BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tian L, Qiang T, Liang C, Ren X, Jia M, Zhang J, Li J, Wan M, YuWen X, Li H, Cao W, Liu H. RNA-dependent RNA polymerase (RdRp) inhibitors: The current landscape and repurposing for the COVID-19 pandemic. Eur J Med Chem 2021;213:113201. [PMID: 33524687 DOI: 10.1016/j.ejmech.2021.113201] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 16.0] [Reference Citation Analysis]
Number Citing Articles
1 Luo X, Wang X, Yao Y, Gao X, Zhang L. Unveiling the "Template-Dependent" Inhibition on the Viral Transcription of SARS-CoV-2. J Phys Chem Lett 2022;:7197-205. [PMID: 35912566 DOI: 10.1021/acs.jpclett.2c01314] [Reference Citation Analysis]
2 Naidu SAG, Mustafa G, Clemens RA, Naidu AS. Plant-Derived Natural Non-Nucleoside Analog Inhibitors (NNAIs) against RNA-Dependent RNA Polymerase Complex (nsp7/nsp8/nsp12) of SARS-CoV-2. J Diet Suppl 2021;:1-30. [PMID: 34850656 DOI: 10.1080/19390211.2021.2006387] [Reference Citation Analysis]
3 Glab-ampai K, Kaewchim K, Thavorasak T, Saenlom T, Thepsawat W, Mahasongkram K, Thueng-in K, Sookrung N, Chaicumpa W, Chulanetra M. Targeting Emerging RNA Viruses by Engineered Human Superantibody to Hepatitis C Virus RNA-Dependent RNA Polymerase. Front Microbiol 2022;13:926929. [DOI: 10.3389/fmicb.2022.926929] [Reference Citation Analysis]
4 Negru PA, Radu AF, Vesa CM, Behl T, Abdel-Daim MM, Nechifor AC, Endres L, Stoicescu M, Pasca B, Tit DM, Bungau SG. Therapeutic dilemmas in addressing SARS-CoV-2 infection: Favipiravir versus Remdesivir. Biomed Pharmacother 2022;147:112700. [PMID: 35131656 DOI: 10.1016/j.biopha.2022.112700] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Pagliano P, Sellitto C, Scarpati G, Ascione T, Conti V, Franci G, Piazza O, Filippelli A. An overview of the preclinical discovery and development of remdesivir for the treatment of coronavirus disease 2019 (COVID-19). Expert Opin Drug Discov 2021;:1-10. [PMID: 34412564 DOI: 10.1080/17460441.2021.1970743] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Low ZY, Yip AJW, Lal SK. Repositioning Ivermectin for Covid-19 treatment: Molecular mechanisms of action against SARS-CoV-2 replication. Biochim Biophys Acta Mol Basis Dis 2021;1868:166294. [PMID: 34687900 DOI: 10.1016/j.bbadis.2021.166294] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
7 Gediz Erturk A, Sahin A, Bati Ay E, Pelit E, Bagdatli E, Kulu I, Gul M, Mesci S, Eryilmaz S, Oba Ilter S, Yildirim T. A Multidisciplinary Approach to Coronavirus Disease (COVID-19). Molecules 2021;26:3526. [PMID: 34207756 DOI: 10.3390/molecules26123526] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Singla S, Goyal S. Antiviral activity of molnupiravir against COVID-19: a schematic review of evidences. Bull Natl Res Cent 2022;46. [DOI: 10.1186/s42269-022-00753-9] [Reference Citation Analysis]
9 Yang S, Wang S, Du M, Liu M, Liu Y, He Y. Patients with COVID-19 and HBV Coinfection are at Risk of Poor Prognosis. Infect Dis Ther 2022. [PMID: 35471766 DOI: 10.1007/s40121-022-00638-4] [Reference Citation Analysis]
10 Kabinger F, Stiller C, Schmitzová J, Dienemann C, Kokic G, Hillen HS, Höbartner C, Cramer P. Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Nat Struct Mol Biol 2021. [PMID: 34381216 DOI: 10.1038/s41594-021-00651-0] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
11 Pathania S, Rawal RK, Singh PK. RdRp (RNA-dependent RNA polymerase): A key target providing anti-virals for the management of various viral diseases. J Mol Struct 2022;1250:131756. [PMID: 34690363 DOI: 10.1016/j.molstruc.2021.131756] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Beheshtirouy S, Khani E, Khiali S, Entezari-Maleki T. Investigational antiviral drugs for the treatment of COVID-19 patients. Arch Virol 2022. [PMID: 35138438 DOI: 10.1007/s00705-022-05368-z] [Reference Citation Analysis]
