BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lin Y, Ye Y, Hu Y, Shi H. The variation in microbial community structure under different heavy metal contamination levels in paddy soils. Ecotoxicol Environ Saf 2019;180:557-64. [PMID: 31128554 DOI: 10.1016/j.ecoenv.2019.05.057] [Cited by in Crossref: 49] [Cited by in F6Publishing: 39] [Article Influence: 16.3] [Reference Citation Analysis]
Number Citing Articles
1 Liu X, Shi H, Bai Z, Zhou W, Liu K, Wang M, He Y. Heavy metal concentrations of soils near the large opencast coal mine pits in China. Chemosphere 2020;244:125360. [DOI: 10.1016/j.chemosphere.2019.125360] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 8.5] [Reference Citation Analysis]
2 Cao X, Luo J, Wang X, Chen Z, Liu G, Khan MB, Kang KJ, Feng Y, He Z, Yang X. Responses of soil bacterial community and Cd phytoextraction to a Sedum alfredii-oilseed rape (Brassica napus L. and Brassica juncea L.) intercropping system. Science of The Total Environment 2020;723:138152. [DOI: 10.1016/j.scitotenv.2020.138152] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 9.5] [Reference Citation Analysis]
3 Wang J, Xiong Y, Zhang J, Lu X, Wei G. Naturally selected dominant weeds as heavy metal accumulators and excluders assisted by rhizosphere bacteria in a mining area. Chemosphere 2020;243:125365. [PMID: 31759218 DOI: 10.1016/j.chemosphere.2019.125365] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
4 Bhavya G, Hiremath KY, Jogaiah S, Geetha N. Heavy metal-induced oxidative stress and alteration in secretory proteins in yeast isolates. Arch Microbiol 2022;204:172. [PMID: 35165751 DOI: 10.1007/s00203-022-02756-6] [Reference Citation Analysis]
5 Chun SJ, Kim YJ, Cui Y, Nam KH. Ecological network analysis reveals distinctive microbial modules associated with heavy metal contamination of abandoned mine soils in Korea. Environ Pollut 2021;289:117851. [PMID: 34358869 DOI: 10.1016/j.envpol.2021.117851] [Reference Citation Analysis]
6 Ogwugwa VH, Oyetibo GO, Amund OO. Taxonomic profiling of bacteria and fungi in freshwater sewer receiving hospital wastewater. Environ Res 2021;192:110319. [PMID: 33069702 DOI: 10.1016/j.envres.2020.110319] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
7 Azadi N, Raiesi F. Salinization depresses soil enzyme activity in metal-polluted soils through increases in metal mobilization and decreases in microbial biomass. Ecotoxicology 2021;30:1071-83. [PMID: 34101047 DOI: 10.1007/s10646-021-02433-2] [Reference Citation Analysis]
8 Zhang X, Fu G, Xing S, Fu W, Liu X, Wu H, Zhou X, Ma Y, Zhang X, Chen B. Structure and diversity of fungal communities in long-term copper-contaminated agricultural soil. Sci Total Environ 2021;:151302. [PMID: 34743886 DOI: 10.1016/j.scitotenv.2021.151302] [Reference Citation Analysis]
9 Zhang X, Bian F, Zhong Z, Gai X, Yang C. Deciphering the rhizosphere microbiome of a bamboo plant in response to different chromium contamination levels. Journal of Hazardous Materials 2020;399:123107. [DOI: 10.1016/j.jhazmat.2020.123107] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
10 Pei P, Sun T, Xu Y, Sun Y. Soil aggregate-associated mercury (Hg) and organic carbon distribution and microbial community characteristics under typical farmland-use types. Chemosphere 2021;275:129987. [PMID: 33631401 DOI: 10.1016/j.chemosphere.2021.129987] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
11 Chai X, Wang X, Gao B, Li H, Han Z, Xu X, Zhang X, Wu T, Wang Y. Niche differentiation shapes the bacterial diversity and composition of apple. Horticultural Plant Journal 2022. [DOI: 10.1016/j.hpj.2022.03.005] [Reference Citation Analysis]
