi drug resistant breast cancer with enhanced efficiency and minimal toxicity. Acta Biomater 2018;73:388-99. [PMID: 29694920 DOI: 10.1016/j.actbio.2018.04.016] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 7.8] [Reference Citation Analysis]
697 Bodyak N, Yurkovetskiy AV. Delivering More Payload (High DAR ADCs). In: Damelin M, editor. Innovations for Next-Generation Antibody-Drug Conjugates. Cham: Springer International Publishing; 2018. pp. 215-40. [DOI: 10.1007/978-3-319-78154-9_9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
698 Kang M, Kwok RTK, Wang J, Zhang H, Lam JWY, Li Y, Zhang P, Zou H, Gu X, Li F, Tang BZ. A multifunctional luminogen with aggregation-induced emission characteristics for selective imaging and photodynamic killing of both cancer cells and Gram-positive bacteria. J Mater Chem B 2018;6:3894-903. [PMID: 32254317 DOI: 10.1039/c8tb00572a] [Cited by in Crossref: 48] [Cited by in F6Publishing: 47] [Article Influence: 12.0] [Reference Citation Analysis]
699 Akkad S, Serpell CJ. Degradable Polymers and Nanoparticles Built from Salicylic Acid. Macromol Rapid Commun 2018;39:e1800182. [PMID: 29786901 DOI: 10.1002/marc.201800182] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
700 Mansur AAP, Carvalho SM, Lobato ZIP, Leite MDF, Cunha ADS, Mansur HS. Design and Development of Polysaccharide-Doxorubicin-Peptide Bioconjugates for Dual Synergistic Effects of Integrin-Targeted and Cell-Penetrating Peptides for Cancer Chemotherapy. Bioconjugate Chem 2018;29:1973-2000. [DOI: 10.1021/acs.bioconjchem.8b00208] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 10.3] [Reference Citation Analysis]
701 Shabani R, Ashjari M, Ashtari K, Izadyar F, Behnam B, Khoei S, Asghari-Jafarabadi M, Koruji M. Elimination of mouse tumor cells from neonate spermatogonial cells utilizing cisplatin-entrapped folic acid-conjugated poly(lactic-co-glycolic acid) nanoparticles in vitro. Int J Nanomedicine 2018;13:2943-54. [PMID: 29849458 DOI: 10.2147/IJN.S155052] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
702 Shire Z, Vakili MR, Morgan TDR, Hall DG, Lavasanifar A, Weinfeld M. Nanoencapsulation of Novel Inhibitors of PNKP for Selective Sensitization to Ionizing Radiation and Irinotecan and Induction of Synthetic Lethality. Mol Pharm 2018;15:2316-26. [PMID: 29688721 DOI: 10.1021/acs.molpharmaceut.8b00169] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
703 Sun W, Chen X, Xie C, Wang Y, Lin L, Zhu K, Shuai X. Co-Delivery of Doxorubicin and Anti-BCL-2 siRNA by pH-Responsive Polymeric Vector to Overcome Drug Resistance in In Vitro and In Vivo HepG2 Hepatoma Model. Biomacromolecules 2018;19:2248-56. [PMID: 29690766 DOI: 10.1021/acs.biomac.8b00272] [Cited by in Crossref: 52] [Cited by in F6Publishing: 58] [Article Influence: 13.0] [Reference Citation Analysis]
704 Alves CG, Lima-sousa R, de Melo-diogo D, Louro RO, Correia IJ. IR780 based nanomaterials for cancer imaging and photothermal, photodynamic and combinatorial therapies. International Journal of Pharmaceutics 2018;542:164-75. [DOI: 10.1016/j.ijpharm.2018.03.020] [Cited by in Crossref: 65] [Cited by in F6Publishing: 65] [Article Influence: 16.3] [Reference Citation Analysis]
705 Hao L, Lin L, Zhou J. pH-Responsive Zwitterionic Copolymer DHA–PBLG–PCB for Targeted Drug Delivery: A Computer Simulation Study. Langmuir 2019;35:1944-53. [DOI: 10.1021/acs.langmuir.8b00626] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
706 Franiak-pietryga I, Ziemba B, Messmer B, Skowronska-krawczyk D. Dendrimers as Drug Nanocarriers: The Future of Gene Therapy and Targeted Therapies in Cancer. Dendrimers - Fundamentals and Applications 2018. [DOI: 10.5772/intechopen.75774] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
