BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang GF, Liu X, Zhang S, Pan B, Liu ML. Ciprofloxacin derivatives and their antibacterial activities. Eur J Med Chem 2018;146:599-612. [PMID: 29407984 DOI: 10.1016/j.ejmech.2018.01.078] [Cited by in Crossref: 142] [Cited by in F6Publishing: 129] [Article Influence: 28.4] [Reference Citation Analysis]
Number Citing Articles
1 Kumar A, Watbled B, Baussanne I, Hediger S, Demeunynck M, De Paëpe G. Optimizing chemistry at the surface of prodrug-loaded cellulose nanofibrils with MAS-DNP. Commun Chem 2023;6:58. [PMID: 36977767 DOI: 10.1038/s42004-023-00852-2] [Reference Citation Analysis]
2 Al-Akhras AA, Zahra JA, El-Abadelah MM, Abu-Niaaj LF, Khanfar MA. 8-Amino-7-(aryl/hetaryl)fluoroquinolones. An emerging set of synthetic antibacterial agents. Z Naturforsch C J Biosci 2023;78:157-68. [PMID: 36278497 DOI: 10.1515/znc-2022-0143] [Reference Citation Analysis]
3 Uygun Cebeci Y, Ceylan Ş, Altun M, Alpay Karaoğlu Ş. Synthesis and Characterization of Some Azole Derivatives as Potential Biological and Anticancer Agents. ChemistrySelect 2023;8. [DOI: 10.1002/slct.202300385] [Reference Citation Analysis]
4 Hryhoriv H, Kovalenko SM, Georgiyants M, Sidorenko L, Georgiyants V. A Comprehensive Review on Chemical Synthesis and Chemotherapeutic Potential of 3-Heteroaryl Fluoroquinolone Hybrids. Antibiotics (Basel) 2023;12:625. [PMID: 36978492 DOI: 10.3390/antibiotics12030625] [Reference Citation Analysis]
5 Zhu J, Wang H, Duan A, Wang Y. Mechanistic insight into the degradation of ciprofloxacin in water by hydroxyl radicals. J Hazard Mater 2023;446:130676. [PMID: 36580772 DOI: 10.1016/j.jhazmat.2022.130676] [Reference Citation Analysis]
6 Vera DR, Ardila DM, Palma A, Cobo J, Glidewell C. Conversion of 2-methyl-4-styrylquinolines into 2,4-distyrylquinolines: synthesis, and spectroscopic and structural characterization of five examples. Acta Crystallogr C Struct Chem 2023;79:94-103. [PMID: 36871291 DOI: 10.1107/S2053229623001432] [Reference Citation Analysis]
7 Santos AM, Carvalho Santana Júnior C, Nascimento Júnior JAC, Andrade TA, Shanmugam S, Thangaraj P, Frank LA, Serafini MR. Antibacterial drugs and cyclodextrin inclusion complexes: a patent review. Expert Opin Drug Deliv 2023;20:349-66. [PMID: 36722254 DOI: 10.1080/17425247.2023.2175815] [Reference Citation Analysis]
8 Rajashri N. Pachpande, Nilesh S. Pawar. Synthesis, Characterization, Anti-Microbiological and Methicillin-Resistance Staphylococeus Aureus,Evaluation of N-Acyl Ciprofloxacin Derivatives. IJARSCT 2023. [DOI: 10.48175/ijarsct-8065] [Reference Citation Analysis]
9 Comito M, Monguzzi R, Tagliapietra S, Palmisano G, Cravotto G. Towards Antibiotic Synthesis in Continuous-Flow Processes. Molecules 2023;28. [PMID: 36771086 DOI: 10.3390/molecules28031421] [Reference Citation Analysis]
10 Alzahrani AY. Design, synthesis, and antimicrobial evaluation of novel pyridine and chromene derivatives with their characterization, containing Lidocaine analog. Journal of Saudi Chemical Society 2023. [DOI: 10.1016/j.jscs.2023.101620] [Reference Citation Analysis]
11 Uygun Cebeci Y. Synthesis and antimicrobial activity evaluation of indole-azole-fluoroquinolone hybrids with highly functionalized functional groups. J IRAN CHEM SOC 2023. [DOI: 10.1007/s13738-022-02734-1] [Reference Citation Analysis]
12 Zhang H, Zhao R, Liu Z, Zhang X, Du C. Enhanced adsorption properties of polyoxometalates/coal gangue composite:The key role of kaolinite-rich coal gangue. Applied Clay Science 2023;231:106730. [DOI: 10.1016/j.clay.2022.106730] [Reference Citation Analysis]
13 Kumbhar P, Kole K, Manjappa A, Jha NK, Disouza J, Patravale V. Drug Repurposing Opportunities in Cancer. Drug Repurposing for Emerging Infectious Diseases and Cancer 2023. [DOI: 10.1007/978-981-19-5399-6_5] [Reference Citation Analysis]
14 Shariati A, Arshadi M, Khosrojerdi MA, Abedinzadeh M, Ganjalishahi M, Maleki A, Heidary M, Khoshnood S. The resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing the efficacy of this antibiotic. Front Public Health 2022;10:1025633. [PMID: 36620240 DOI: 10.3389/fpubh.2022.1025633] [Reference Citation Analysis]
15 Taheri-Ledari R, Jalali F, Heidari L, Ganjali F, Asl FR, Zarei-Shokat S, Forouzandeh-Malati M, Mohammadi A, Maleki A. An effective antimicrobial complex of nanoscale β-cyclodextrin and ciprofloxacin conjugated to a cell adhesive dipeptide. RSC Adv 2022;12:35383-95. [PMID: 36544467 DOI: 10.1039/d2ra05822g] [Reference Citation Analysis]
16 Shi M, Bai Y, Qiu Y, Zhang X, Zeng Z, Chen L, Cheng F, Zhang J. Mechanism of Synergy between Piceatannol and Ciprofloxacin against Staphylococcus aureus. Int J Mol Sci 2022;23. [PMID: 36499677 DOI: 10.3390/ijms232315341] [Reference Citation Analysis]
17 Gao N, Zhao J, Zhu X, Xu J, Ling G, Zhang P. Functional two-dimensional MXenes as cancer theranostic agents. Acta Biomater 2022;154:1-22. [PMID: 36243374 DOI: 10.1016/j.actbio.2022.10.005] [Reference Citation Analysis]
18 Ramos VC, Reyes CBG, García GM, Quesada MIS, Barrero FJM, Rábago JJS, Polo MS. ZIF-8 and Its Magnetic Functionalization as Vehicle for the Transport and Release of Ciprofloxacin. Pharmaceutics 2022;14. [PMID: 36432737 DOI: 10.3390/pharmaceutics14112546] [Reference Citation Analysis]
19 Balci H, Erdoğan ZÖ, Özdemir A. SİPROFLOKSASİN TAYİNİ İÇİN NANOPARTİKÜL TEMELLİ DUYARLI SPEKTROFOTOMETRİK YÖNTEM GELİŞTİRİLMESİ. Ankara Ecz Fak Derg 2022;47:11-11. [DOI: 10.33483/jfpau.1160946] [Reference Citation Analysis]
20 Swain S, Phaomei G, Dash SK, Tripathy SK. Synthesis of magnetic luminescent nanoparticle Fe 3 O 4 @LaF 3 :Eu,Ag@APTES@β-CD, a potential carrier of ciprofloxacin and bioimaging agent.. [DOI: 10.21203/rs.3.rs-2257558/v1] [Reference Citation Analysis]
21 Ubaidullaev AU, Vinogradova VI, Zhurakulov SN, Mukarramov NI, Bobakulov KM, Turgunov KA, Tashkhodzhaev B. Intramolecular Cyclization During Bromination of the Quinoline Alkaloid Haplophyllidine. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03877-6] [Reference Citation Analysis]
22 Patil PB, Thanekar P, Bhandari VM. Intensified hydrodynamic cavitation using vortex flow based cavitating device for degradation of ciprofloxacin. Chemical Engineering Research and Design 2022;187:623-32. [DOI: 10.1016/j.cherd.2022.09.027] [Reference Citation Analysis]