12 Xu M, Cui Y, Beiyuan J, Wang X, Duan C, Fang L. Heavy metal pollution increases soil microbial carbon limitation: Evidence from ecological enzyme stoichiometry. Soil Ecol Lett 2021;3:230-41. [DOI: 10.1007/s42832-021-0094-2] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Di Cesare A, Pjevac P, Eckert E, Curkov N, Miko Šparica M, Corno G, Orlić S. The role of metal contamination in shaping microbial communities in heavily polluted marine sediments. Environ Pollut 2020;265:114823. [PMID: 32512474 DOI: 10.1016/j.envpol.2020.114823] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
14 da Costa Silva TA, de Paula M Jr, Silva WS, Lacorte GA. Can moderate heavy metal soil contaminations due to cement production influence the surrounding soil bacterial communities? Ecotoxicology 2021. [PMID: 34748159 DOI: 10.1007/s10646-021-02494-3] [Reference Citation Analysis]
15 Adenan S, Oja J, Alatalo JM, Shraim AM, Alsafran M, Tedersoo L, Zobel M, Ahmed T. Diversity of arbuscular mycorrhizal fungi and its chemical drivers across dryland habitats. Mycorrhiza 2021;31:685-97. [PMID: 34554321 DOI: 10.1007/s00572-021-01052-3] [Reference Citation Analysis]
16 Li Y, Xie X, Zhu Z, Liu K, Liu W, Wang J. Land use driven change in soil organic carbon affects soil microbial community assembly in the riparian of Three Gorges Reservoir Region. Applied Soil Ecology 2022;176:104467. [DOI: 10.1016/j.apsoil.2022.104467] [Reference Citation Analysis]
17 Hao S, Wang P, Ge F, Li F, Deng S, Zhang D, Tian J. Enhanced Lead (Pb) immobilization in red soil by phosphate solubilizing fungi associated with tricalcium phosphate influencing microbial community composition and Pb translocation in Lactuca sativa L. J Hazard Mater 2022;424:127720. [PMID: 34810010 DOI: 10.1016/j.jhazmat.2021.127720] [Reference Citation Analysis]
18 Silva TADC, Paula MD, Silva WS, Lacorte GA. Deposition of Potentially Toxic Metals in the Soil from Surrounding Cement Plants in a Karst Area of Southeastern Brazil. Conservation 2021;1:137-50. [DOI: 10.3390/conservation1030012] [Reference Citation Analysis]
19 Li K, Wang C, Ow DW. Root microbiome changes associated with cadmium exposure and/or overexpression of a transgene that reduces Cd content in rice. Ecotoxicology and Environmental Safety 2022;237:113530. [DOI: 10.1016/j.ecoenv.2022.113530] [Reference Citation Analysis]
20 Yu Q, Hanif A, Rao X, He J, Sun D, Liu S, He D, Shen W. Long‐term restoration altered edaphic properties and soil microbial communities in forests: evidence from four plantations of southern China. Restor Ecol 2021;29. [DOI: 10.1111/rec.13354] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Wang Q, Chen Z, Zhao J, Ma J, Yu Q, Zou P, Lin H, Ma J. Fate of heavy metals and bacterial community composition following biogas slurry application in a single rice cropping system. J Soils Sediments. [DOI: 10.1007/s11368-021-03117-4] [Reference Citation Analysis]
22 Chen S, Zhuang Q, Chu X, Ju Z, Dong T, Ma Y. Transcriptomics of different tissues of blueberry and diversity analysis of rhizosphere fungi under cadmium stress. BMC Plant Biol 2021;21:389. [PMID: 34416857 DOI: 10.1186/s12870-021-03125-z] [Reference Citation Analysis]
23 Chen Z, Wang Q, Ma J, Zou P, Yu Q, Jiang L. Fungal community composition change and heavy metal accumulation in response to the long-term application of anaerobically digested slurry in a paddy soil. Ecotoxicol Environ Saf 2020;196:110453. [PMID: 32229326 DOI: 10.1016/j.ecoenv.2020.110453] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 4.5] [Reference Citation Analysis]