707 Li F, Wang Y, Li D, Chen Y, Qiao X, Fardous R, Lewandowski A, Liu J, Chan TH, Dou QP. Perspectives on the recent developments with green tea polyphenols in drug discovery. Expert Opin Drug Discov 2018;13:643-60. [PMID: 29688074 DOI: 10.1080/17460441.2018.1465923] [Cited by in F6Publishing: 12] [Reference Citation Analysis]
708 Kołoczek P, Skórska-Stania A, Cierniak A, Sebastian V, Komarnicka UK, Płotek M, Kyzioł A. Polymeric micelle-mediated delivery of half-sandwich ruthenium(II) complexes with phosphanes derived from fluoroloquinolones for lung adenocarcinoma treatment. Eur J Pharm Biopharm 2018;128:69-81. [PMID: 29678734 DOI: 10.1016/j.ejpb.2018.04.016] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
709 Andrade Vitória L, Mathias Machado R, Rosa Barros Oliveira C, Tavares Rodriguez T, Cristina Texeira Cagussu M, Maria Mathias C, Maria Pedreira Ramalho L. Clinical and histological evaluation of laser therapy in the treatment of oral mucositis in an animal model. Laser Florence 2017: Advances in Laser Medicine 2018. [DOI: 10.1117/12.2315539] [Reference Citation Analysis]
710 Unzueta U, Cespedes MV, Sala R, Alamo P, Sánchez-Chardi A, Pesarrodona M, Sánchez-García L, Cano-Garrido O, Villaverde A, Vázquez E, Mangues R, Seras-Franzoso J. Release of targeted protein nanoparticles from functional bacterial amyloids: A death star-like approach. J Control Release 2018;279:29-39. [PMID: 29641987 DOI: 10.1016/j.jconrel.2018.04.004] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 7.0] [Reference Citation Analysis]
711 Zhao CY, Cheng R, Yang Z, Tian ZM. Nanotechnology for Cancer Therapy Based on Chemotherapy. Molecules 2018;23:E826. [PMID: 29617302 DOI: 10.3390/molecules23040826] [Cited by in Crossref: 137] [Cited by in F6Publishing: 150] [Article Influence: 34.3] [Reference Citation Analysis]
712 Rosière R, Hureaux J, Levet V, Amighi K, Wauthoz N. La chimiothérapie inhalée – partie 1 : concept et challenges technologiques actuels. Revue des Maladies Respiratoires 2018;35:357-77. [DOI: 10.1016/j.rmr.2018.02.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
713 Mehbuba Hossain S, Chowdhury EH. Citrate- and Succinate-Modified Carbonate Apatite Nanoparticles with Loaded Doxorubicin Exhibit Potent Anticancer Activity against Breast Cancer Cells. Pharmaceutics 2018;10:E32. [PMID: 29534497 DOI: 10.3390/pharmaceutics10010032] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
714 Kebebe D, Liu Y, Wu Y, Vilakhamxay M, Liu Z, Li J. Tumor-targeting delivery of herb-based drugs with cell-penetrating/tumor-targeting peptide-modified nanocarriers. Int J Nanomedicine 2018;13:1425-42. [PMID: 29563797 DOI: 10.2147/IJN.S156616] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 9.5] [Reference Citation Analysis]
715 Sufi SA, Pajaniradje S, Mukherjee V, Rajagopalan R. Redox Nano-Architectures: Perspectives and Implications in Diagnosis and Treatment of Human Diseases. Antioxid Redox Signal 2019;30:762-85. [PMID: 29334759 DOI: 10.1089/ars.2017.7412] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
716 Leite ML, da Cunha NB, Costa FF. Antimicrobial peptides, nanotechnology, and natural metabolites as novel approaches for cancer treatment. Pharmacology & Therapeutics 2018;183:160-76. [DOI: 10.1016/j.pharmthera.2017.10.010] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 9.5] [Reference Citation Analysis]
717 Zhang L, Ren Y, Wang Y, He Y, Feng W, Song C. Pharmacokinetics, distribution and anti-tumor efficacy of liposomal mitoxantrone modified with a luteinizing hormone-releasing hormone receptor-specific peptide. Int J Nanomedicine 2018;13:1097-105. [PMID: 29520138 DOI: 10.2147/IJN.S150512] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