23 Liu K, Yu J, Xia Y, Zhang LT, Li SY, Yan J. The combination of ciprofloxacin and indomethacin suppresses the level of inflammatory cytokines secreted by macrophages in vitro. Chin J Traumatol 2022;25:379-88. [PMID: 35697590 DOI: 10.1016/j.cjtee.2022.05.002] [Reference Citation Analysis]
24 Machado TR, Faro LV, Mello ALDN, Silva DDO, Abrahim-vieira BDA, Rodrigues CR, Silva RHS, Junior CSV, Sola-penna M, Boechat FDC, de Souza MC, Zancan P, de Souza MCB, de Souza AM. 4-oxoquinoline-3-carboxamide acyclonucleoside phosphonates hybrids: human MCF-7 breast cancer cell death induction by oxidative stress-promoting and in silico ADMET studies. Journal of Molecular Structure 2022. [DOI: 10.1016/j.molstruc.2022.134542] [Reference Citation Analysis]
25 Cao Y, Li X, Wang B. Ultrafast and selective adsorption of pharmaceuticals from wastewater by precisely designed metal organic framework with missing linker defects. Journal of Cleaner Production 2022. [DOI: 10.1016/j.jclepro.2022.135060] [Reference Citation Analysis]
26 Loupias P, Laumaillé P, Morandat S, Mondange L, Guillier S, El Kirat K, Da Nascimento S, Biot F, Taudon N, Dassonville-klimpt A, Sonnet P. Synthesis and study of new siderophore analog-ciprofloxacin conjugates with antibiotic activities against Pseudomonas aeruginosa and Burkholderia spp. European Journal of Medicinal Chemistry 2022. [DOI: 10.1016/j.ejmech.2022.114921] [Reference Citation Analysis]
27 Li JJ, Hu Y, Hu B, Wang W, Xu H, Hu XY, Ding F, Li HB, Wang KR, Zhang X, Guo DS. Lactose azocalixarene drug delivery system for the treatment of multidrug-resistant pseudomonas aeruginosa infected diabetic ulcer. Nat Commun 2022;13:6279. [PMID: 36270992 DOI: 10.1038/s41467-022-33920-7] [Reference Citation Analysis]
28 Garcia Reyes CB, Castillo Ramos V, Mangas Garcia G, Navarrete Casas R, Sanchez Polo M. Nanomateriales para el transporte y liberación controlada de ciprofloxacino en aplicaciones biomédicas. QUIMICAHOY 2022;11:8-17. [DOI: 10.29105/qh11.02-289] [Reference Citation Analysis]
29 Yan J, Hu R, Lin Z, Zhang M, Shi G. pH-Regulated Terbium(III) Infinite Coordination Polymer Sensor Array for Pattern Discrimination of Quinolone Antibiotics. ACS Appl Opt Mater 2022. [DOI: 10.1021/acsaom.2c00037] [Reference Citation Analysis]
30 Kadela-tomanek M, Jastrzębska M, Chrobak E, Bębenek E, Latocha M. Hybrids of 1,4-Quinone with Quinoline Derivatives: Synthesis, Biological Activity, and Molecular Docking with DT-Diaphorase (NQO1). Molecules 2022;27:6206. [DOI: 10.3390/molecules27196206] [Reference Citation Analysis]
31 Jakhar R, Khichi A, Kumar D, Dangi M, Chhillar AK. Discovery of Novel Inhibitors of Bacterial DNA Gyrase Using a QSAR-Based Approach. ACS Omega. [DOI: 10.1021/acsomega.2c04310] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
32 Cheng X, Qu J, Song S, Bian Z. Neighborhood-based inference and restricted Boltzmann machine for microbe and drug associations prediction. PeerJ 2022;10:e13848. [PMID: 35990901 DOI: 10.7717/peerj.13848] [Reference Citation Analysis]
33 Pedrood K, Azizian H, Montazer MN, Moazzam A, Asadi M, Montazeri H, Biglar M, Zamani M, Larijani B, Zomorodian K, Mohammadi-Khanaposhtani M, Irajie C, Amanlou M, Iraji A, Mahdavi M. Design and synthesis of new N-thioacylated ciprofloxacin derivatives as urease inhibitors with potential antibacterial activity. Sci Rep 2022;12:13827. [PMID: 35970866 DOI: 10.1038/s41598-022-17993-4] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
34 Xue J, Wu L, Deng C, Tang D, Wang S, Ji H, Chen C, Zhang Y, Zhao J. Plasmon-Mediated Electrochemical Activation of Au/TiO 2 Nanostructure-Based Photoanodes for Enhancing Water Oxidation and Antibiotic Degradation. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c02442] [Reference Citation Analysis]
35 Freitas WA, Soares BE, Rodrigues MS, Trigueiro P, Honorio LM, Peña-garcia R, Alcântara AC, Silva-filho EC, Fonseca MG, Furtini MB, Osajima JA. Facile synthesis of ZnO-clay minerals composites using an ultrasonic approach for photocatalytic performance. Journal of Photochemistry and Photobiology A: Chemistry 2022;429:113934. [DOI: 10.1016/j.jphotochem.2022.113934] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
36 Singh G, Diksha, xx M, Suman, Shilpy, Devi A, Gupta S, Yadav R, Sehgal R. Benzothiazole tethered triazole based potential antibacterial agent as a selective fluorometric probe for the detection of Al3+ ions and phenylalanine. Journal of Molecular Structure 2022;1262:132967. [DOI: 10.1016/j.molstruc.2022.132967] [Reference Citation Analysis]
37 Ponmalar II, Swain J, Basu JK. Modification of bacterial cell membrane dynamics and morphology upon exposure to sub inhibitory concentrations of ciprofloxacin. Biochimica et Biophysica Acta (BBA) - Biomembranes 2022;1864:183935. [DOI: 10.1016/j.bbamem.2022.183935] [Reference Citation Analysis]
38 Reddy DS, Sinha A, Kumar A, Saini VK. Drug re-engineering and repurposing: A significant and rapid approach to tuberculosis drug discovery. Arch Pharm (Weinheim) 2022;:e2200214. [PMID: 35841594 DOI: 10.1002/ardp.202200214] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
39 Szostek T, Szulczyk D, Szymańska-Majchrzak J, Koliński M, Kmiecik S, Otto-Ślusarczyk D, Zawodnik A, Rajkowska E, Chaniewicz K, Struga M, Roszkowski P. Design and Synthesis of Menthol and Thymol Derived Ciprofloxacin: Influence of Structural Modifications on the Antibacterial Activity and Anticancer Properties. Int J Mol Sci 2022;23:6600. [PMID: 35743043 DOI: 10.3390/ijms23126600] [Reference Citation Analysis]
40 Xing N, Meng X, Wang S. Isobavachalcone: A comprehensive review of its plant sources, pharmacokinetics, toxicity, pharmacological activities and related molecular mechanisms. Phytother Res 2022. [PMID: 35684981 DOI: 10.1002/ptr.7520] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
41 Al-buriahi AK, Al-shaibani MM, Mohamed RMSR, Al-gheethi AA, Sharma A, Ismail N. Ciprofloxacin removal from non-clinical environment: A critical review of current methods and future trend prospects. Journal of Water Process Engineering 2022;47:102725. [DOI: 10.1016/j.jwpe.2022.102725] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
42 Che J, Sun L, Shan J, Shi Y, Zhou Q, Zhao Y, Sun L. Artificial Lipids and Macrophage Membranes Coassembled Biomimetic Nanovesicles for Antibacterial Treatment. Small 2022;:e2201280. [PMID: 35616035 DOI: 10.1002/smll.202201280] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