13 Gajjar ND, Dhameliya TM, Shah GB. In search of RdRp and Mpro inhibitors against SARS CoV-2: Molecular docking, molecular dynamic simulations and ADMET analysis. J Mol Struct 2021;1239:130488. [PMID: 33903778 DOI: 10.1016/j.molstruc.2021.130488] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
14 Mahmoudi S, Dehkordi MM, Asgarshamsi MH. The effect of various compounds on the COVID mechanisms, from chemical to molecular aspects. Biophysical Chemistry 2022. [DOI: 10.1016/j.bpc.2022.106824] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Goswami D. Comparative assessment of RNA-dependent RNA polymerase (RdRp) inhibitors under clinical trials to control SARS-CoV2 using rigorous computational workflow. RSC Adv 2021;11:29015-28. [DOI: 10.1039/d1ra04460e] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Yamaoka S, Weisend CM, Swenson VA, Ebihara H. Development of accelerated high-throughput antiviral screening systems for emerging orthomyxoviruses. Antiviral Research 2022. [DOI: 10.1016/j.antiviral.2022.105291] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Raj K, Kaur K, Gupta GD, Singh S. Current understanding on molecular drug targets and emerging treatment strategy for novel coronavirus-19. Naunyn Schmiedebergs Arch Pharmacol 2021;394:1383-402. [PMID: 33961065 DOI: 10.1007/s00210-021-02091-5] [Reference Citation Analysis]
18 Kirsch SH, Haeckl FPJ, Müller R. Beyond the approved: target sites and inhibitors of bacterial RNA polymerase from bacteria and fungi. Nat Prod Rep 2022. [PMID: 35507039 DOI: 10.1039/d1np00067e] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
19 Munafò F, Donati E, Brindani N, Ottonello G, Armirotti A, De Vivo M. Quercetin and luteolin are single-digit micromolar inhibitors of the SARS-CoV-2 RNA-dependent RNA polymerase. Sci Rep 2022;12:10571. [PMID: 35732785 DOI: 10.1038/s41598-022-14664-2] [Reference Citation Analysis]
20 Nagar PR, Gajjar ND, Dhameliya TM. In search of SARS CoV-2 replication inhibitors: Virtual screening, molecular dynamics simulations and ADMET analysis. J Mol Struct 2021;1246:131190. [PMID: 34334813 DOI: 10.1016/j.molstruc.2021.131190] [Reference Citation Analysis]
21 Zhang C, Yang M. Newly Emerged Antiviral Strategies for SARS-CoV-2: From Deciphering Viral Protein Structural Function to the Development of Vaccines, Antibodies, and Small Molecules. IJMS 2022;23:6083. [DOI: 10.3390/ijms23116083] [Reference Citation Analysis]
22 Denel-bobrowska M, Olejniczak AB. Non-nucleoside structured compounds with antiviral activity—past 10 years (2010–2020). European Journal of Medicinal Chemistry 2022;231:114136. [DOI: 10.1016/j.ejmech.2022.114136] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
23 Pyasi S, Jonniya NA, Sk MF, Nayak D, Kar P. Finding potential inhibitors against RNA-dependent RNA polymerase (RdRp) of bovine ephemeral fever virus (BEFV): an in-silico study. J Biomol Struct Dyn 2021;:1-19. [PMID: 34238122 DOI: 10.1080/07391102.2021.1946714] [Reference Citation Analysis]
24 Khiali S, Khani E, B Rouy S, Entezari-Maleki T. Comprehensive review on molnupiravir in COVID-19: a novel promising antiviral to combat the pandemic. Future Microbiol 2022. [PMID: 35199608 DOI: 10.2217/fmb-2021-0252] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