24 Li H, Shen Y, He Y, Gao T, Li G, Zuo M, Ji J, Li C, Li X, Chen Y, Yin Z, Li X. Effects of heavy metals on bacterial community structures in two lead-zinc tailings situated in northwestern China. Arch Microbiol 2021;204:78. [PMID: 34954813 DOI: 10.1007/s00203-021-02699-4] [Reference Citation Analysis]
25 He C, Zeng Q, Chen Y, Chen C, Wang W, Hou J, Li X. Colonization by dark septate endophytes improves the growth and rhizosphere soil microbiome of licorice plants under different water treatments. Applied Soil Ecology 2021;166:103993. [DOI: 10.1016/j.apsoil.2021.103993] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
26 Mehmood S, Ahmed W, Alatalo JM, Mahmood M, Imtiaz M, Ditta A, Ali EF, Abdelrahman H, Slaný M, Antoniadis V, Rinklebe J, Shaheen SM, Li W. Herbal plants- and rice straw-derived biochars reduced metal mobilization in fishpond sediments and improved their potential as fertilizers. Sci Total Environ 2022;826:154043. [PMID: 35202685 DOI: 10.1016/j.scitotenv.2022.154043] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
27 Ondreičková K, Piliarová M, Klčová L, Žofajová A, Gubiš J, Horník M, Gubišová M, Hudcovicová M, Kraic J. The impact of sewage sludge on the fungal communities in the rhizosphere and roots of barley and on barley yield. Open Life Sci 2021;16:210-21. [PMID: 33817312 DOI: 10.1515/biol-2021-0024] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Niu X, Zhou J, Wang X, Su X, Du S, Zhu Y, Yang J, Huang D. Indigenous Bacteria Have High Potential for Promoting Salix integra Thunb. Remediation of Lead-Contaminated Soil by Adjusting Soil Properties. Front Microbiol 2020;11:924. [PMID: 32508771 DOI: 10.3389/fmicb.2020.00924] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
29 Zhang L, Zhang P, Yoza B, Liu W, Liang H. Phytoremediation of metal-contaminated rare-earth mining sites using Paspalumconjugatum. Chemosphere 2020;259:127280. [PMID: 32650174 DOI: 10.1016/j.chemosphere.2020.127280] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
30 Sun H, Shao C, Jin Q, Li M, Zhang Z, Liang H, Lei H, Qian J, Zhang Y. Effects of cadmium contamination on bacterial and fungal communities in Panax ginseng-growing soil. BMC Microbiol 2022;22. [DOI: 10.1186/s12866-022-02488-z] [Reference Citation Analysis]
31 Wu C, Zhang J, Zhang Y, Deng S, Wang C, Fu Z. Risk control effectiveness of phosphorus-containing passivators on Cd-contaminated agricultural soils to be strictly controlled. J Soils Sediments. [DOI: 10.1007/s11368-022-03240-w] [Reference Citation Analysis]
32 Gong WJ, Niu ZF, Wang XR, Zhao HP. How the Soil Microbial Communities and Activities Respond to Long-Term Heavy Metal Contamination in Electroplating Contaminated Site. Microorganisms 2021;9:362. [PMID: 33673105 DOI: 10.3390/microorganisms9020362] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
33 Deng Y, Fu S, Sarkodie EK, Zhang S, Jiang L, Liang Y, Yin H, Bai L, Liu X, Liu H, Jiang H. Ecological responses of bacterial assembly and functions to steep Cd gradient in a typical Cd-contaminated farmland ecosystem. Ecotoxicol Environ Saf 2021;229:113067. [PMID: 34890983 DOI: 10.1016/j.ecoenv.2021.113067] [Reference Citation Analysis]
34 Madline A, Benidire L, Boularbah A. Alleviation of salinity and metal stress using plant growth-promoting rhizobacteria isolated from semiarid Moroccan copper-mine soils. Environ Sci Pollut Res Int 2021. [PMID: 34247350 DOI: 10.1007/s11356-021-15168-8] [Reference Citation Analysis]