43 Hajinaebi M, Ganjali M, Nasab NA. Antibacterial Activity and Drug Release of Ciprofloxacin Loaded PVA-nHAp Nanocomposite Coating on Ti-6Al-4 V. J Inorg Organomet Polym. [DOI: 10.1007/s10904-022-02361-6] [Reference Citation Analysis]
44 Zheng B, Li H, Wang J, Wu W, Ou J, Shen C. Layered double hydroxide/hydroxyapatite-ciprofloxacin composite coating on AZ31 magnesium alloy: Corrosion resistance, antibacterial, osteogenesis. Journal of Materials Research 2022;37:1810-24. [DOI: 10.1557/s43578-022-00588-0] [Reference Citation Analysis]
45 Kumbhar P, Kole K, Yadav T, Bhavar A, Waghmare P, Bhokare R, Manjappa A, Jha NK, Chellappan DK, Shinde S, Singh SK, Dua K, Salawi A, Disouza J, Patravale V. Drug repurposing: An emerging strategy in alleviating skin cancer. European Journal of Pharmacology 2022. [DOI: 10.1016/j.ejphar.2022.175031] [Reference Citation Analysis]
46 Bukharov SV, Tagasheva RG, Litvinov IA, Nikitina EV, Bulatova ES, Burilov AR, Gibadullina EM. Synthesis and antibacterial activity of fluoroquinolones with sterically hindered phenolic moieties. Russ Chem Bull 2022;71:508-16. [DOI: 10.1007/s11172-022-3441-2] [Reference Citation Analysis]
47 Zhang T, Li W, Guo Q, Wang Y, Li C. Preparation of a Heterogeneous Catalyst CuO-Fe2O3/CTS-ATP and Degradation of Methylene Blue and Ciprofloxacin. Coatings 2022;12:559. [DOI: 10.3390/coatings12050559] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
48 Karimi-jafari M, Ziaee A, O’reilly E, Croker D, Walker G. Formation of Ciprofloxacin–Isonicotinic Acid Cocrystal Using Mechanochemical Synthesis Routes—An Investigation into Critical Process Parameters. Pharmaceutics 2022;14:634. [DOI: 10.3390/pharmaceutics14030634] [Reference Citation Analysis]
49 Badawy S, Yang Y, Liu Y, Marawan MA, Ares I, Martinez MA, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez M. Toxicity induced by ciprofloxacin and enrofloxacin: oxidative stress and metabolism. Crit Rev Toxicol 2021;51:754-87. [PMID: 35274591 DOI: 10.1080/10408444.2021.2024496] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Liu D, Wang Z, Zhou J, Gan X. Design, synthesis and nematocidal activity of novel 1,2,4-oxadiazole derivatives with a 1,3,4-thiadiazole amide moiety. Phosphorus, Sulfur, and Silicon and the Related Elements. [DOI: 10.1080/10426507.2022.2046580] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
51 Aufa A, Hassan MZ, Ismail Z. Recent advances in Ti-6Al-4V additively manufactured by selective laser melting for biomedical implants: Prospect development. Journal of Alloys and Compounds 2022;896:163072. [DOI: 10.1016/j.jallcom.2021.163072] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 10.0] [Reference Citation Analysis]
52 Almalghrabi M, Abiedalla Y, Dhanasakaran M, Deruiter J, Randall Clark C. GC–MS and GC–IR of Regioisomeric 4-N-Bromodimethoxybenzyl Derivatives of 3-Trifluoromethylphenylpiperazine. Forensic Chemistry 2022. [DOI: 10.1016/j.forc.2022.100416] [Reference Citation Analysis]
53 Zhao R, Wang Y, An Y, Yang L, Sun Q, Ma J, Zheng H. Chitin-biocalcium as a novel superior composite for ciprofloxacin removal: Synergism of adsorption and flocculation. J Hazard Mater 2022;423:126917. [PMID: 34464865 DOI: 10.1016/j.jhazmat.2021.126917] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
54 Vogt AG, de Oliveira RL, Voss GT, Blödorn GB, Alves D, Wilhelm EA, Luchese C. QCTA-1, a quinoline derivative, ameliorates pentylenetetrazole-induced kindling and memory comorbidity in mice: Involvement of antioxidant system of brain. Pharmacology Biochemistry and Behavior 2022. [DOI: 10.1016/j.pbb.2022.173357] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
55 Sharma V, Das R, Kumar Mehta D, Gupta S, Venugopala KN, Mailavaram R, Nair AB, Shakya AK, Kishore Deb P. Recent insight into the biological activities and SAR of quinolone derivatives as multifunctional scaffold. Bioorganic & Medicinal Chemistry 2022. [DOI: 10.1016/j.bmc.2022.116674] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
56 Omotola EO, Oluwole AO, Oladoye PO, Olatunji OS. Occurrence, detection and ecotoxicity studies of selected pharmaceuticals in aqueous ecosystems- a systematic appraisal. Environmental Toxicology and Pharmacology 2022. [DOI: 10.1016/j.etap.2022.103831] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
57 Yan H, Liu R, Yang Q, Liu Y, Li H, Guo R, Wu L, Liu L, Liang H. A New Calcium(II)-Based Substitute for Enrofloxacin with Improved Medicinal Potential. Pharmaceutics 2022;14:249. [DOI: 10.3390/pharmaceutics14020249] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
58 Teja C, Roshini H, Thiyagamurthy P, Daniel JA, Devi SA, Vidya R, Nawaz Khan FR. Tetrabutylammonium-salt, a novel ionic medium for the synthesis of quinoline–hybrid chalcones, and its biological evaluation. Polycyclic Aromatic Compounds. [DOI: 10.1080/10406638.2021.2020308] [Reference Citation Analysis]
59 Kulabaş N, Türe A, Bozdeveci A, Krishna VS, Alpay Karaoğlu Ş, Sriram D, Küçükgüzel İ. Novel fluoroquinolones containing 2‐arylamino‐2‐oxoethyl fragment: Design, synthesis, evaluation of antibacterial and antituberculosis activities and molecular modeling studies. Journal of Heterocyclic Chem. [DOI: 10.1002/jhet.4430] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
60 Goldsztajn K, Szewczenko J, Jaworska J, Jelonek K, Nowińska K, Kajzer W, Basiaga M. The Influence of Low-Intensity Pulsed Ultrasound (LIPUS) on the Properties of PLGA Biodegradable Polymer Coatings on Ti6Al7Nb Substrate. Advances in Intelligent Systems and Computing 2022. [DOI: 10.1007/978-3-031-09135-3_45] [Reference Citation Analysis]
61 Kamiloglu S, Capanoglu E, Jafari SM. An Overview of Food Bioactive Compounds and Their Health-Promoting Features. Food Bioactive Ingredients 2022. [DOI: 10.1007/978-3-030-96885-4_1] [Reference Citation Analysis]
62 Guo Q, Zhang R, Hua X, Li Q, Du X, Ru J, Ma C. Syntheses, structures, in vitro cytostatic activity and antifungal activity evaluation of four diorganotin( iv ) complexes based on norfloxacin and levofloxacin. New J Chem 2022;46:4314-24. [DOI: 10.1039/d1nj05742a] [Reference Citation Analysis]
63 Hryhoriv H, Mariutsa I, Kovalenko SM, Georgiyants V, Perekhoda L, Filimonova N, Geyderikh O, Sidorenko L. The Search for New Antibacterial Agents among 1,2,3-Triazole Functionalized Ciprofloxacin and Norfloxacin Hybrids: Synthesis, Docking Studies, and Biological Activity Evaluation. Sci Pharm 2022;90:2. [DOI: 10.3390/scipharm90010002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