718 Prakash B, Asha S, Ananth AN, Vanithakumari G, Okram GS, Jose SP, Rajan MAJ. Surface colonized silver nano particles over chitosan poly-electrolyte micro-spheres and their multi-functional behavior. Mater Res Express 2018;5:025032. [DOI: 10.1088/2053-1591/aaa3c6] [Reference Citation Analysis]
719 Seidi K, Neubauer HA, Moriggl R, Jahanban-Esfahlan R, Javaheri T. Tumor target amplification: Implications for nano drug delivery systems. J Control Release 2018;275:142-61. [PMID: 29454742 DOI: 10.1016/j.jconrel.2018.02.020] [Cited by in Crossref: 66] [Cited by in F6Publishing: 70] [Article Influence: 16.5] [Reference Citation Analysis]
720 Ahn B, Lee S, Yoon HR, Lee JM, Oh HJ, Kim HM, Jung Y. Four-fold Channel-Nicked Human Ferritin Nanocages for Active Drug Loading and pH-Responsive Drug Release. Angew Chem Int Ed 2018;57:2909-13. [DOI: 10.1002/anie.201800516] [Cited by in Crossref: 42] [Cited by in F6Publishing: 45] [Article Influence: 10.5] [Reference Citation Analysis]
721 Deci MB, Liu M, Dinh QT, Nguyen J. Precision engineering of targeted nanocarriers. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2018;10:e1511. [PMID: 29436157 DOI: 10.1002/wnan.1511] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
722 Simard JC, Durocher I, Girard D. Silver nanoparticles induce irremediable endoplasmic reticulum stress leading to unfolded protein response dependent apoptosis in breast cancer cells. Apoptosis 2016;21:1279-90. [PMID: 27586505 DOI: 10.1007/s10495-016-1285-7] [Cited by in Crossref: 48] [Cited by in F6Publishing: 51] [Article Influence: 12.0] [Reference Citation Analysis]
723 Ahn B, Lee S, Yoon HR, Lee JM, Oh HJ, Kim HM, Jung Y. Four-fold Channel-Nicked Human Ferritin Nanocages for Active Drug Loading and pH-Responsive Drug Release. Angew Chem 2018;130:2959-63. [DOI: 10.1002/ange.201800516] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
724 Zhang HG, Cao P, Teng Y, Hu X, Wang Q, Yeri AS, Zhuang X, Samykutty A, Mu J, Deng ZB, Zhang L, Mobley JA, Yan J, Van Keuren-Jensen K, Miller D. Isolation, identification, and characterization of novel nanovesicles. Oncotarget 2016;7:41346-62. [PMID: 27191656 DOI: 10.18632/oncotarget.9325] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 4.8] [Reference Citation Analysis]
725 Liu K, Zheng D, Zhao J, Tao Y, Wang Y, He J, Lei J, Xi X. pH-Sensitive nanogels based on the electrostatic self-assembly of radionuclide 131 I labeled albumin and carboxymethyl cellulose for synergistic combined chemo-radioisotope therapy of cancer. J Mater Chem B 2018;6:4738-46. [DOI: 10.1039/c8tb01295d] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 5.3] [Reference Citation Analysis]
726 Gilabert-oriol R, Chernov L, Deyell RJ, Bally MB. Developing liposomal nanomedicines for treatment of patients with neuroblastoma. Lipid Nanocarriers for Drug Targeting 2018. [DOI: 10.1016/b978-0-12-813687-4.00009-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
727 Uskoković V, Uskoković DP. Nanotechnologies in preventive and regenerative medicine: Quo Vadis, Domine ? Nanotechnologies in Preventive and Regenerative Medicine 2018. [DOI: 10.1016/b978-0-323-48063-5.00012-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
728 Ерохина МВ-, Лепеха ЛН, Рыбалкина ЕЮ, Павлова ЕН, Онищенко ГЕ. ВЛИЯНИЕ РИФАМПИЦИНА И ЕГО ИНКАПСУЛИРОВАННОЙ ФОРМЫ НА ФУНКЦИОНАЛЬНУЮ АКТИВНОСТЬ БЕЛКА МНОЖЕСТВЕННОЙ ЛЕКАРСТВЕННОЙ УСТОЙЧИВОСТИ PGP В МИЕЛОИДНЫХ КЛЕТКАХ ЧЕЛОВЕКА, "Вестник Центрального научно-исследовательского института туберкулеза". Вестник ЦНИИТ 2018. [DOI: 10.7868/s2587667818020036] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
729 Watanabe D, Goshima F. Oncolytic Virotherapy by HSV. Adv Exp Med Biol 2018;1045:63-84. [PMID: 29896663 DOI: 10.1007/978-981-10-7230-7_4] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 7.5] [Reference Citation Analysis]