35 Lv Z, Li X, Wang Y, Hu X, An J. Responses of soil microbial community to combination pollution of galaxolide and cadmium. Environ Sci Pollut Res Int 2021;28:56247-56. [PMID: 34050515 DOI: 10.1007/s11356-021-14520-2] [Reference Citation Analysis]
36 Zhang R, Tian X, Xiang Q, Penttinen P, Gu Y. Response of soil microbial community structure and function to different altitudes in arid valley in Panzhihua, China. BMC Microbiol 2022;22. [DOI: 10.1186/s12866-022-02500-6] [Reference Citation Analysis]
37 Lu Y, Zhang E, Hong M, Yin X, Cai H, Yuan L, Yuan F, Li L, Zhao K, Lan X. Analysis of endophytic and rhizosphere bacterial diversity and function in the endangered plant Paeonia ludlowii. Arch Microbiol 2020;202:1717-28. [PMID: 32313992 DOI: 10.1007/s00203-020-01882-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
38 Wang C, Wang Y, Liu P, Sun Y, Song Z, Hu X. Characteristics of bacterial community structure and function associated with nutrients and heavy metals in coastal aquaculture area. Environ Pollut 2021;275:116639. [PMID: 33578318 DOI: 10.1016/j.envpol.2021.116639] [Reference Citation Analysis]
39 Pathak A, Jaswal R, Xu X, White JR, Edwards B 3rd, Hunt J, Brooks S, Rathore RS, Agarwal M, Chauhan A. Characterization of Bacterial and Fungal Assemblages From Historically Contaminated Metalliferous Soils Using Metagenomics Coupled With Diffusion Chambers and Microbial Traps. Front Microbiol 2020;11:1024. [PMID: 32655505 DOI: 10.3389/fmicb.2020.01024] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
40 Xiao Y, He M, Xie J, Liu L, Zhang X. Effects of heavy metals and organic matter fractions on the fungal communities in mangrove sediments from Techeng Isle, South China. Ecotoxicol Environ Saf 2021;222:112545. [PMID: 34304131 DOI: 10.1016/j.ecoenv.2021.112545] [Reference Citation Analysis]
41 Zheng X, Cao H, Liu B, Zhang M, Zhang C, Chen P, Yang B. Effects of Mercury Contamination on Microbial Diversity of Different Kinds of Soil. Microorganisms 2022;10:977. [DOI: 10.3390/microorganisms10050977] [Reference Citation Analysis]
42 Raveau R, Lounès-Hadj Sahraoui A, Hijri M, Fontaine J. Clary Sage Cultivation and Mycorrhizal Inoculation Influence the Rhizosphere Fungal Community of an Aged Trace-Element Polluted Soil. Microorganisms 2021;9:1333. [PMID: 34205382 DOI: 10.3390/microorganisms9061333] [Reference Citation Analysis]
43 She J, Wang J, Wei X, Zhang Q, Xie Z, Beiyuan J, Xiao E, Yang X, Liu J, Zhou Y, Xiao T, Wang Y, Chen N, Tsang DC. Survival strategies and dominant phylotypes of maize-rhizosphere microorganisms under metal(loid)s contamination. Science of The Total Environment 2021;774:145143. [DOI: 10.1016/j.scitotenv.2021.145143] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
44 Hu X, Wang J, Lv Y, Liu X, Zhong J, Cui X, Zhang M, Ma D, Yan X, Zhu X. Effects of Heavy Metals/Metalloids and Soil Properties on Microbial Communities in Farmland in the Vicinity of a Metals Smelter. Front Microbiol 2021;12:707786. [PMID: 34489896 DOI: 10.3389/fmicb.2021.707786] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Tseng SC, Liang CM, Chia T, Ton SS. Changes in the Composition of the Soil Bacterial Community in Heavy Metal-Contaminated Farmland. Int J Environ Res Public Health 2021;18:8661. [PMID: 34444410 DOI: 10.3390/ijerph18168661] [Reference Citation Analysis]
46 Jiang B, Zhang B, Li L, Zhao Y, Shi Y, Jiang Q, Jia L. Analysis of microbial community structure and diversity in surrounding rock soil of different waste dump sites in fushun western opencast mine. Chemosphere 2021;269:128777. [PMID: 33189393 DOI: 10.1016/j.chemosphere.2020.128777] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