64 Alhajj N, O'Reilly NJ, Cathcart H. Developing ciprofloxacin dry powder for inhalation: A story of challenges and rational design in the treatment of cystic fibrosis lung infection. Int J Pharm 2021;613:121388. [PMID: 34923051 DOI: 10.1016/j.ijpharm.2021.121388] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
65 Etayash H, Alford M, Akhoundsadegh N, Drayton M, Straus SK, Hancock REW. Multifunctional Antibiotic-Host Defense Peptide Conjugate Kills Bacteria, Eradicates Biofilms, and Modulates the Innate Immune Response. J Med Chem 2021;64:16854-63. [PMID: 34784220 DOI: 10.1021/acs.jmedchem.1c01712] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
66 Zhou Q, Dong X, Zhang B, Zhang X, Ou K, Wang Q, Liao Y, Yang Y, Wang H. Naked-eye sensing and target-guiding treatment of bacterial infection using pH-tunable multicolor luminescent lanthanide-based hydrogel. J Colloid Interface Sci 2021:S0021-9797(21)02033-6. [PMID: 34848051 DOI: 10.1016/j.jcis.2021.11.121] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
67 Lin B, Li R, Handley TNG, Wade JD, Li W, O'Brien-Simpson NM. Cationic Antimicrobial Peptides Are Leading the Way to Combat Oropathogenic Infections. ACS Infect Dis 2021;7:2959-70. [PMID: 34587737 DOI: 10.1021/acsinfecdis.1c00424] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
68 Siddiquee MA, Patel R, Saraswat J, Khatoon BS, ud din Parray M, Wani FA, Khan MR, Busquets R. Interfacial and antibacterial properties of imidazolium based ionic liquids having different counterions with ciprofloxacin. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;629:127474. [DOI: 10.1016/j.colsurfa.2021.127474] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
69 Mishra R, Chaurasia H, Singh VK, Naaz F, Singh RK. Molecular modeling, QSAR analysis and antimicrobial properties of Schiff base derivatives of isatin. Journal of Molecular Structure 2021;1243:130763. [DOI: 10.1016/j.molstruc.2021.130763] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
70 Borisova MА, Ryabukhin DS, Ivanov AY, Boyarskaya IA, Spiridonova DV, Kompanets MO, Vasilyev AV. Reactions of Quinolinecarbaldehydes with Arenes under Superelectrophilic Activation. NMR and DFT Studies of Dicationic Electrophilic Species. Chem Heterocycl Comp 2021;57:1007-16. [DOI: 10.1007/s10593-021-03015-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
71 Elshaier YAMM, Aly AA, El-Aziz MA, Fathy HM, Brown AB, Ramadan M. A review on the synthesis of heteroannulated quinolones and their biological activities. Mol Divers 2021. [PMID: 34698911 DOI: 10.1007/s11030-021-10332-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
72 Dan S, Kalantari M, Kamyabi A, Soltani M. Synthesis of chitosan-g-itaconic acid hydrogel as an antibacterial drug carrier: optimization through RSM-CCD. Polym Bull . [DOI: 10.1007/s00289-021-03903-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
73 Charpentier E, Doudet L, Allart-Simon I, Colin M, Gangloff SC, Gérard S, Reffuveille F. Synergy between Indoloquinolines and Ciprofloxacin: An Antibiofilm Strategy against Pseudomonas aeruginosa. Antibiotics (Basel) 2021;10:1205. [PMID: 34680786 DOI: 10.3390/antibiotics10101205] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
74 Zhang H, Song T, Qin C, Xu H, Qiao M. A Novel Non-Coding RNA CsiR Regulates the Ciprofloxacin Resistance in Proteus vulgaris by Interacting with emrB mRNA. Int J Mol Sci 2021;22:10627. [PMID: 34638966 DOI: 10.3390/ijms221910627] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
75 Jun C, Fang B. Current progress of fluoroquinolones-increased risk of aortic aneurysm and dissection. BMC Cardiovasc Disord 2021;21:470. [PMID: 34583637 DOI: 10.1186/s12872-021-02258-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
76 Dwivedi GR, Rai R, Pratap R, Singh K, Pati S, Sahu SN, Kant R, Darokar MP, Yadav DK. Drug resistance reversal potential of multifunctional thieno[3,2-c]pyran via potentiation of antibiotics in MDR P. aeruginosa. Biomed Pharmacother 2021;142:112084. [PMID: 34449308 DOI: 10.1016/j.biopha.2021.112084] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
77 Mukherjee A, Mullick A, Moulik S, Roy A. Oxidative degradation of emerging micropollutants induced by rotational hydrodynamic cavitating device: A case study with ciprofloxacin. Journal of Environmental Chemical Engineering 2021;9:105652. [DOI: 10.1016/j.jece.2021.105652] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
78 Song J, Kook MS, Kim BH, Jeong YI, Oh KJ. Ciprofloxacin-Releasing ROS-Sensitive Nanoparticles Composed of Poly(Ethylene Glycol)/Poly(D,L-lactide-co-glycolide) for Antibacterial Treatment. Materials (Basel) 2021;14:4125. [PMID: 34361319 DOI: 10.3390/ma14154125] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
79 Hao B, Wang F, Huang H, Wu Y, Jia S, Liao Y, Mao H. Tannin foam immobilized with ferric ions for efficient removal of ciprofloxacin at low concentrations. J Hazard Mater 2021;414:125567. [PMID: 34030414 DOI: 10.1016/j.jhazmat.2021.125567] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 7.5] [Reference Citation Analysis]
80 Li L, Liu J, Zeng J, Li J, Liu Y, Sun X, Xu L, Li L. Complete Degradation and Detoxification of Ciprofloxacin by a Micro-/Nanostructured Biogenic Mn Oxide Composite from a Highly Active Mn2+-Oxidizing Pseudomonas Strain. Nanomaterials (Basel) 2021;11:1660. [PMID: 34202527 DOI: 10.3390/nano11071660] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
81 Bourgat Y, Mikolai C, Stiesch M, Klahn P, Menzel H. Enzyme-Responsive Nanoparticles and Coatings Made from Alginate/Peptide Ciprofloxacin Conjugates as Drug Release System. Antibiotics (Basel) 2021;10:653. [PMID: 34072352 DOI: 10.3390/antibiotics10060653] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
82 Khalil IA, Saleh B, Ibrahim DM, Jumelle C, Yung A, Dana R, Annabi N. Ciprofloxacin-loaded bioadhesive hydrogels for ocular applications. Biomater Sci 2020;8:5196-209. [PMID: 32840522 DOI: 10.1039/d0bm00935k] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 12.5] [Reference Citation Analysis]
83 Wang Y, Liang Z, Zheng Y, Leung AS, Yan SC, So PK, Leung YC, Wong WL, Wong KY. Rational structural modification of the isatin scaffold to develop new and potent antimicrobial agents targeting bacterial peptidoglycan glycosyltransferase. RSC Adv 2021;11:18122-30. [PMID: 35480164 DOI: 10.1039/d1ra02119b] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
