BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bar-zeev M, Livney YD, Assaraf YG. Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance. Drug Resistance Updates 2017;31:15-30. [DOI: 10.1016/j.drup.2017.05.002] [Cited by in Crossref: 146] [Cited by in F6Publishing: 131] [Article Influence: 29.2] [Reference Citation Analysis]
Number Citing Articles
1 Wang C, Cheng X, Peng H, Zhang Y. NIR-Triggered and ROS-Boosted Nanoplatform for Enhanced Chemo/PDT/PTT Synergistic Therapy of Sorafenib in Hepatocellular Carcinoma. Nanoscale Res Lett 2022;17:92. [PMID: 36125619 DOI: 10.1186/s11671-022-03729-w] [Reference Citation Analysis]
2 Saito T, Asai S, Tanaka N, Nohata N, Minemura C, Koma A, Kikkawa N, Kasamatsu A, Hanazawa T, Uzawa K, Seki N. Genome-Wide Super-Enhancer-Based Analysis: Identification of Prognostic Genes in Oral Squamous Cell Carcinoma. IJMS 2022;23:9154. [DOI: 10.3390/ijms23169154] [Reference Citation Analysis]
3 Barak D, Engelberg S, Assaraf YG, Livney YD. Selective Targeting and Eradication of Various Human Non-Small Cell Lung Cancer Cell Lines Using Self-Assembled Aptamer-Decorated Nanoparticles. Pharmaceutics 2022;14:1650. [DOI: 10.3390/pharmaceutics14081650] [Reference Citation Analysis]
4 Wang C, Gao M, Gao D, Guo Y, Gao Z, Gao X, Wang J, Qiao M. Tubeimoside-1: A review of its antitumor effects, pharmacokinetics, toxicity, and targeting preparations. Front Pharmacol 2022;13:941270. [DOI: 10.3389/fphar.2022.941270] [Reference Citation Analysis]
5 Singh D, Assaraf YG, Gacche RN. Long Non-coding RNA Mediated Drug Resistance in Breast Cancer. Drug Resistance Updates 2022. [DOI: 10.1016/j.drup.2022.100851] [Reference Citation Analysis]
6 Domínguez-álvarez E, Rácz B, Marć MA, Nasim MJ, Szemerédi N, Viktorová J, Jacob C, Spengler G. Selenium and tellurium in the development of novel small molecules and nanoparticles as cancer multidrug resistance reversal agents. Drug Resistance Updates 2022;63:100844. [DOI: 10.1016/j.drup.2022.100844] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Khan M, Mashwani ZU, Ikram M, Raja NI, Mohamed AH, Ren G, Omar AA. Efficacy of Green Cerium Oxide Nanoparticles for Potential Therapeutic Applications: Circumstantial Insight on Mechanistic Aspects. Nanomaterials (Basel) 2022;12:2117. [PMID: 35745455 DOI: 10.3390/nano12122117] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Yang P, Qu Y, Wang M, Chu B, Chen W, Zheng Y, Niu T, Qian Z. Pathogenesis and treatment of multiple myeloma. MedComm (2020) 2022;3:e146. [PMID: 35665368 DOI: 10.1002/mco2.146] [Reference Citation Analysis]
9 Lv YF, Deng ZQ, Bi QC, Tang JJ, Chen H, Xie CS, Liang QR, Xu YH, Luo RG, Tang Q. Intratumoral Pi deprivation benefits chemoembolization therapy via increased accumulation of intracellular doxorubicin. Drug Deliv 2022;29:1743-53. [PMID: 35635315 DOI: 10.1080/10717544.2022.2081384] [Reference Citation Analysis]
10 Wang Y, Huang Z, Li B, Liu L, Huang C. The Emerging Roles and Therapeutic Implications of Epigenetic Modifications in Ovarian Cancer. Front Endocrinol 2022;13:863541. [DOI: 10.3389/fendo.2022.863541] [Reference Citation Analysis]