730 Gheybi H, Sattari S, Bodaghi A, Soleimani K, Dadkhah A, Adeli M. Polyglycerols. Engineering of Biomaterials for Drug Delivery Systems 2018. [DOI: 10.1016/b978-0-08-101750-0.00005-2] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
731 Raveendran R. Polymeric micelles: Smart nanocarriers for anticancer drug delivery. Drug Delivery Nanosystems for Biomedical Applications 2018. [DOI: 10.1016/b978-0-323-50922-0.00012-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
732 Min L, Garbutt C, Hornicek F, Duan Z. The Emerging Roles and Clinical Potential of Exosomes in Cancer. Diagnostic and Therapeutic Applications of Exosomes in Cancer 2018. [DOI: 10.1016/b978-0-12-812774-2.00016-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
733 Oliveri V, Vecchio G. Cyclodextrin-based nanoparticles * *Dedicated to the memory of Dr. Carmela Spatafora. Organic Materials as Smart Nanocarriers for Drug Delivery 2018. [DOI: 10.1016/b978-0-12-813663-8.00015-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
734 Sivaram AJ, Wardiana A, Howard CB, Mahler SM, Thurecht KJ. Recent Advances in the Generation of Antibody-Nanomaterial Conjugates. Adv Healthc Mater 2018;7. [PMID: 28961378 DOI: 10.1002/adhm.201700607] [Cited by in Crossref: 59] [Cited by in F6Publishing: 61] [Article Influence: 14.8] [Reference Citation Analysis]
735 Sahoo S, Singh D, Singh P, Minz AP. Advanced Nanotherapeutic Systems for Drug Delivery and Imaging in Cancer. Multifunctional Nanocarriers for Contemporary Healthcare Applications 2018. [DOI: 10.4018/978-1-5225-4781-5.ch001] [Reference Citation Analysis]
736 Filho JAC. Endophytic Microbes as a Novel Source for Producing Anticancer Compounds as Multidrug Resistance Modulators. Anticancer Plants: Natural Products and Biotechnological Implements 2018. [DOI: 10.1007/978-981-10-8064-7_15] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
737 Cowen T, Karim K, Piletsky SA. Solubility and size of polymer nanoparticles. Polym Chem 2018;9:4566-73. [DOI: 10.1039/c8py00829a] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
738 Xu G, Li B, Wang T, Wan J, Zhang Y, Huang J, Shen Y. Enhancing the anti-ovarian cancer activity of quercetin using a self-assembling micelle and thermosensitive hydrogel drug delivery system. RSC Adv 2018;8:21229-42. [DOI: 10.1039/c8ra03274b] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
739 Li Z, Pan W, Tartakovsky AM. Particle-Based Methods for Mesoscopic Transport Processes. Handbook of Materials Modeling 2018. [DOI: 10.1007/978-3-319-50257-1_64-1] [Reference Citation Analysis]
740 Pelissari FM, Neri-numa IA, Molina G, Ferreira DC, Pastore G. Potential of nanoparticles as drug delivery system for cancer treatment. Applications of Nanocomposite Materials in Drug Delivery 2018. [DOI: 10.1016/b978-0-12-813741-3.00019-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
741 Pan R, Liu G, Li Y, Wei Y, Li S, Tao L. Size-dependent endocytosis and a dynamic-release model of nanoparticles. Nanoscale 2018;10:8269-74. [DOI: 10.1039/c8nr00830b] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
742 Burns A, Self WT. Antioxidant Inorganic Nanoparticles and Their Potential Applications in Biomedicine. Smart Nanoparticles for Biomedicine 2018. [DOI: 10.1016/b978-0-12-814156-4.00011-2] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
743 Dan N. Vesicle-based drug carriers. Design and Development of New Nanocarriers. Elsevier; 2018. pp. 1-55. [DOI: 10.1016/b978-0-12-813627-0.00001-6] [Cited by in Crossref: 4] [Article Influence: 1.0] [Reference Citation Analysis]