84 Han Z, Sun T, Xu Z, Fan L, Yun H, Ge X, Liu X, Liu Y, Ning B. Detection of 4 quinolone antibiotics by chemiluminescence based on a novel Nor-Biotin bifunctional ligand and SA-ALP technology. Biosci Biotechnol Biochem 2021;85:1720-8. [PMID: 33960377 DOI: 10.1093/bbb/zbab081] [Reference Citation Analysis]
85 Marchant P, Carreño A, Vivanco E, Silva A, Nevermann J, Otero C, Araya E, Gil F, Calderón IL, Fuentes JA. "One for All": Functional Transfer of OMV-Mediated Polymyxin B Resistance From Salmonella enterica sv. Typhi ΔtolR and ΔdegS to Susceptible Bacteria. Front Microbiol 2021;12:672467. [PMID: 34025627 DOI: 10.3389/fmicb.2021.672467] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
86 Al-Wahaibi LH, Amer AA, Marzouk AA, Gomaa HAM, Youssif BGM, Abdelhamid AA. Design, Synthesis, and Antibacterial Screening of Some Novel Heteroaryl-Based Ciprofloxacin Derivatives as DNA Gyrase and Topoisomerase IV Inhibitors. Pharmaceuticals (Basel) 2021;14:399. [PMID: 33922361 DOI: 10.3390/ph14050399] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
87 Prasad AS, Kumar SN, Maheswari MA, Prabhakaran D. Monolithic heterojunctions of CeO2/La2O3/TiO2 nanocomposites as visible-light capturing photoactive materials for fast and efficient clean-up of persistent pharmaceutical pollutants. Bull Mater Sci 2021;44. [DOI: 10.1007/s12034-021-02393-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
88 Hal AM, El‐barbary MI. Therapeutic effect of Nigella sativa oil and ciprofloxacin against bacterial infection based on interleukin 1β expression and kidney histopathological alterations in Oreochromis niloticus. Aquaculture Research 2021;52:2772-82. [DOI: 10.1111/are.15129] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
89 Li H, Xu Q, Liu L, Wu L, Tang Z, Cui H, Liu Y. A new magnesium(II) complex of marbofloxacin: Crystal structure, antibacterial activity and acute toxicity. Inorganica Chimica Acta 2021;516:120065. [DOI: 10.1016/j.ica.2020.120065] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
90 Yuan C, He Z, Chen Q, Wang X, Zhai C, Zhu M. Selective and efficacious photoelectrochemical detection of ciprofloxacin based on the self-assembly of 2D/2D g-C3N4/Ti3C2 composites. Applied Surface Science 2021;539:148241. [DOI: 10.1016/j.apsusc.2020.148241] [Cited by in Crossref: 34] [Cited by in F6Publishing: 27] [Article Influence: 17.0] [Reference Citation Analysis]
91 Ahmadi H, Ebrahimi A, Ahmadi F. Antibiotic Therapy in Dentistry. Int J Dent 2021;2021:6667624. [PMID: 33574843 DOI: 10.1155/2021/6667624] [Cited by in Crossref: 12] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
92 Sanchis-perucho A, Orts-arroyo M, Camús-hernández J, Rojas-dotti C, Escrivà E, Lloret F, Martínez-lillo J. Hexahalorhenate( iv ) salts of protonated ciprofloxacin: antibiotic-based single-ion magnets. CrystEngComm 2021;23:8579-87. [DOI: 10.1039/d1ce01337h] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
93 Teja C, Khan FRN. Radical Transformations towards the Synthesis of Quinoline: A Review. Chem Asian J 2020;15:4153-67. [PMID: 33135361 DOI: 10.1002/asia.202001156] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
94 Liu Y, Bai X, A L. In vitro and in vivo evaluation of a ciprofloxacin delivery system based on poly(DLLA-co-GA-co-CL) for treatment of chronic osteomyelitis. J Appl Biomater Funct Mater 2020;18:2280800020975727. [PMID: 33270476 DOI: 10.1177/2280800020975727] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
95 Tabassum R, Ashfaq M, Oku H. Development of an efficient, one-pot, multicomponent protocol for synthesis of 8-hydroxy-4-phenyl-1,2-dihydroquinoline derivatives. J Heterocycl Chem 2020. [PMID: 33362294 DOI: 10.1002/jhet.4193] [Reference Citation Analysis]
96 Tabassum R, Ashfaq M, Oku H. Recent Advances in Transition Metal Free Synthetic Protocols for Quinoline Derivatives. COC 2020;24:1815-52. [DOI: 10.2174/1385272824999200616122557] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
97 Ahadi H, Shokrzadeh M, Hosseini-Khah Z, Ghassemi Barghi N, Ghasemian M, Emadi E, Zargari M, Razzaghi-Asl N, Emami S. Synthesis and biological assessment of ciprofloxacin-derived 1,3,4-thiadiazoles as anticancer agents. Bioorg Chem 2020;105:104383. [PMID: 33130342 DOI: 10.1016/j.bioorg.2020.104383] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
98 Zafar R, Bashir S, Nabi D, Arshad M. Occurrence and quantification of prevalent antibiotics in wastewater samples from Rawalpindi and Islamabad, Pakistan. Sci Total Environ 2021;764:142596. [PMID: 33097270 DOI: 10.1016/j.scitotenv.2020.142596] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
99 Meiers J, Zahorska E, Röhrig T, Hauck D, Wagner S, Titz A. Directing Drugs to Bugs: Antibiotic-Carbohydrate Conjugates Targeting Biofilm-Associated Lectins of Pseudomonas aeruginosa. J Med Chem 2020;63:11707-24. [PMID: 32924479 DOI: 10.1021/acs.jmedchem.0c00856] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
100 Ceylan Ş, Cebeci YU, Demirbaş N, Batur ÖÖ, Özakpınar ÖB. Antimicrobial, Antioxidant and Antiproliferative Activities of Novel Quinolones. ChemistrySelect 2020;5:11340-6. [DOI: 10.1002/slct.202002779] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
101 Ge X, Xu Z. 1,2,4-Triazole hybrids with potential antibacterial activity against methicillin-resistant Staphylococcus aureus. Arch Pharm (Weinheim) 2021;354:e2000223. [PMID: 32985011 DOI: 10.1002/ardp.202000223] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
102 Taha I, Keshk EM, Khalil AM, Fekri A. Synthesis, characterization, antibacterial evaluation, 2D-QSAR modeling and molecular docking studies for benzocaine derivatives. Mol Divers 2021;25:435-59. [PMID: 32978693 DOI: 10.1007/s11030-020-10138-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
103 Matulewicz K, Kaźmierski Ł, Wiśniewski M, Roszkowski S, Roszkowski K, Kowalczyk O, Roy A, Tylkowski B, Bajek A. Ciprofloxacin and Graphene Oxide Combination-New Face of a Known Drug. Materials (Basel) 2020;13:E4224. [PMID: 32977453 DOI: 10.3390/ma13194224] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
104 Dantas JA, Echemendía R, Santos MS, Paixão MW, Ferreira MAB, Corrêa AG. Green Approach for Visible-Light-Induced Direct Functionalization of 2-Methylquinolines. J Org Chem 2020;85:11663-78. [PMID: 32852210 DOI: 10.1021/acs.joc.0c01203] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