11 Cui Q, Liang XL, Wang JQ, Zhang JY, Chen ZS. Therapeutic implication of carbon monoxide in drug resistant cancers. Biochem Pharmacol 2022;:115061. [PMID: 35489394 DOI: 10.1016/j.bcp.2022.115061] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Alghamdi MA, Fallica AN, Virzì N, Kesharwani P, Pittalà V, Greish K. The Promise of Nanotechnology in Personalized Medicine. JPM 2022;12:673. [DOI: 10.3390/jpm12050673] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
13 Zhu J, Guo T, Wang Z, Zhao Y. Triggered azobenzene-based prodrugs and drug delivery systems. J Control Release 2022:S0168-3659(22)00167-5. [PMID: 35339578 DOI: 10.1016/j.jconrel.2022.03.041] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Rachmale M, Rajput N, Jadav T, Sahu AK, Tekade RK, Sengupta P. Implication of metabolomics and transporter modulation based strategies to minimize multidrug resistance and enhance site-specific bioavailability: a needful consideration toward modern anticancer drug discovery. Drug Metab Rev 2022;:1-19. [PMID: 35254954 DOI: 10.1080/03602532.2022.2048007] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Fraguas-sánchez AI, Lozza I, Torres-suárez AI. Actively Targeted Nanomedicines in Breast Cancer: From Pre-Clinal Investigation to Clinic. Cancers 2022;14:1198. [DOI: 10.3390/cancers14051198] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
16 Zhang C, Zhou X, Zhang H, Han X, Li B, Yang R, Zhou X. Recent Progress of Novel Nanotechnology Challenging the Multidrug Resistance of Cancer. Front Pharmacol 2022;13:776895. [DOI: 10.3389/fphar.2022.776895] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
17 Haider M, Elsherbeny A, Pittalà V, Consoli V, Alghamdi MA, Hussain Z, Khoder G, Greish K. Nanomedicine Strategies for Management of Drug Resistance in Lung Cancer. IJMS 2022;23:1853. [DOI: 10.3390/ijms23031853] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Bhattacharya T, Soares GABE, Chopra H, Rahman MM, Hasan Z, Swain SS, Cavalu S. Applications of Phyto-Nanotechnology for the Treatment of Neurodegenerative Disorders. Materials (Basel) 2022;15:804. [PMID: 35160749 DOI: 10.3390/ma15030804] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 27.0] [Reference Citation Analysis]
19 Bueschbell B, Caniceiro AB, Suzano PM, Machuqueiro M, Rosário-ferreira N, Moreira IS. Network Biology and Artificial Intelligence Drive the Understanding of the Multidrug Resistance Phenotype in Cancer. Drug Resistance Updates 2022. [DOI: 10.1016/j.drup.2022.100811] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 den bossche VV, Zaryouh H, Vara-messler M, Vignau J, Machiels J, Wouters A, Schmitz S, Corbet C. Microenvironment-driven intratumoral heterogeneity in head and neck cancers: clinical challenges and opportunities for precision medicine. Drug Resistance Updates 2022. [DOI: 10.1016/j.drup.2022.100806] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
21 Dabbour NM, Salama AM, Donia T, Al-deeb RT, Abd Elghane AM, Badry KH, Loutfy SA. Managing GSH elevation and hypoxia to overcome resistance of cancer therapies using functionalized nanocarriers. Journal of Drug Delivery Science and Technology 2022;67:103022. [DOI: 10.1016/j.jddst.2021.103022] [Reference Citation Analysis]
22 Cohen L, Assaraf YG, Livney YD. Novel Selectively Targeted Multifunctional Nanostructured Lipid Carriers for Prostate Cancer Treatment. Pharmaceutics 2021;14:88. [PMID: 35056984 DOI: 10.3390/pharmaceutics14010088] [Reference Citation Analysis]
