BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Schroeder AS, Hesse N, Weinberger R, Tacke U, Gerstl L, Hilgendorff A, Heinen F, Arens M, Dijkstra LJ, Pujades Rocamora S, Black MJ, Bodensteiner C, Hadders-Algra M. General Movement Assessment from videos of computed 3D infant body models is equally effective compared to conventional RGB video rating. Early Hum Dev 2020;144:104967. [PMID: 32304982 DOI: 10.1016/j.earlhumdev.2020.104967] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Abbasi H, Mollet S, Williams S, Lim L, Battin M, Besier T, Mcmorland A. Deep-Learning for Automated Markerless Tracking of Infants General Movements.. [DOI: 10.1101/2022.07.13.499984] [Reference Citation Analysis]
2 Raghuram K, Orlandi S, Church P, Luther M, Kiss A, Shah V. Automated Movement Analysis to Predict Cerebral Palsy in Very Preterm Infants: An Ambispective Cohort Study. Children (Basel) 2022;9. [PMID: 35740780 DOI: 10.3390/children9060843] [Reference Citation Analysis]
3 Scott B, Seyres M, Philp F, Chadwick EK, Blana D. Healthcare applications of single camera markerless motion capture: a scoping review. PeerJ 2022;10:e13517. [PMID: 35642200 DOI: 10.7717/peerj.13517] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
4 Leo M, Bernava GM, Carcagnì P, Distante C. Video-Based Automatic Baby Motion Analysis for Early Neurological Disorder Diagnosis: State of the Art and Future Directions. Sensors (Basel) 2022;22:866. [PMID: 35161612 DOI: 10.3390/s22030866] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Hadders-Algra M. The developing brain: Challenges and opportunities to promote school readiness in young children at risk of neurodevelopmental disorders in low- and middle-income countries. Front Pediatr 2022;10:989518. [PMID: 36340733 DOI: 10.3389/fped.2022.989518] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Gunawardena S, Dharmananda D, Wimalasena D, Piyathma U. Non - Invasive Technique to Automate General Movements Assessment. 2021 IEEE 16th International Conference on Industrial and Information Systems (ICIIS) 2021. [DOI: 10.1109/iciis53135.2021.9660677] [Reference Citation Analysis]
7 Redd CB, Karunanithi M, Boyd RN, Barber LA. Technology-assisted quantification of movement to predict infants at high risk of motor disability: A systematic review. Res Dev Disabil 2021;118:104071. [PMID: 34507051 DOI: 10.1016/j.ridd.2021.104071] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Blaschek A, Hesse N, Warken B, Vill K, Well T, Hodek C, Heinen F, Müller-Felber W, Schroeder AS. Quantitative Motion Measurements Based on Markerless 3D Full-Body Tracking in Children with SMA Highly Correlate with Standardized Motor Assessments. J Neuromuscul Dis 2021. [PMID: 34308910 DOI: 10.3233/JND-200619] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Hadders-Algra M. Early Diagnostics and Early Intervention in Neurodevelopmental Disorders-Age-Dependent Challenges and Opportunities. J Clin Med 2021;10:861. [PMID: 33669727 DOI: 10.3390/jcm10040861] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 12.5] [Reference Citation Analysis]
10 Wu YC, Straathof EJM, Heineman KR, Hadders-Algra M. Typical general movements at 2 to 4 months: Movement complexity, fidgety movements, and their associations with risk factors and SINDA scores. Early Hum Dev 2020;149:105135. [PMID: 32795785 DOI: 10.1016/j.earlhumdev.2020.105135] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
11 Irshad MT, Nisar MA, Gouverneur P, Rapp M, Grzegorzek M. AI Approaches Towards Prechtl's Assessment of General Movements: A Systematic Literature Review. Sensors (Basel) 2020;20:E5321. [PMID: 32957598 DOI: 10.3390/s20185321] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
12 Parisi C, Hesse N, Tacke U, Pujades Rocamora S, Blaschek A, Hadders-algra M, Black MJ, Heinen F, Müller-felber W, Schroeder AS. Analyse der Spontanmotorik im 1. Lebensjahr: Markerlose 3-D-Bewegungserfassung zur Früherkennung von Entwicklungsstörungen. Bundesgesundheitsbl 2020;63:881-90. [DOI: 10.1007/s00103-020-03163-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]