744 Liu Q, Qian Y, Li P, Zhang S, Liu J, Sun X, Fulham M, Feng D, Huang G, Lu W, Song S. 131I-Labeled Copper Sulfide-Loaded Microspheres to Treat Hepatic Tumors via Hepatic Artery Embolization. Theranostics 2018;8:785-99. [PMID: 29344306 DOI: 10.7150/thno.21491] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 7.5] [Reference Citation Analysis]
745 Huang C, Lu CK, Tu MC, Chang JH, Chen YJ, Tu YH, Huang HC. Polyphenol-rich Avicennia marina leaf extracts induce apoptosis in human breast and liver cancer cells and in a nude mouse xenograft model. Oncotarget 2016;7:35874-93. [PMID: 27078842 DOI: 10.18632/oncotarget.8624] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
746 Buttacavoli M, Albanese NN, Di Cara G, Alduina R, Faleri C, Gallo M, Pizzolanti G, Gallo G, Feo S, Baldi F, Cancemi P. Anticancer activity of biogenerated silver nanoparticles: an integrated proteomic investigation. Oncotarget 2018;9:9685-705. [PMID: 29515763 DOI: 10.18632/oncotarget.23859] [Cited by in Crossref: 103] [Cited by in F6Publishing: 110] [Article Influence: 20.6] [Reference Citation Analysis]
747 Antonow MB, Franco C, Prado W, Beckenkamp A, Silveira GP, Buffon A, Guterres SS, Pohlmann AR. Arginylglycylaspartic Acid-Surface-Functionalized Doxorubicin-Loaded Lipid-Core Nanocapsules as a Strategy to Target Alpha(V) Beta(3) Integrin Expressed on Tumor Cells. Nanomaterials (Basel) 2017;8:E2. [PMID: 29271920 DOI: 10.3390/nano8010002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
748 Genta I, Chiesa E, Colzani B, Modena T, Conti B, Dorati R. GE11 Peptide as an Active Targeting Agent in Antitumor Therapy: A Minireview. Pharmaceutics 2017;10:E2. [PMID: 29271876 DOI: 10.3390/pharmaceutics10010002] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 7.2] [Reference Citation Analysis]
749 Hosseini Sadr S, Davaran S, Alizadeh E, Salehi R, Ramazani A. Enhanced anticancer potency by thermo/pH-responsive PCL-based magnetic nanoparticles. Journal of Biomaterials Science, Polymer Edition 2018;29:277-308. [DOI: 10.1080/09205063.2017.1414482] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
750 Wang X, Zhang Q, Lv L, Fu J, Jiang Y, Xin H, Yao Q. Glioma and microenvironment dual targeted nanocarrier for improved antiglioblastoma efficacy. Drug Deliv 2017;24:1401-9. [PMID: 28933201 DOI: 10.1080/10717544.2017.1378940] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 4.4] [Reference Citation Analysis]
751 Serna N, Sánchez-García L, Unzueta U, Díaz R, Vázquez E, Mangues R, Villaverde A. Protein-Based Therapeutic Killing for Cancer Therapies. Trends Biotechnol 2018;36:318-35. [PMID: 29246477 DOI: 10.1016/j.tibtech.2017.11.007] [Cited by in Crossref: 72] [Cited by in F6Publishing: 66] [Article Influence: 14.4] [Reference Citation Analysis]
752 Yang S, Palanikumar L, Jeong S, Kim K, Lee J, Jeoung E, Kim C, Ryu J, Park M. Synergistic Effect of Photothermal Therapy and Chemotherapy Using Camptothecin-Conjugated Gold Nanorods. Part Part Syst Charact 2018;35:1700307. [DOI: 10.1002/ppsc.201700307] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 3.6] [Reference Citation Analysis]
753 El-Sherief HAM, Youssif BGM, Bukhari SNA, Abdel-Aziz M, Abdel-Rahman HM. Novel 1,2,4-triazole derivatives as potential anticancer agents: Design, synthesis, molecular docking and mechanistic studies. Bioorg Chem 2018;76:314-25. [PMID: 29227915 DOI: 10.1016/j.bioorg.2017.12.013] [Cited by in Crossref: 81] [Cited by in F6Publishing: 68] [Article Influence: 16.2] [Reference Citation Analysis]
754 Alibakhshi A, Abarghooi Kahaki F, Ahangarzadeh S, Yaghoobi H, Yarian F, Arezumand R, Ranjbari J, Mokhtarzadeh A, de la Guardia M. Targeted cancer therapy through antibody fragments-decorated nanomedicines. Journal of Controlled Release 2017;268:323-34. [DOI: 10.1016/j.jconrel.2017.10.036] [Cited by in Crossref: 94] [Cited by in F6Publishing: 96] [Article Influence: 18.8] [Reference Citation Analysis]