23 Grabarnick Portnoy E, Andriyanov AV, Han H, Eyal S, Barenholz Y. PEGylated Liposomes Remotely Loaded with the Combination of Doxorubicin, Quinine, and Indocyanine Green Enable Successful Treatment of Multidrug-Resistant Tumors. Pharmaceutics 2021;13:2181. [PMID: 34959462 DOI: 10.3390/pharmaceutics13122181] [Reference Citation Analysis]
24 Nussinov R, Tsai CJ, Jang H. Anticancer drug resistance: An update and perspective. Drug Resist Updat 2021;:100796. [PMID: 34953682 DOI: 10.1016/j.drup.2021.100796] [Reference Citation Analysis]
25 Greene MK, Johnston MC, Scott CJ. Nanomedicine in Pancreatic Cancer: Current Status and Future Opportunities for Overcoming Therapy Resistance. Cancers (Basel) 2021;13:6175. [PMID: 34944794 DOI: 10.3390/cancers13246175] [Reference Citation Analysis]
26 Katekar R, Singh P, Garg R, Verma S, Gayen JR. Emerging nanotechnology based combination therapies of taxanes for multiple drug-resistant cancers. Pharm Dev Technol 2021;:1-13. [PMID: 34806547 DOI: 10.1080/10837450.2021.2009861] [Reference Citation Analysis]
27 Siemer S, Bauer TA, Scholz P, Breder C, Fenaroli F, Harms G, Dietrich D, Dietrich J, Rosenauer C, Barz M, Becker S, Strieth S, Reinhardt C, Fauth T, Hagemann J, Stauber RH. Targeting Cancer Chemotherapy Resistance by Precision Medicine-Driven Nanoparticle-Formulated Cisplatin. ACS Nano 2021. [PMID: 34739225 DOI: 10.1021/acsnano.1c08632] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Zhang J, Hu K, Di L, Wang P, Liu Z, Zhang J, Yue P, Song W, Zhang J, Chen T, Wang Z, Zhang Y, Wang X, Zhan C, Cheng YC, Li X, Li Q, Fan JY, Shen Y, Han JY, Qiao H. Traditional herbal medicine and nanomedicine: Converging disciplines to improve therapeutic efficacy and human health. Adv Drug Deliv Rev 2021;178:113964. [PMID: 34499982 DOI: 10.1016/j.addr.2021.113964] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
29 Ku JM, Hong SH, Kim HI, Kim MJ, Ku S, Bae K, Seo HS, Shin YC, Ko S. SH003 overcomes drug resistance and immune checkpoints by inhibiting JAK-STAT3 signaling in MCF7/ADR cells. Phytomedicine Plus 2021;1:100111. [DOI: 10.1016/j.phyplu.2021.100111] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Zhang C, Liu H, Gong M, Yang M, Yang Z, Xie Y, Cai L. Biomimetic gold nanocages for overcoming chemoresistance of osteosarcoma by ferroptosis and immunogenic cell death. Materials & Design 2021;210:110087. [DOI: 10.1016/j.matdes.2021.110087] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
31 Zhou P, Shi W, He XY, Du QY, Wang F, Guo J. Saikosaponin D: review on the antitumour effects, toxicity and pharmacokinetics. Pharm Biol 2021;59:1480-9. [PMID: 34714209 DOI: 10.1080/13880209.2021.1992448] [Reference Citation Analysis]
32 Cheng M, Dou H. Nano‐assemblies based on biomacromolecules to overcome cancer drug resistance. Polym Int. [DOI: 10.1002/pi.6310] [Reference Citation Analysis]
33 Loh JS, Tan LKS, Lee WL, Ming LC, How CW, Foo JB, Kifli N, Goh BH, Ong YS. Do Lipid-based Nanoparticles Hold Promise for Advancing the Clinical Translation of Anticancer Alkaloids? Cancers (Basel) 2021;13:5346. [PMID: 34771511 DOI: 10.3390/cancers13215346] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Murugaiyaa Pandiyan S, Shanmugaraj P, Manoharan JP, Vidyalakshmi S. A network pharmacological approach to reveal the multidrug resistance reversal and associated mechanisms of acetogenins against colorectal cancer. J Biomol Struct Dyn 2021;:1-20. [PMID: 34669561 DOI: 10.1080/07391102.2021.1990130] [Reference Citation Analysis]