25 Yuan C, Goonetilleke EC, Unarta IC, Huang X. Incorporation efficiency and inhibition mechanism of 2'-substituted nucleotide analogs against SARS-CoV-2 RNA-dependent RNA polymerase. Phys Chem Chem Phys 2021;23:20117-28. [PMID: 34514487 DOI: 10.1039/d1cp03049c] [Reference Citation Analysis]
26 Matos ADR, Caetano BC, de Almeida Filho JL, Martins JSCC, de Oliveira MGP, Sousa TDC, Horta MAP, Siqueira MM, Fernandez JH. Identification of Hypericin as a Candidate Repurposed Therapeutic Agent for COVID-19 and Its Potential Anti-SARS-CoV-2 Activity. Front Microbiol 2022;13:828984. [PMID: 35222340 DOI: 10.3389/fmicb.2022.828984] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
27 Wu Y, Crich D, Pegan SD, Lou L, Hansen MC, Booth C, Desrochers E, Mullininx LN, Starling EB, Chang KY, Xie ZR. Polyphenols as Potential Inhibitors of SARS-CoV-2 RNA Dependent RNA Polymerase (RdRp). Molecules 2021;26:7438. [PMID: 34946521 DOI: 10.3390/molecules26247438] [Reference Citation Analysis]
28 De Fenza M, Esposito A, Talarico G, Andrei G, Snoeck R, D'alonzo D, Guaragna A. Synthesis and antiviral properties of biomimetic iminosugar-based nucleosides. European Journal of Medicinal Chemistry 2022. [DOI: 10.1016/j.ejmech.2022.114618] [Reference Citation Analysis]
29 Zhang GN, Zhao J, Li Q, Wang M, Zhu M, Wang J, Cen S, Wang Y. Discovery and optimization of 2-((1H-indol-3-yl)thio)-N-benzyl-acetamides as novel SARS-CoV-2 RdRp inhibitors. Eur J Med Chem 2021;223:113622. [PMID: 34147744 DOI: 10.1016/j.ejmech.2021.113622] [Reference Citation Analysis]
30 Zhao J, Zhang G, Zhang Y, Yi D, Li Q, Ma L, Guo S, Li X, Guo F, Lin R, Luu G, Liu Z, Wang Y, Cen S. 2-((1H-indol-3-yl)thio)-N-phenyl-acetamides: SARS-CoV-2 RNA-dependent RNA polymerase inhibitors. Antiviral Res 2021;196:105209. [PMID: 34801588 DOI: 10.1016/j.antiviral.2021.105209] [Reference Citation Analysis]
31 Rabaan AA, Bakhrebah MA, Mutair AA, Alhumaid S, Al-jishi JM, Alsihati J, Albayat H, Alsheheri A, Aljeldah M, Garout M, Alfouzan WA, Alhashem YN, Albahrani S, Alshamrani SA, Alotaibi S, Alramadhan AA, Albasha HN, Hajissa K, Temsah M. Systematic Review on Pathophysiological Complications in Severe COVID-19 among the Non-Vaccinated and Vaccinated Population. Vaccines 2022;10:985. [DOI: 10.3390/vaccines10070985] [Reference Citation Analysis]
32 Aris P, Mohamadzadeh M, Wei Y, Xia X. In Silico Molecular Dynamics of Griseofulvin and Its Derivatives Revealed Potential Therapeutic Applications for COVID-19. IJMS 2022;23:6889. [DOI: 10.3390/ijms23136889] [Reference Citation Analysis]
33 Groaz E, De Clercq E, Herdewijn P. Anno 2021: Which antivirals for the coming decade? Annu Rep Med Chem 2021;57:49-107. [PMID: 34744210 DOI: 10.1016/bs.armc.2021.09.004] [Reference Citation Analysis]
34 Sonkar C, Doharey PK, Rathore AS, Singh V, Kashyap D, Sahoo AK, Mittal N, Sharma B, Jha HC. Repurposing of gastric cancer drugs against COVID-19. Comput Biol Med 2021;137:104826. [PMID: 34537409 DOI: 10.1016/j.compbiomed.2021.104826] [Reference Citation Analysis]
35 Wang Z, Yang L, Zhao XE. Co-crystallization and structure determination: An effective direction for anti-SARS-CoV-2 drug discovery. Comput Struct Biotechnol J 2021;19:4684-701. [PMID: 34426762 DOI: 10.1016/j.csbj.2021.08.029] [Reference Citation Analysis]
36 Lo Cascio E, Toto A, Babini G, De Maio F, Sanguinetti M, Mordente A, Della Longa S, Arcovito A. Structural determinants driving the binding process between PDZ domain of wild type human PALS1 protein and SLiM sequences of SARS-CoV E proteins. Comput Struct Biotechnol J 2021;19:1838-47. [PMID: 33758649 DOI: 10.1016/j.csbj.2021.03.014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