105 Tsakou F, Jersie-Christensen R, Jenssen H, Mojsoska B. The Role of Proteomics in Bacterial Response to Antibiotics. Pharmaceuticals (Basel) 2020;13:E214. [PMID: 32867221 DOI: 10.3390/ph13090214] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
106 Batiha GE, Tayebwa DS, Beshbishy AM, N'Da DD, Yokoyama N, Igarashi I. Inhibitory effects of novel ciprofloxacin derivatives on the growth of four Babesia species and Theileria equi. Parasitol Res 2020;119:3061-73. [PMID: 32677000 DOI: 10.1007/s00436-020-06796-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
107 Song F, Li Z, Bian Y, Huo X, Fang J, Shao L, Zhou M. Indole/isatin-containing hybrids as potential antibacterial agents. Arch Pharm (Weinheim) 2020;353:e2000143. [PMID: 32667714 DOI: 10.1002/ardp.202000143] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
108 Guz-Regner K, Komarnicka UK, Futoma-Kołoch B, Wernecki M, Cal M, Kozieł S, Ziółkowska A, Bugla-Płoskońska G. Antibacterial activity and action mode of Cu(I) and Cu(II) complexes with phosphines derived from fluoroquinolone against clinical and multidrug-resistant bacterial strains. J Inorg Biochem 2020;210:111124. [PMID: 32534287 DOI: 10.1016/j.jinorgbio.2020.111124] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
109 Wang LP, Xu Z, Deng GY, Xu SL. Antiproliferative Activity of 8-methoxy Ciprofloxacin-Hydrozone/Acylhydrazone Scaffolds. Curr Top Med Chem 2020;20:1911-5. [PMID: 32493190 DOI: 10.2174/1568026620666200603105644] [Reference Citation Analysis]
110 Szewczenko J, Kajzer W, Kajzer A, Basiaga M, Kaczmarek M, Antonowicz M, Jaworska J, Jelonek K, Marcinkowski A, Kasperczyk J. Surface modification of titanium 6‐aluminum 7‐niobium alloy with biodegradable polymer coatings. Materialwiss Werkstofftech 2020;51:613-23. [DOI: 10.1002/mawe.201900226] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
111 Shahzad SA, Sarfraz A, Yar M, Khan ZA, Naqvi SAR, Naz S, Khan NA, Farooq U, Batool R, Ali M. Synthesis, evaluation of thymidine phosphorylase and angiogenic inhibitory potential of ciprofloxacin analogues: Repositioning of ciprofloxacin from antibiotic to future anticancer drugs. Bioorg Chem 2020;100:103876. [PMID: 32388426 DOI: 10.1016/j.bioorg.2020.103876] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
112 Fan M, Chen S, Weng Y, Li X, Jiang Y, Wang X, Bie M, An L, Zhang M, Chen B, Huang G, Wu J, Zhu M, Shi Q. Ciprofloxacin promotes polarization of CD86+CD206‑ macrophages to suppress liver cancer. Oncol Rep 2020;44:91-102. [PMID: 32377744 DOI: 10.3892/or.2020.7602] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
113 Kajzer W, Szewczenko J, Kajzer A, Basiaga M, Kaczmarek M, Antonowicz M, Jaworska J, Jelonek K, Orchel A, Nowińska K, Kasperczyk J. Electrochemical and Biological Performance of Biodegradable Polymer Coatings on Ti6Al7Nb Alloy. Materials (Basel) 2020;13:E1758. [PMID: 32283745 DOI: 10.3390/ma13071758] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
114 Zou Y, Li H, Zhou W, Cui X, Zou G, Shen G. Introduction of the antibacterial drugs norfloxacin and Ciprofloxacin into a polyoxometalate structure: Synthesis, characterization, and antibacterial activity. Journal of Molecular Structure 2020;1205:127584. [DOI: 10.1016/j.molstruc.2019.127584] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
115 Karataş E, Baltacı MÖ, Uluköylü E, Adıgüzel A. Antibacterial effectiveness of calcium hydroxide alone or in combination with Ibuprofen and Ciprofloxacin in teeth with asymptomatic apical periodontitis: a randomized controlled clinical study. Int Endod J 2020;53:742-53. [DOI: 10.1111/iej.13277] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
116 de Almeida AC, Torquetti C, Ferreira PO, Fernandes RP, dos Santos EC, Kogawa AC, Caires FJ. Cocrystals of ciprofloxacin with nicotinic and isonicotinic acids: Mechanochemical synthesis, characterization, thermal and solubility study. Thermochimica Acta 2020;685:178346. [DOI: 10.1016/j.tca.2019.178346] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 5.3] [Reference Citation Analysis]
117 Navo CD, Mazo N, Oroz P, Gutiérrez-Jiménez MI, Marín J, Asenjo J, Avenoza A, Busto JH, Corzana F, Zurbano MM, Jiménez-Osés G, Peregrina JM. Synthesis of Nβ-Substituted α,β-Diamino Acids via Stereoselective N-Michael Additions to a Chiral Bicyclic Dehydroalanine. J Org Chem 2020;85:3134-45. [PMID: 32040912 DOI: 10.1021/acs.joc.9b03020] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
118 Zhang T, Qian C, Guo P, Gan S, Dong L, Bai G, Guo Q. A Novel Reduced Graphene Oxide-Attapulgite (RGO-ATP) Supported Fe2O3 Catalyst for Heterogeneous Fenton-like Oxidation of Ciprofloxacin: Degradation Mechanism and Pathway. Catalysts 2020;10:189. [DOI: 10.3390/catal10020189] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
119 Xia H, Peng M, Li N, Liu L. CdSe quantum dots-sensitized FRET system for ciprofloxacin detection. Chemical Physics Letters 2020;740:137085. [DOI: 10.1016/j.cplett.2019.137085] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
120 Batalha PN, da S M Forezi L, Tolentino NMC, Sagrillo FS, de Oliveira VG, de Souza MCBV, da C S Boechat F. 4-Oxoquinoline Derivatives as Antivirals: A Ten Years Overview. Curr Top Med Chem 2020;20:244-55. [PMID: 31995008 DOI: 10.2174/1568026620666200129100219] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
121 Jaworska J, Jelonek K, Jaworska-Kik M, Musiał-Kulik M, Marcinkowski A, Szewczenko J, Kajzer W, Pastusiak M, Kasperczyk J. Development of antibacterial, ciprofloxacin-eluting biodegradable coatings on Ti6Al7Nb implants to prevent peri-implant infections. J Biomed Mater Res A 2020;108:1006-15. [PMID: 31925896 DOI: 10.1002/jbm.a.36877] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
122 Guo RF, Yan HT, Liu RX, Li HC, Liu YC, Chen ZF, Liang H. Structural characterization and pharmacological assessment in vitro/in vivo of a new copper(II)-based derivative of enrofloxacin. Metallomics 2020;12:2145-60. [PMID: 33300517 DOI: 10.1039/d0mt00155d] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
123 Hu X, Hu X, Peng Q, Zhou L, Tan X, Jiang L, Tang C, Wang H, Liu S, Wang Y, Ning Z. Mechanisms underlying the photocatalytic degradation pathway of ciprofloxacin with heterogeneous TiO2. Chemical Engineering Journal 2020;380:122366. [DOI: 10.1016/j.cej.2019.122366] [Cited by in Crossref: 130] [Cited by in F6Publishing: 111] [Article Influence: 43.3] [Reference Citation Analysis]