35 Su Z, Dong S, Zhao SC, Liu K, Tan Y, Jiang X, Assaraf YG, Qin B, Chen ZS, Zou C. Novel nanomedicines to overcome cancer multidrug resistance. Drug Resist Updat 2021;58:100777. [PMID: 34481195 DOI: 10.1016/j.drup.2021.100777] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Piorecka K, Kurjata J, Stanczyk WA. Nanoarchitectonics: Complexes and Conjugates of Platinum Drugs with Silicon Containing Nanocarriers. An Overview. Int J Mol Sci 2021;22:9264. [PMID: 34502173 DOI: 10.3390/ijms22179264] [Reference Citation Analysis]
37 Maliyakkal N, Appadath Beeran A, Udupa N. Nanoparticles of cisplatin augment drug accumulations and inhibit multidrug resistance transporters in human glioblastoma cells. Saudi Pharm J 2021;29:857-73. [PMID: 34408546 DOI: 10.1016/j.jsps.2021.07.001] [Reference Citation Analysis]
38 Wang R, Sun Y, He W, Chen Y, Lu E, Sha X. Pulmonary surfactants affinity Pluronic-hybridized liposomes enhance the treatment of drug-resistant lung cancer. Int J Pharm 2021;607:120973. [PMID: 34391853 DOI: 10.1016/j.ijpharm.2021.120973] [Reference Citation Analysis]
39 Valente A, Podolski-Renić A, Poetsch I, Filipović N, López Ó, Turel I, Heffeter P. Metal- and metalloid-based compounds to target and reverse cancer multidrug resistance. Drug Resist Updat 2021;58:100778. [PMID: 34403910 DOI: 10.1016/j.drup.2021.100778] [Reference Citation Analysis]
40 Elfadadny A, El-Husseiny HM, Abugomaa A, Ragab RF, Mady EA, Aboubakr M, Samir H, Mandour AS, El-Mleeh A, El-Far AH, Abd El-Aziz AH, Elbadawy M. Role of multidrug resistance-associated proteins in cancer therapeutics: past, present, and future perspectives. Environ Sci Pollut Res Int 2021. [PMID: 34355314 DOI: 10.1007/s11356-021-15759-5] [Reference Citation Analysis]
41 Li L, Gao Z, Zhao L, Ren P, Shen H. Long non-coding RNA LINC00607 silencing exerts antioncogenic effects on thyroid cancer through the CASP9 Promoter methylation. J Cell Mol Med 2021;25:7608-20. [PMID: 34232553 DOI: 10.1111/jcmm.16265] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
42 Hu PS, Chou HJ, Chen CA, Wu PY, Hsiao KH, Kuo YM. Devising Hyperthermia Dose of NIR-Irradiated Cs0.33WO3 Nanoparticles for HepG2 Hepatic Cancer Cells. Nanoscale Res Lett 2021;16:108. [PMID: 34176025 DOI: 10.1186/s11671-021-03565-4] [Reference Citation Analysis]
43 Demircan Yalçın Y, Töral TB, Sukas S, Yıldırım E, Zorlu Ö, Gündüz U, Külah H. A microfluidic device enabling drug resistance analysis of leukemia cells via coupled dielectrophoretic detection and impedimetric counting. Sci Rep 2021;11:13193. [PMID: 34162990 DOI: 10.1038/s41598-021-92647-5] [Reference Citation Analysis]
44 Karakus CO, Winkler DA. Overcoming roadblocks in computational roadmaps to the future for safe nanotechnology. Nano Futures 2021;5:022002. [DOI: 10.1088/2399-1984/abe560] [Reference Citation Analysis]
45 Xi L, Wang J, Wang Y, Ge Z. Dual-Targeting Polymeric Nanocarriers to Deliver ROS-Responsive Prodrugs and Combat Multidrug Resistance of Cancer Cells. Macromol Biosci 2021;:e2100091. [PMID: 34145971 DOI: 10.1002/mabi.202100091] [Reference Citation Analysis]