47 Liu Q, Chen Z, Tang J, Luo J, Huang F, Wang P, Xiao R. Cd and Pb immobilisation with iron oxide/lignin composite and the bacterial community response in soil. Sci Total Environ 2022;802:149922. [PMID: 34525730 DOI: 10.1016/j.scitotenv.2021.149922] [Reference Citation Analysis]
48 Ondreičková K, Gubišová M, Piliarová M, Horník M, Matušinský P, Gubiš J, Klčová L, Hudcovicová M, Kraic J. Responses of Rhizosphere Fungal Communities to the Sewage Sludge Application into the Soil. Microorganisms 2019;7:E505. [PMID: 31671795 DOI: 10.3390/microorganisms7110505] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
49 Liu J, Li C, Ma W, Liu W, Wu W. Molecular Characterization of Distinct Fungal Communities in the Soil of a Rare Earth Mining Area. Microb Ecol 2021. [PMID: 34839384 DOI: 10.1007/s00248-021-01931-4] [Reference Citation Analysis]
50 Wang X, Lu X, Yi X, Li Z, Zhou Y, Duan G, Lei M. Changes in soil available cadmium and bacterial communities after fallowing depend on contamination levels. J Soils Sediments 2021;21:1408-19. [DOI: 10.1007/s11368-021-02877-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
51 Gujre N, Mitra S, Soni A, Agnihotri R, Rangan L, Rene ER, Sharma MP. Speciation, contamination, ecological and human health risks assessment of heavy metals in soils dumped with municipal solid wastes. Chemosphere 2021;262:128013. [PMID: 33182094 DOI: 10.1016/j.chemosphere.2020.128013] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 8.5] [Reference Citation Analysis]
52 Huang R, Cui X, Luo X, Mao P, Zhuang P, Li Y, Li Y, Li Z. Effects of plant growth regulator and chelating agent on the phytoextraction of heavy metals by Pfaffia glomerata and on the soil microbial community. Environ Pollut 2021;283:117159. [PMID: 33878683 DOI: 10.1016/j.envpol.2021.117159] [Reference Citation Analysis]
53 Zhao Q, Chu S, He D, Wu D, Mo Q, Zeng S. Sewage sludge application alters the composition and co-occurrence pattern of the soil bacterial community in southern China forestlands. Applied Soil Ecology 2021;157:103744. [DOI: 10.1016/j.apsoil.2020.103744] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
54 Li Y, Sun B, Deng T, Lian P, Chen J, Peng X. Safety and efficiency of sewage sludge and garden waste compost as a soil amendment based on the field application in woodland. Ecotoxicol Environ Saf 2021;222:112497. [PMID: 34273850 DOI: 10.1016/j.ecoenv.2021.112497] [Reference Citation Analysis]
55 Kavehei A, Hose GC, Chariton AA, Gore DB. Application of environmental DNA for assessment of contamination downstream of a legacy base metal mine. J Hazard Mater 2021;416:125794. [PMID: 33862483 DOI: 10.1016/j.jhazmat.2021.125794] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
56 Li S, Wang S, Zeng X, Cui Y, Yu W, Ma Q. How the development of barren land into orchards affects soil ecosystem in Tibet, China. Pedosphere 2022;32:616-28. [DOI: 10.1016/s1002-0160(21)60056-5] [Reference Citation Analysis]
57 Luo Y, Liu F, Ren J, Zhu J, Luo X, Xiang Y. Effects of dominant plant growth on the nutrient composition and bacterial community structure of manganese residues. Int J Phytoremediation 2021;:1-11. [PMID: 34382471 DOI: 10.1080/15226514.2021.1957769] [Reference Citation Analysis]
58 Harpke M, Pietschmann S, Costa FS, Gansert C, Langenhorst F, Kothe E. Biomineralization by Extremely Halophilic and Metal-Tolerant Community Members from a Sulfate-Dominated Metal-Rich Environment. Microorganisms 2021;10:79. [PMID: 35056528 DOI: 10.3390/microorganisms10010079] [Reference Citation Analysis]