124 Tao L, Wei Y, Shi M. Dimerization–cyclization reactions of isocyanoaryl-tethered alkylidenecyclobutanes via a triplet biradical mediated process. Org Chem Front 2020;7:2634-2643. [DOI: 10.1039/d0qo00878h] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
125 Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, part XVIII, 2018. Advances in Heterocyclic Chemistry 2020. [DOI: 10.1016/bs.aihch.2020.01.002] [Cited by in Crossref: 5] [Article Influence: 1.7] [Reference Citation Analysis]
126 Fois B, Skok Ž, Tomašič T, Ilaš J, Zidar N, Zega A, Peterlin Mašič L, Szili P, Draskovits G, Nyerges Á, Pál C, Kikelj D. Dual Escherichia coli DNA Gyrase A and B Inhibitors with Antibacterial Activity. ChemMedChem 2020;15:265-9. [DOI: 10.1002/cmdc.201900607] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
127 Pretto LM, Mittersteiner M, Andrade VP, Bonacorso HG, Martins MA, Zanatta N. Chemoselective synthesis of 6-amino(alkoxy)-1,4,5,6-tetrahydropyridines from cyclic β-alkoxyvinyl α-ketoester. Tetrahedron Letters 2019;60:151336. [DOI: 10.1016/j.tetlet.2019.151336] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
128 Gao F, Xiao J, Huang G. Current scenario of tetrazole hybrids for antibacterial activity. European Journal of Medicinal Chemistry 2019;184:111744. [DOI: 10.1016/j.ejmech.2019.111744] [Cited by in Crossref: 36] [Cited by in F6Publishing: 25] [Article Influence: 9.0] [Reference Citation Analysis]
129 Xie YJ, Yu MX, Yang QZ, Liu YC, Liu RX, Dong JX, Wu XY, Guo RF, Pan YX, Chen ZF, Liang H. A new calcium(II) complex of marbofloxacin showing much lower acute toxicity with retained antibacterial activity. J Inorg Biochem 2020;203:110905. [PMID: 31707333 DOI: 10.1016/j.jinorgbio.2019.110905] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
130 Abioye A, Sanyaolu A, Dudzinska P, Adepoju-Bello AA, Coker HAB. Chitosan-induced Synergy for Extended Antimicrobial Potency and Enhanced In Vitro Drug Release of Free Base Ciprofloxacin Nanoplexes. Pharm Nanotechnol 2020;8:33-53. [PMID: 31642799 DOI: 10.2174/2211738507666191021102256] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
131 Li T, Zhang L, Xing Y, Xu H, Yue Y, Li Q, Dong H, Wang H, Yin Y. A ciprofloxacin based 1D Cd(II) coordination polymer with highly efficient humidity sensing performance. Inorganic Chemistry Communications 2019;108:107541. [DOI: 10.1016/j.inoche.2019.107541] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
132 Hayani S, Filali Baba Y, Hökelek T, Ouazzani Chahdi F, Mague JT, Sebbar NK, Kandri Rodi Y. Crystal structure, Hirshfeld surface analysis and interaction energy and DFT studies of 2-chloroethyl 2-oxo-1-(prop-2-yn-1-yl)-1,2-dihydroquinoline-4-carboxylate. Acta Cryst E 2019;75:1411-1417. [DOI: 10.1107/s2056989019012283] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
133 Chen R, Zhang H, Ma T, Xue H, Miao Z, Chen L, Shi X. Ciprofloxacin-1,2,3-triazole-isatin hybrids tethered via amide: Design, synthesis, and in vitro anti-mycobacterial activity evaluation. Bioorganic & Medicinal Chemistry Letters 2019;29:2635-7. [DOI: 10.1016/j.bmcl.2019.07.041] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
134 Bogdanov AV, Zaripova IF, Mustafina LK, Voloshina AD, Sapunova AS, Kulik NV, Mironov VF. Synthesis and Study of Antimicrobial Activity of Water-Soluble Ammonium Acylhydrazones Based on New 1,ω-Alkylenebis(isatins). Russ J Gen Chem 2019;89:1368-76. [DOI: 10.1134/s107036321907003x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
135 Gisbert P, Albert-soriano M, Pastor IM. Effective and Sustainable Access to Quinolines and Acridines: A Heterogeneous Imidazolium Salt Mediates C-C and C-N Bond Formation: Effective and Sustainable Access to Quinolines and Acridines: A Heterogeneous Imidazolium Salt Mediates C-C and C-N Bond Formation. Eur J Org Chem 2019;2019:4928-40. [DOI: 10.1002/ejoc.201900880] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
136 Gao F, Ye L, Kong F, Huang G, Xiao J. Design, synthesis and antibacterial activity evaluation of moxifloxacin-amide-1,2,3-triazole-isatin hybrids. Bioorg Chem 2019;91:103162. [PMID: 31382058 DOI: 10.1016/j.bioorg.2019.103162] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 6.3] [Reference Citation Analysis]
137 Dwivedi GR, Maurya A, Yadav DK, Khan F, Gupta MK, Gupta P, Darokar MP, Srivastava SK. Comparative Drug Resistance Reversal Potential of Natural Glycosides: Potential of Synergy Niaziridin & Niazirin. CTMC 2019;19:847-60. [DOI: 10.2174/1568026619666190412120008] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
138 Wang R, Xu K, Shi W. Quinolone derivatives: Potential anti‐HIV agent—development and application. Arch Pharm Chem Life Sci 2019;352:1900045. [DOI: 10.1002/ardp.201900045] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
139 Zhang J, Wang S, Ba Y, Xu Z. 1,2,4-Triazole-quinoline/quinolone hybrids as potential anti-bacterial agents. European Journal of Medicinal Chemistry 2019;174:1-8. [DOI: 10.1016/j.ejmech.2019.04.033] [Cited by in Crossref: 65] [Cited by in F6Publishing: 66] [Article Influence: 16.3] [Reference Citation Analysis]
140 Türe A, Kulabaş N, Dingiş Sİ, Birgül K, Bozdeveci A, Alpay Karaoğlu Ş, Krishna VS, Sriram D, Küçükgüzel İ. Design, synthesis and molecular modeling studies on novel moxifloxacin derivatives as potential antibacterial and antituberculosis agents. Bioorganic Chemistry 2019;88:102965. [DOI: 10.1016/j.bioorg.2019.102965] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
141 Fedorowicz J, Sączewski J, Konopacka A, Waleron K, Lejnowski D, Ciura K, Tomašič T, Skok Ž, Savijoki K, Morawska M, Gilbert-Girard S, Fallarero A. Synthesis and biological evaluation of hybrid quinolone-based quaternary ammonium antibacterial agents. Eur J Med Chem 2019;179:576-90. [PMID: 31279292 DOI: 10.1016/j.ejmech.2019.06.071] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 10.5] [Reference Citation Analysis]
142 Zhang J, Ba Y, Wang S, Yang H, Hou X, Xu Z. Nitroimidazole-containing compounds and their antibacterial and antitubercular activities. Eur J Med Chem 2019;179:376-88. [PMID: 31260891 DOI: 10.1016/j.ejmech.2019.06.068] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
143 Bogdanov AV, Zaripova IF, Voloshina AD, Sapunova AS, Kulik NV, Bukharov SV, Voronina JK, Vandyukov AE, Mironov VF. Synthesis and Biological Evaluation of New Isatin‐Based QACs with High Antimicrobial Potency. ChemistrySelect 2019;4:6162-6. [DOI: 10.1002/slct.201901708] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