46 Gao L, Wu ZX, Assaraf YG, Chen ZS, Wang L. Overcoming anti-cancer drug resistance via restoration of tumor suppressor gene function. Drug Resist Updat 2021;57:100770. [PMID: 34175687 DOI: 10.1016/j.drup.2021.100770] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Adil SF, Shaik MR, Nasr FA, Alqahtani AS, Ahmed MZ, Qamar W, Kuniyil M, Almutairi A, Alwarthan A, Siddiqui MRH, Hatshan MR, Khan M. Enhanced Apoptosis by Functionalized Highly Reduced Graphene Oxide and Gold Nanocomposites in MCF-7 Breast Cancer Cells. ACS Omega 2021;6:15147-55. [PMID: 34151094 DOI: 10.1021/acsomega.1c01377] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
48 Lai X, Geng X, Li M, Tang M, Liu Q, Yang M, Shen L, Zhu Y, Wang S. Glutathione-responsive PLGA nanocomplex for dual delivery of doxorubicin and curcumin to overcome tumor multidrug resistance. Nanomedicine (Lond) 2021;16:1411-27. [PMID: 34047204 DOI: 10.2217/nnm-2021-0100] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
49 Du X, Yang B, An Q, Assaraf YG, Cao X, Xia J. Acquired resistance to third-generation EGFR-TKIs and emerging next-generation EGFR inhibitors. Innovation (N Y) 2021;2:100103. [PMID: 34557754 DOI: 10.1016/j.xinn.2021.100103] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Singh G, Kaur H, Sharma A, Singh J, Alajangi HK, Kumar S, Singla N, Kaur IP, Barnwal RP. Carbon Based Nanodots in Early Diagnosis of Cancer. Front Chem 2021;9:669169. [PMID: 34109155 DOI: 10.3389/fchem.2021.669169] [Reference Citation Analysis]
51 Liu S, Khan AR, Yang X, Dong B, Ji J, Zhai G. The reversal of chemotherapy-induced multidrug resistance by nanomedicine for cancer therapy. J Control Release 2021;335:1-20. [PMID: 33991600 DOI: 10.1016/j.jconrel.2021.05.012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
52 Zhang BB, Chen XJ, Fan XD, Zhu JJ, Wei YH, Zheng HS, Zheng HY, Wang BH, Piao JG, Li FZ. Lipid/PAA-coated mesoporous silica nanoparticles for dual-pH-responsive codelivery of arsenic trioxide/paclitaxel against breast cancer cells. Acta Pharmacol Sin 2021;42:832-42. [PMID: 33824461 DOI: 10.1038/s41401-021-00648-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
53 Paus C, van der Voort R, Cambi A. Nanomedicine in cancer therapy: promises and hurdles of polymeric nanoparticles. Exploration of Medicine. [DOI: 10.37349/emed.2021.00040] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Zhou D, Liu S, Hu Y, Yang S, Zhao B, Zheng K, Zhang Y, He P, Mo G, Li Y. Tumor-mediated shape-transformable nanogels with pH/redox/enzymatic-sensitivity for anticancer therapy. J Mater Chem B 2020;8:3801-13. [PMID: 32227025 DOI: 10.1039/d0tb00143k] [Cited by in Crossref: 5] [Article Influence: 5.0] [Reference Citation Analysis]
55 Gote V, Nookala AR, Bolla PK, Pal D. Drug Resistance in Metastatic Breast Cancer: Tumor Targeted Nanomedicine to the Rescue. Int J Mol Sci 2021;22:4673. [PMID: 33925129 DOI: 10.3390/ijms22094673] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
56 Briolay T, Petithomme T, Fouet M, Nguyen-Pham N, Blanquart C, Boisgerault N. Delivery of cancer therapies by synthetic and bio-inspired nanovectors. Mol Cancer 2021;20:55. [PMID: 33761944 DOI: 10.1186/s12943-021-01346-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