755 Pohlit H, Worm M, Langhanki J, Berger-nicoletti E, Opatz T, Frey H. Silver Oxide Mediated Monotosylation of Poly(ethylene glycol) (PEG): Heterobifunctional PEG via Polymer Desymmetrization. Macromolecules 2017;50:9196-206. [DOI: 10.1021/acs.macromol.7b01787] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
756 Awasthi R, Rathbone MJ, Hansbro PM, Bebawy M, Dua K. Therapeutic prospects of microRNAs in cancer treatment through nanotechnology. Drug Deliv and Transl Res 2018;8:97-110. [DOI: 10.1007/s13346-017-0440-1] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 4.6] [Reference Citation Analysis]
757 Öztürk-atar K, Eroğlu H, Çalış S. Novel advances in targeted drug delivery. Journal of Drug Targeting 2017;26:633-42. [DOI: 10.1080/1061186x.2017.1401076] [Cited by in Crossref: 48] [Cited by in F6Publishing: 37] [Article Influence: 9.6] [Reference Citation Analysis]
758 Prasad M, Lambe UP, Brar B, Shah I, J M, Ranjan K, Rao R, Kumar S, Mahant S, Khurana SK, Iqbal HMN, Dhama K, Misri J, Prasad G. Nanotherapeutics: An insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed Pharmacother 2018;97:1521-37. [PMID: 29793315 DOI: 10.1016/j.biopha.2017.11.026] [Cited by in Crossref: 153] [Cited by in F6Publishing: 156] [Article Influence: 30.6] [Reference Citation Analysis]
759 Hemati Azandaryani A, Kashanian S, Derakhshandeh K. Folate Conjugated Hybrid Nanocarrier for Targeted Letrozole Delivery in Breast Cancer Treatment. Pharm Res 2017;34:2798-808. [DOI: 10.1007/s11095-017-2260-x] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 5.2] [Reference Citation Analysis]
760 Goodman AM, Neumann O, Nørregaard K, Henderson L, Choi MR, Clare SE, Halas NJ. Near-infrared remotely triggered drug-release strategies for cancer treatment. Proc Natl Acad Sci U S A 2017;114:12419-24. [PMID: 29109274 DOI: 10.1073/pnas.1713137114] [Cited by in Crossref: 54] [Cited by in F6Publishing: 55] [Article Influence: 10.8] [Reference Citation Analysis]
761 Vilsinski BH, Murtinho DM, Serra ME, Soares EF, Cruz PF, Braga G, Borges O, Muniz EC, Rubira AF, Caetano W, Valente AJ. Interactions between copper(II) dibrominated salen complex and copolymeric micelles of P-123 and F-127. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2017;532:583-91. [DOI: 10.1016/j.colsurfa.2017.02.079] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
762 Goh WJ, Zou S, Ong WY, Torta F, Alexandra AF, Schiffelers RM, Storm G, Wang JW, Czarny B, Pastorin G. Bioinspired Cell-Derived Nanovesicles versus Exosomes as Drug Delivery Systems: a Cost-Effective Alternative. Sci Rep 2017;7:14322. [PMID: 29085024 DOI: 10.1038/s41598-017-14725-x] [Cited by in Crossref: 85] [Cited by in F6Publishing: 94] [Article Influence: 17.0] [Reference Citation Analysis]
763 Kieber-Emmons T, Monzavi-Karbassi B, Hutchins LF, Pennisi A, Makhoul I. Harnessing benefit from targeting tumor associated carbohydrate antigens. Hum Vaccin Immunother 2017;13:323-31. [PMID: 27929800 DOI: 10.1080/21645515.2017.1264789] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
764 Angelova S, Antonov L. Molecular Insight into Inclusion Complex Formation of Curcumin and Calix[4]arene. ChemistrySelect 2017;2:9658-62. [DOI: 10.1002/slct.201701865] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
765 Kou CH, Han J, Han XL, Zhuang HJ, Zhao ZM. Preparation and characterization of the Adriamycin-loaded amphiphilic chitosan nanoparticles and their application in the treatment of liver cancer. Oncol Lett 2017;14:7833-41. [PMID: 29344229 DOI: 10.3892/ol.2017.7210] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
