BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Huang HC, Lai YJ, Liao CC, Yang WF, Huang KB, Lee IJ, Chou WC, Wang SH, Wang LH, Hsu JM, Sun CP, Kuo CT, Wang J, Hsiao TC, Yang PJ, Lee TA, Huang W, Li FA, Shen CY, Lin YL, Tao MH, Li CW. Targeting conserved N-glycosylation blocks SARS-CoV-2 variant infection in vitro. EBioMedicine 2021;74:103712. [PMID: 34839261 DOI: 10.1016/j.ebiom.2021.103712] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
Number Citing Articles
1 Du W, Jiang P, Li Q, Wen H, Zheng M, Zhang J, Guo Y, Yang J, Feng W, Ye S, Kamara S, Jiang P, Chen J, Li W, Zhu S, Zhang L. Novel Affibody Molecules Specifically Bind to SARS-CoV-2 Spike Protein and Efficiently Neutralize Delta and Omicron Variants. Microbiol Spectr 2023;11:e0356222. [PMID: 36511681 DOI: 10.1128/spectrum.03562-22] [Reference Citation Analysis]
2 Huang HC, Wang SH, Fang GC, Chou WC, Liao CC, Sun CP, Jan JT, Ma HH, Ko HY, Ko YA, Chiang MT, Liang JJ, Kuo CT, Lee TA, Morales-Scheihing D, Shen CY, Chen SY, McCullough LD, Cui L, Wernig G, Tao MH, Lin YL, Chang YM, Wang SP, Lai YJ, Li CW. Upregulation of PD-L1 by SARS-CoV-2 promotes immune evasion. J Med Virol 2023;95:e28478. [PMID: 36609964 DOI: 10.1002/jmv.28478] [Reference Citation Analysis]
3 Kuhaudomlarp S, Imberty A. Involvement of sialoglycans in SARS-COV-2 infection: Opportunities and challenges for glyco-based inhibitors. IUBMB Life 2022;74:1253-63. [PMID: 36349722 DOI: 10.1002/iub.2692] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Haraya K, Gotanda K, Shiokawa R, Hoshino M, Kubo C, Kuramochi T. Development of therapeutic antibodies for the treatment of infection diseases and future aspect. Official Journal of the Japan Society of Drug Delivery System 2022;37:378-387. [DOI: 10.2745/dds.37.378] [Reference Citation Analysis]
5 Shajahan A, Pepi L, Kumar B, Murray N, Azadi P. Site Specific N- and O-glycosylation mapping of the Spike Proteins of SARS-CoV-2 Variants of Concern.. [DOI: 10.21203/rs.3.rs-2188138/v1] [Reference Citation Analysis]
6 Choi D, Khan N, Montermini L, Tawil N, Meehan B, Kim DK, Roth FP, Divangahi M, Rak J. Quantitative proteomics and biological activity of extracellular vesicles engineered to express SARS-CoV-2 spike protein. J Extracell Biol 2022;1:e58. [PMID: 36710959 DOI: 10.1002/jex2.58] [Reference Citation Analysis]
7 Chatterjee S, Zaia J. Proteomics-based mass spectrometry profiling of SARS-CoV-2 infection from human nasopharyngeal samples. Mass Spectrom Rev 2022;:e21813. [PMID: 36177493 DOI: 10.1002/mas.21813] [Reference Citation Analysis]
8 Singh J, Vashishtha S, Rahman SA, Ehtesham NZ, Alam A, Kundu B, Dobrindt U. Energetics of Spike Protein Opening of SARS-CoV-1 and SARS-CoV-2 and Its Variants of Concern: Implications in Host Receptor Scanning and Transmission. Biochemistry 2022. [PMID: 36166360 DOI: 10.1021/acs.biochem.2c00301] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Yang Q, Kelkar A, Sriram A, Hombu R, Hughes TA, Neelamegham S. Role for N-glycans and calnexin-calreticulin chaperones in SARS-CoV-2 Spike maturation and viral infectivity. Sci Adv 2022;8:eabq8678. [PMID: 36149962 DOI: 10.1126/sciadv.abq8678] [Reference Citation Analysis]
10 Shen Y, Eades W, Liu W, Yan B. The COVID-19 Oral Drug Molnupiravir Is a CES2 Substrate: Potential Drug-Drug Interactions and Impact of CES2 Genetic Polymorphism In Vitro. Drug Metab Dispos 2022;50:1151-60. [PMID: 35790245 DOI: 10.1124/dmd.122.000918] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Wang T, Cao Y, Zhang H, Wang Z, Man CH, Yang Y, Chen L, Xu S, Yan X, Zheng Q, Wang YP. COVID-19 metabolism: Mechanisms and therapeutic targets. MedComm (2020) 2022;3:e157. [PMID: 35958432 DOI: 10.1002/mco2.157] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Tripathi N, Goel B, Bhardwaj N, Vishwakarma RA, Jain SK. Exploring the Potential of Chemical Inhibitors for Targeting Post-translational Glycosylation of Coronavirus (SARS-CoV-2). ACS Omega. [DOI: 10.1021/acsomega.2c02345] [Reference Citation Analysis]
13 Zevini A, Palermo E, Di Carlo D, Alexandridi M, Rinaldo S, Paone A, Cutruzzola F, Etna MP, Coccia EM, Olagnier D, Hiscott J. Inhibition of Glycolysis Impairs Retinoic Acid-Inducible Gene I–Mediated Antiviral Responses in Primary Human Dendritic Cells. Front Cell Infect Microbiol 2022;12:910864. [DOI: 10.3389/fcimb.2022.910864] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Chawla H, Fadda E, Crispin M. Principles of SARS-CoV-2 Glycosylation. Current Opinion in Structural Biology 2022. [DOI: 10.1016/j.sbi.2022.102402] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
15 Escobar EE, Wang S, Goswami R, Lanzillotti MB, Li L, McLellan JS, Brodbelt JS. Analysis of Viral Spike Protein N-Glycosylation Using Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2022. [PMID: 35388686 DOI: 10.1021/acs.analchem.1c04874] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Hassan. E. Konozy E, El-fadil M. Osman M, Ibrahim Dirar A. Plant Lectins as Potent Anti-coronaviruses, Anti-inflammatory, Antinociceptive and Antiulcer Agents. Saudi Journal of Biological Sciences 2022. [DOI: 10.1016/j.sjbs.2022.103301] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
17 Almahayni K, Spiekermann M, Fiore A, Yu G, Pedram K, Möckl L. Small molecule inhibitors of mammalian glycosylation. Matrix Biol Plus 2022;16:100108. [PMID: 36467541 DOI: 10.1016/j.mbplus.2022.100108] [Reference Citation Analysis]