57 Torres-Martinez Z, Delgado Y, Ferrer-Acosta Y, Suarez-Arroyo IJ, Joaquín-Ovalle FM, Delinois LJ, Griebenow K. Key genes and drug delivery systems to improve the efficiency of chemotherapy. Cancer Drug Resist 2021;4:163-91. [PMID: 34142021 DOI: 10.20517/cdr.2020.64] [Reference Citation Analysis]
58 Cohen L, Livney YD, Assaraf YG. Targeted nanomedicine modalities for prostate cancer treatment. Drug Resist Updat 2021;56:100762. [PMID: 33857756 DOI: 10.1016/j.drup.2021.100762] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
59 Bessone F, Dianzani C, Argenziano M, Cangemi L, Spagnolo R, Maione F, Giraudo E, Cavalli R. Albumin nanoformulations as an innovative solution to overcome doxorubicin chemoresistance. Cancer Drug Resist 2021;4:192-207. [PMID: 35582009 DOI: 10.20517/cdr.2020.65] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
60 Zhang J, Deng M, Shi X, Zhang C, Qu X, Hu X, Wang W, Kong D, Huang P. Cascaded amplification of intracellular oxidative stress and reversion of multidrug resistance by nitric oxide prodrug based-supramolecular hydrogel for synergistic cancer chemotherapy. Bioact Mater 2021;6:3300-13. [PMID: 33778206 DOI: 10.1016/j.bioactmat.2021.03.005] [Reference Citation Analysis]
61 Jurczyk M, Jelonek K, Musiał-Kulik M, Beberok A, Wrześniok D, Kasperczyk J. Single- versus Dual-Targeted Nanoparticles with Folic Acid and Biotin for Anticancer Drug Delivery. Pharmaceutics 2021;13:326. [PMID: 33802531 DOI: 10.3390/pharmaceutics13030326] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
62 Das T, Anand U, Pandey SK, Ashby CR Jr, Assaraf YG, Chen ZS, Dey A. Therapeutic strategies to overcome taxane resistance in cancer. Drug Resist Updat 2021;55:100754. [PMID: 33691261 DOI: 10.1016/j.drup.2021.100754] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
63 Mamuti M, Zheng R, An H, Wang H. In vivo self-assembled nanomedicine. Nano Today 2021;36:101036. [DOI: 10.1016/j.nantod.2020.101036] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
64 Chen S, Deng J, Zhang LM. Cationic nanoparticles self-assembled from amphiphilic chitosan derivatives containing poly(amidoamine) dendrons and deoxycholic acid as a vector for co-delivery of doxorubicin and gene. Carbohydr Polym 2021;258:117706. [PMID: 33593576 DOI: 10.1016/j.carbpol.2021.117706] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
65 Kurzątkowska K, Pazos MA 2nd, Herschkowitz JI, Hepel M. Cancer-Targeted Controlled Delivery of Chemotherapeutic Anthracycline Derivatives Using Apoferritin Nanocage Carriers. Int J Mol Sci 2021;22:1362. [PMID: 33572999 DOI: 10.3390/ijms22031362] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
66 Engelberg S, Lin Y, Assaraf YG, Livney YD. Targeted Nanoparticles Harboring Jasmine-Oil-Entrapped Paclitaxel for Elimination of Lung Cancer Cells. Int J Mol Sci 2021;22:1019. [PMID: 33498454 DOI: 10.3390/ijms22031019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
67 Cheng HW, Tsao HY, Chiang CS, Chen SY. Advances in Magnetic Nanoparticle-Mediated Cancer Immune-Theranostics. Adv Healthc Mater 2021;10:e2001451. [PMID: 33135398 DOI: 10.1002/adhm.202001451] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 22.0] [Reference Citation Analysis]