766 Wang D, Ren Y, Shao Y, Yu D, Meng L. Facile Preparation of Doxorubicin-Loaded and Folic Acid-Conjugated Carbon Nanotubes@Poly(N-vinyl pyrrole) for Targeted Synergistic Chemo-Photothermal Cancer Treatment. Bioconjug Chem 2017;28:2815-22. [PMID: 28968063 DOI: 10.1021/acs.bioconjchem.7b00515] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 7.6] [Reference Citation Analysis]
767 Din FU, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, Zeb A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine. 2017;12:7291-7309. [PMID: 29042776 DOI: 10.2147/ijn.s146315] [Cited by in Crossref: 634] [Cited by in F6Publishing: 667] [Article Influence: 126.8] [Reference Citation Analysis]
768 Gil D, Frank-Kamenetskii A, Barry J, Reukov V, Xiang Y, Das A, Varma AK, Kindy MS, Banik NL, Vertegel A. Albumin-Assisted Method Allows Assessment of Release of Hydrophobic Drugs From Nanocarriers. Biotechnol J 2018;13. [PMID: 28881095 DOI: 10.1002/biot.201700337] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
769 Pellionisz PA, Lin Y, Mallen-St Clair J, Luo J, Suwarnasarn A, Schaue D, Elashoff DA, Palma-Diaz F, Dubinett SM, Sharma S, Wu B, St John MA. Use of a Novel Polymer in an Animal Model of Head and Neck Squamous Cell Carcinoma. Otolaryngol Head Neck Surg 2018;158:110-7. [PMID: 28895464 DOI: 10.1177/0194599817730304] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
770 Scavone C, Sportiello L, Sullo MG, Ferrajolo C, Ruggiero R, Sessa M, Berrino PM, di Mauro G, Berrino L, Rossi F, Rafaniello C, Capuano A; BIO-Cam Group. Safety Profile of Anticancer and Immune-Modulating Biotech Drugs Used in a Real World Setting in Campania Region (Italy): BIO-Cam Observational Study. Front Pharmacol 2017;8:607. [PMID: 28932193 DOI: 10.3389/fphar.2017.00607] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 4.4] [Reference Citation Analysis]
771 Oliveri V, Bellia F, Viale M, Maric I, Vecchio G. Linear polymers of β and γ cyclodextrins with a polyglutamic acid backbone as carriers for doxorubicin. Carbohydr Polym 2017;177:355-60. [PMID: 28962779 DOI: 10.1016/j.carbpol.2017.08.103] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
772 de Oliveira Pedro R, Goycoolea FM, Pereira S, Schmitt CC, Neumann MG. Synergistic effect of quercetin and pH-responsive DEAE-chitosan carriers as drug delivery system for breast cancer treatment. Int J Biol Macromol 2018;106:579-86. [PMID: 28807690 DOI: 10.1016/j.ijbiomac.2017.08.056] [Cited by in Crossref: 35] [Cited by in F6Publishing: 28] [Article Influence: 7.0] [Reference Citation Analysis]
773 Singh RP, Sharma G, Sonali, Singh S, Bharti S, Pandey BL, Koch B, Muthu MS. Chitosan-folate decorated carbon nanotubes for site specific lung cancer delivery. Materials Science and Engineering: C 2017;77:446-58. [DOI: 10.1016/j.msec.2017.03.225] [Cited by in Crossref: 49] [Cited by in F6Publishing: 51] [Article Influence: 9.8] [Reference Citation Analysis]
774 Lucas AT, Price LS, Schorzman A, Zamboni WC. Complex effects of tumor microenvironment on the tumor disposition of carrier-mediated agents. Nanomedicine (Lond) 2017;12:2021-42. [PMID: 28745129 DOI: 10.2217/nnm-2017-0101] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
775 Kim SW, Lee YK, Kim SH, Park JY, Lee DU, Choi J, Hong JH, Kim S, Khang D. Covalent, Non-Covalent, Encapsulated Nanodrug Regulate the Fate of Intra- and Extracellular Trafficking: Impact on Cancer and Normal Cells. Sci Rep 2017;7:6454. [PMID: 28743942 DOI: 10.1038/s41598-017-06796-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
776 Kiene K, Schenk SH, Porta F, Ernst A, Witzigmann D, Grossen P, Huwyler J. PDMS-b-PMOXA polymersomes for hepatocyte targeting and assessment of toxicity. Eur J Pharm Biopharm 2017;119:322-32. [PMID: 28720487 DOI: 10.1016/j.ejpb.2017.07.002] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 4.4] [Reference Citation Analysis]