144 Wang S, Wang Y, Xu Z. Tetrazole hybrids and their antifungal activities. European Journal of Medicinal Chemistry 2019;170:225-34. [DOI: 10.1016/j.ejmech.2019.03.023] [Cited by in Crossref: 32] [Cited by in F6Publishing: 35] [Article Influence: 8.0] [Reference Citation Analysis]
145 Zhang B. Quinolone derivatives and their antifungal activities: An overview. Arch Pharm (Weinheim) 2019;352:e1800382. [PMID: 31021468 DOI: 10.1002/ardp.201800382] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
146 Gao F, Wang T, Xiao J, Huang G. Antibacterial activity study of 1,2,4-triazole derivatives. Eur J Med Chem 2019;173:274-81. [PMID: 31009913 DOI: 10.1016/j.ejmech.2019.04.043] [Cited by in Crossref: 104] [Cited by in F6Publishing: 110] [Article Influence: 26.0] [Reference Citation Analysis]
147 Gao F, Zhang X, Wang T, Xiao J. Quinolone hybrids and their anti-cancer activities: An overview. European Journal of Medicinal Chemistry 2019;165:59-79. [DOI: 10.1016/j.ejmech.2019.01.017] [Cited by in Crossref: 98] [Cited by in F6Publishing: 105] [Article Influence: 24.5] [Reference Citation Analysis]
148 Tahir S, Mahmood T, Dastgir F, Haq I, Waseem A, Rashid U. Design, synthesis and anti-bacterial studies of piperazine derivatives against drug resistant bacteria. European Journal of Medicinal Chemistry 2019;166:224-31. [DOI: 10.1016/j.ejmech.2019.01.062] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
149 Kobelev AI, Stepanova EE, Dmitriev MV, Maslivets AN. Annulation of 1H-pyrrole-2,3-diones by thioacetamide: an approach to 5-azaisatins. Beilstein J Org Chem 2019;15:364-70. [PMID: 30800185 DOI: 10.3762/bjoc.15.32] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
150 Guo H. Isatin derivatives and their anti-bacterial activities. European Journal of Medicinal Chemistry 2019;164:678-88. [DOI: 10.1016/j.ejmech.2018.12.017] [Cited by in Crossref: 92] [Cited by in F6Publishing: 92] [Article Influence: 23.0] [Reference Citation Analysis]
151 Zaki H, Belhassan A, Aouidate A, Lakhlifi T, Benlyas M, Bouachrine M. Antibacterial study of 3-(2-amino-6-phenylpyrimidin-4-yl)-N-cyclopropyl-1-methyl-1H-indole-2-carboxamide derivatives: CoMFA, CoMSIA analyses, molecular docking and ADMET properties prediction. Journal of Molecular Structure 2019;1177:275-85. [DOI: 10.1016/j.molstruc.2018.09.073] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
152 Masadeh MM, Alzoubi KH, Ahmed WS, Magaji AS. In Vitro Comparison of Antibacterial and Antibiofilm Activities of Selected Fluoroquinolones against Pseudomonas aeruginosa and Methicillin-Resistant Staphylococcus aureus. Pathogens 2019;8:E12. [PMID: 30682768 DOI: 10.3390/pathogens8010012] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
153 Gupta P, Gao HL, Ashar YV, Karadkhelkar NM, Yoganathan S, Chen ZS. Ciprofloxacin Enhances the Chemosensitivity of Cancer Cells to ABCB1 Substrates. Int J Mol Sci 2019;20:E268. [PMID: 30641875 DOI: 10.3390/ijms20020268] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
154 Chu X, Wang C, Liu W, Liang L, Gong K, Zhao C, Sun K. Quinoline and quinolone dimers and their biological activities: An overview. European Journal of Medicinal Chemistry 2019;161:101-17. [DOI: 10.1016/j.ejmech.2018.10.035] [Cited by in Crossref: 109] [Cited by in F6Publishing: 113] [Article Influence: 27.3] [Reference Citation Analysis]
155 Guo H. Design, Synthesis, and In Vitro Anti‐mycobacterial Activities of Propylene Tethered Benzofuran–Isatin Hybrids. J Heterocyclic Chem 2019;56:338-42. [DOI: 10.1002/jhet.3387] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
156 Gao T, Hu W, Zeng Z, Sun S, Wang R. Design, Synthesis, and Evaluation of Tetraethylene Glycol Tethered Ciprofloxacin–Isatin Hybrids as Novel Antitubercular Agents. J Heterocyclic Chem 2019;56:306-11. [DOI: 10.1002/jhet.3338] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
157 Xu Z, Zhao S, Deng J, Wang Q, Lv Z. Ciprofloxacin–Isatin Hybrids and Their Antimycobacterial Activities. J Heterocyclic Chem 2019;56:319-24. [DOI: 10.1002/jhet.3382] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
158 Xu Z, Zhao SJ, Lv ZS, Gao F, Wang Y, Zhang F, Bai L, Deng JL. Fluoroquinolone-isatin hybrids and their biological activities. Eur J Med Chem 2019;162:396-406. [PMID: 30453247 DOI: 10.1016/j.ejmech.2018.11.032] [Cited by in Crossref: 78] [Cited by in F6Publishing: 81] [Article Influence: 15.6] [Reference Citation Analysis]
159 Zhao S, Lv Z, Shi L, Zhao S, Xu Z. Design, Synthesis, and In Vitro Anti‐Mycobacterial Activities of Tetraethylene Glycol Tethered Isatin Dimers. J Heterocyclic Chem 2018;55:2985-9. [DOI: 10.1002/jhet.3324] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
160 Gao F, Wang P, Yang H, Miao Q, Ma L, Lu G. Recent developments of quinolone-based derivatives and their activities against Escherichia coli. European Journal of Medicinal Chemistry 2018;157:1223-48. [DOI: 10.1016/j.ejmech.2018.08.095] [Cited by in Crossref: 65] [Cited by in F6Publishing: 66] [Article Influence: 13.0] [Reference Citation Analysis]
161 Guo H. Design, Synthesis, and Antibacterial Evaluation of Propylene-tethered 8-Methoxyl Ciprofloxacin-isatin Hybrids: Design, Synthesis, and Antibacterial Evaluation of Propylene-tethered 8-methoxyl Ciprofloxacin-isatin Hybrids. J Heterocyclic Chem 2018;55:2434-40. [DOI: 10.1002/jhet.3279] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
162 Ezelarab HAA, Abbas SH, Hassan HA, Abuo-rahma GEA. Recent updates of fluoroquinolones as antibacterial agents. Arch Pharm Chem Life Sci 2018;351:1800141. [DOI: 10.1002/ardp.201800141] [Cited by in Crossref: 80] [Cited by in F6Publishing: 82] [Article Influence: 16.0] [Reference Citation Analysis]
163 Wang R, Yin X, Zhang Y, Yan W. Design, synthesis and antimicrobial evaluation of propylene-tethered ciprofloxacin-isatin hybrids. Eur J Med Chem 2018;156:580-6. [PMID: 30025351 DOI: 10.1016/j.ejmech.2018.07.025] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 8.0] [Reference Citation Analysis]
164 Zhao S, Xu Y, Guan J, Zhao S, Zhang G, Xu Z. Tetraethylene Glycol Tethered Heteronuclear Bis-isatin Derivatives: Design, Synthesis, and In Vitro Anti-mycobacterial Activities: Tetraethylene Glycol Tethered Heteronuclear Bis-isatin Derivatives: Design, Synthesis, and In Vitro Anti-mycobacterial Activities. J Heterocyclic Chem 2018;55:2172-7. [DOI: 10.1002/jhet.3255] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]