37 Li J, McKay KT, Remington JM, Schneebeli ST. A computational study of cooperative binding to multiple SARS-CoV-2 proteins. Sci Rep 2021;11:16307. [PMID: 34381116 DOI: 10.1038/s41598-021-95826-6] [Reference Citation Analysis]
38 Manchoju A, Zelli R, Wang G, Eymard C, Oo A, Nemer M, Prévost M, Kim B, Guindon Y. Nucleotide Analogues Bearing a C2' or C3'-Stereogenic All-Carbon Quaternary Center as SARS-CoV-2 RdRp Inhibitors. Molecules 2022;27:564. [PMID: 35056878 DOI: 10.3390/molecules27020564] [Reference Citation Analysis]
39 Negru PA, Miculas DC, Behl T, Bungau AF, Marin R, Bungau SG. Virtual screening of substances used in the treatment of SARS-CoV-2 infection and analysis of compounds with known action on structurally similar proteins from other viruses. Biomedicine & Pharmacotherapy 2022;153:113432. [DOI: 10.1016/j.biopha.2022.113432] [Reference Citation Analysis]
40 Palko N, Grishina M, Potemkin V. Electron Density Analysis of SARS-CoV-2 RNA-Dependent RNA Polymerase Complexes. Molecules 2021;26:3960. [PMID: 34203564 DOI: 10.3390/molecules26133960] [Reference Citation Analysis]
41 Plavec Z, Pöhner I, Poso A, Butcher SJ. Virus structure and structure-based antivirals. Curr Opin Virol 2021;51:16-24. [PMID: 34564030 DOI: 10.1016/j.coviro.2021.09.005] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Maslova AA, Matyugina EC, Shustova EY, Volok VP, Kozlovskaya LI, Kochetkov SN, Khandazhinskaya AL. New Analogues of Uridine as Possible Anti-Viral Agents Specific to SARS-CoV-2. Mol Biol 2022;56:469-73. [DOI: 10.1134/s0026893322030098] [Reference Citation Analysis]
43 Pan G, Lu L, Zhuang W, Huang Q. Synthesis of Indole-Fused Six-, Seven-, or Eight-Membered N,O-Heterocycles via Rhodium-Catalyzed NH-Indole-Directed C-H Acetoxylation/Hydrolysis/Annulation. J Org Chem 2021;86:16753-63. [PMID: 34756052 DOI: 10.1021/acs.joc.1c01982] [Reference Citation Analysis]
44 Arı H, Özpozan T, Büyükmumcu Z, Akın N, İlhan İÖ. Synthesis, spectral and theoretical (DFT) investigations of 4,6-diphenyl-6-hydroxy-1-{[(1Z)-1-phenyl ethylidene] amino}tetrahydropyrimidine-2(1H)-one. Journal of Molecular Structure 2022;1250:131820. [DOI: 10.1016/j.molstruc.2021.131820] [Reference Citation Analysis]
45 Faisal S, Badshah SL, Kubra B, Sharaf M, Emwas AH, Jaremko M, Abdalla M. Computational Study of SARS-CoV-2 RNA Dependent RNA Polymerase Allosteric Site Inhibition. Molecules 2021;27:223. [PMID: 35011458 DOI: 10.3390/molecules27010223] [Reference Citation Analysis]
46 Saied AA, Metwally AA, Mohamed HMA, Haridy MAM. The contribution of bovines to human health against viral infections. Environ Sci Pollut Res Int 2021;28:46999-7023. [PMID: 34272669 DOI: 10.1007/s11356-021-14941-z] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
47 Bader CD, Panter F, Garcia R, Tchesnokov EP, Haid S, Walt C, Spröer C, Kiefer AF, Götte M, Overmann J, Pietschmann T, Müller R. Sandacrabins - Structurally Unique Antiviral RNA Polymerase Inhibitors from a Rare Myxobacterium. Chemistry 2022;28:e202104484. [PMID: 34990513 DOI: 10.1002/chem.202104484] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Luo X, Xu T, Gao X, Zhang L. Alternative role of motif B in template dependent polymerase inhibition. Chinese Journal of Chemical Physics 2022;35:407-12. [DOI: 10.1063/1674-0068/cjcp2203053] [Reference Citation Analysis]
49 Zhang H, Saravanan KM, Yang Y, Wei Y, Yi P, Zhang JZH. Generating and screening de novo compounds against given targets using ultrafast deep learning models as core components. Brief Bioinform 2022:bbac226. [PMID: 35724626 DOI: 10.1093/bib/bbac226] [Reference Citation Analysis]