59 Kavehei A, Gore DB, Chariton AA, Hose GC. Impact assessment of ephemeral discharge of contamination downstream of two legacy base metal mines using environmental DNA. J Hazard Mater 2021;419:126483. [PMID: 34216969 DOI: 10.1016/j.jhazmat.2021.126483] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
60 Deng J, Bai X, Zhou Y, Zhu W, Yin Y. Variations of soil microbial communities accompanied by different vegetation restoration in an open-cut iron mining area. Science of The Total Environment 2020;704:135243. [DOI: 10.1016/j.scitotenv.2019.135243] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 10.5] [Reference Citation Analysis]
61 Qu H, Ma C, Xing W, Xue L, Liu H, White JC, Chen G, Xing B. Effects of copper oxide nanoparticles on Salix growth, soil enzyme activity and microbial community composition in a wetland mesocosm. J Hazard Mater 2021;:127676. [PMID: 34772558 DOI: 10.1016/j.jhazmat.2021.127676] [Reference Citation Analysis]
62 Fu L, Zhang L, Dong P, Wang J, Shi L, Lian C, Shen Z, Chen Y. Remediation of copper-contaminated soils using Tagetes patula L., earthworms and arbuscular mycorrhizal fungi. Int J Phytoremediation 2021;:1-13. [PMID: 34775850 DOI: 10.1080/15226514.2021.2002809] [Reference Citation Analysis]
63 Pan X, Zhang S, Zhong Q, Gong G, Wang G, Guo X, Xu X. Effects of soil chemical properties and fractions of Pb, Cd, and Zn on bacterial and fungal communities. Sci Total Environ 2020;715:136904. [PMID: 32007886 DOI: 10.1016/j.scitotenv.2020.136904] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 11.5] [Reference Citation Analysis]
64 Zhang L, Guan Y, Jiang SC. Investigations of soil autotrophic ammonia oxidizers in farmlands through genetics and big data analysis. Science of The Total Environment 2021;777:146091. [DOI: 10.1016/j.scitotenv.2021.146091] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
65 Sui Y, Zhao Q, Wang Z, Liu J, Jiang M, Yue J, Lan J, Liu J, Liao Q, Wang Q, Yang Q, Zhang H. A Comparative Analysis of the Microbiome of Kiwifruit at Harvest Under Open-Field and Rain-Shelter Cultivation Systems. Front Microbiol 2021;12:757719. [PMID: 34659192 DOI: 10.3389/fmicb.2021.757719] [Reference Citation Analysis]
66 Yang Z, Liu Z, Wang K, Liang Z, Abdugheni R, Huang Y, Wang R, Ma H, Wang X, Yang M, Zhang B, Li D, Jiang C, F.-x. Corvini P, Liu S. Soil microbiomes divergently respond to heavy metals and polycyclic aromatic hydrocarbons in contaminated industrial sites. Environmental Science and Ecotechnology 2022. [DOI: 10.1016/j.ese.2022.100169] [Reference Citation Analysis]
67 Xu F, Zhu L, Wang J, Xue Y, Liu K, Zhang F, Zhang T. Nonpoint Source Pollution (NPSP) Induces Structural and Functional Variation in the Fungal Community of Sediments in the Jialing River, China. Microb Ecol 2022. [PMID: 35419656 DOI: 10.1007/s00248-022-02009-5] [Reference Citation Analysis]
68 Li C, Wang X, Huang H, Wang L, Wei F, Zhang C, Rong Q. Effect of multiple heavy metals pollution to bacterial diversity and community structure in farmland soils. Human and Ecological Risk Assessment: An International Journal 2021;27:724-41. [DOI: 10.1080/10807039.2020.1752143] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
69 Zhu N, Wang J, Wang Y, Li S, Chen J. Differences in geological conditions have reshaped the structure and diversity of microbial communities in oily soils. Environ Pollut 2022;306:119404. [PMID: 35523380 DOI: 10.1016/j.envpol.2022.119404] [Reference Citation Analysis]