777 Pietersz GA, Wang X, Yap ML, Lim B, Peter K. Therapeutic targeting in nanomedicine: the future lies in recombinant antibodies. Nanomedicine (Lond) 2017;12:1873-89. [PMID: 28703636 DOI: 10.2217/nnm-2017-0043] [Cited by in Crossref: 35] [Cited by in F6Publishing: 39] [Article Influence: 7.0] [Reference Citation Analysis]
778 Ramasamy T, Ruttala HB, Gupta B, Poudel BK, Choi H, Yong CS, Kim JO. Smart chemistry-based nanosized drug delivery systems for systemic applications: A comprehensive review. Journal of Controlled Release 2017;258:226-53. [DOI: 10.1016/j.jconrel.2017.04.043] [Cited by in Crossref: 244] [Cited by in F6Publishing: 246] [Article Influence: 48.8] [Reference Citation Analysis]
779 Kollarigowda RH, Mathews AS, Abraham S, Montemagno CD. A facile approach of light driven nanoassembly for the controlled accommodation of doxorubicin. Biomed Phys Eng Express 2017;3:045006. [DOI: 10.1088/2057-1976/aa79b6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
780 Natfji AA, Ravishankar D, Osborn HMI, Greco F. Parameters Affecting the Enhanced Permeability and Retention Effect: The Need for Patient Selection. J Pharm Sci 2017;106:3179-87. [PMID: 28669714 DOI: 10.1016/j.xphs.2017.06.019] [Cited by in Crossref: 81] [Cited by in F6Publishing: 88] [Article Influence: 16.2] [Reference Citation Analysis]
781 Irimie AI, Sonea L, Jurj A, Mehterov N, Zimta AA, Budisan L, Braicu C, Berindan-Neagoe I. Future trends and emerging issues for nanodelivery systems in oral and oropharyngeal cancer. Int J Nanomedicine 2017;12:4593-606. [PMID: 28721037 DOI: 10.2147/IJN.S133219] [Cited by in Crossref: 29] [Cited by in F6Publishing: 33] [Article Influence: 5.8] [Reference Citation Analysis]
782 Pradeep P, Kumar P, Choonara YE, Pillay V. Targeted nanotechnologies for cancer intervention: a patent review (2010-2016). Expert Opinion on Therapeutic Patents 2017;27:1005-19. [DOI: 10.1080/13543776.2017.1344216] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 3.2] [Reference Citation Analysis]
783 S Sibuyi NR, Thovhogi N, Gabuza KB, Meyer MD, Drah M, Onani MO, Skepu A, Madiehe AM, Meyer M. Peptide-functionalized nanoparticles for the selective induction of apoptosis in target cells. Nanomedicine (Lond) 2017;12:1631-45. [PMID: 28635372 DOI: 10.2217/nnm-2017-0085] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
784 Varan G, Varan C, Erdoğar N, Hıncal AA, Bilensoy E. Amphiphilic cyclodextrin nanoparticles. Int J Pharm 2017;531:457-69. [PMID: 28596142 DOI: 10.1016/j.ijpharm.2017.06.010] [Cited by in Crossref: 74] [Cited by in F6Publishing: 61] [Article Influence: 14.8] [Reference Citation Analysis]
785 Wang H, Sheng W. 131I-Traced PLGA-Lipid Nanoparticles as Drug Delivery Carriers for the Targeted Chemotherapeutic Treatment of Melanoma. Nanoscale Res Lett 2017;12:365. [PMID: 28532129 DOI: 10.1186/s11671-017-2140-7] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
786 Haghiralsadat F, Amoabediny G, Sheikhha MH, Forouzanfar T, Helder MN, Zandieh-Doulabi B. A Novel Approach on Drug Delivery: Investigation of A New Nano-Formulation of Liposomal Doxorubicin and Biological Evaluation of Entrapped Doxorubicin on Various Osteosarcoma Cell Lines. Cell J 2017;19:55-65. [PMID: 28580308 DOI: 10.22074/cellj.2017.4502] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
787 Muntimadugu E, Kommineni N, Khan W. Exploring the Potential of Nanotherapeutics in Targeting Tumor Microenvironment for Cancer Therapy. Pharmacol Res 2017;126:109-22. [PMID: 28511988 DOI: 10.1016/j.phrs.2017.05.010] [Cited by in Crossref: 47] [Cited by in F6Publishing: 50]