68 Zhao Y, Jiang X, Ma Q, Zhao Y, Zhang H, Wang Q, Ding Z, Liu M, Wang Z, Han J. High payload nanoparticles composed of 7-ethyl-10-hydroxycamptothecin and chlorin e6 for synergistic chemo-photodynamic combination therapy. Dyes and Pigments 2021;184:108819. [DOI: 10.1016/j.dyepig.2020.108819] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
69 Khot VM, Salunkhe AB, Pricl S, Bauer J, Thorat ND, Townley H. Nanomedicine-driven molecular targeting, drug delivery, and therapeutic approaches to cancer chemoresistance. Drug Discov Today 2021;26:724-39. [PMID: 33359624 DOI: 10.1016/j.drudis.2020.12.016] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
70 Hejmady S, Pradhan R, Alexander A, Agrawal M, Singhvi G, Gorain B, Tiwari S, Kesharwani P, Dubey SK. Recent advances in targeted nanomedicine as promising antitumor therapeutics. Drug Discovery Today 2020;25:2227-44. [DOI: 10.1016/j.drudis.2020.09.031] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
71 Clement S, Campbell JM, Deng W, Guller A, Nisar S, Liu G, Wilson BC, Goldys EM. Mechanisms for Tuning Engineered Nanomaterials to Enhance Radiation Therapy of Cancer. Adv Sci (Weinh) 2020;7:2003584. [PMID: 33344143 DOI: 10.1002/advs.202003584] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 9.0] [Reference Citation Analysis]
72 Zhang C, Yan L, Wang X, Zhu S, Chen C, Gu Z, Zhao Y. Progress, challenges, and future of nanomedicine. Nano Today 2020;35:101008. [DOI: 10.1016/j.nantod.2020.101008] [Cited by in Crossref: 18] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
73 Li B, Jiang J, Assaraf YG, Xiao H, Chen Z, Huang C. Surmounting cancer drug resistance: New insights from the perspective of N6-methyladenosine RNA modification. Drug Resistance Updates 2020;53:100720. [DOI: 10.1016/j.drup.2020.100720] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 9.5] [Reference Citation Analysis]
74 Liu J, Zhao L, Shi L, Yuan Y, Fu D, Ye Z, Li Q, Deng Y, Liu X, Lv Q, Cheng Y, Xu Y, Jiang X, Wang G, Wang L, Wang Z. A Sequentially Responsive Nanosystem Breaches Cascaded Bio-barriers and Suppresses P-Glycoprotein Function for Reversing Cancer Drug Resistance. ACS Appl Mater Interfaces 2020;12:54343-55. [PMID: 32959645 DOI: 10.1021/acsami.0c13852] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
75 Ma Q, Zhao Y, Guan Q, Zhao Y, Zhang H, Ding Z, Wang Q, Wu Y, Liu M, Han J. Amphiphilic block polymer-based self-assembly of high payload nanoparticles for efficient combinatorial chemo-photodynamic therapy. Drug Deliv 2020;27:1656-66. [PMID: 33233958 DOI: 10.1080/10717544.2020.1850921] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
76 Hu J, Jiang Y, Tan S, Zhu K, Cai T, Zhan T, He S, Chen F, Zhang C. Selenium-doped calcium phosphate biomineral reverses multidrug resistance to enhance bone tumor chemotherapy. Nanomedicine 2021;32:102322. [PMID: 33186694 DOI: 10.1016/j.nano.2020.102322] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
77 Çağlayan Z, Demircan Yalçın Y, Külah H. A Prominent Cell Manipulation Technique in BioMEMS: Dielectrophoresis. Micromachines (Basel) 2020;11:E990. [PMID: 33153069 DOI: 10.3390/mi11110990] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
78 Zhang W, Liu S, Han D, He Z. Engineered nanoparticle-induced epigenetic changes: An important consideration in nanomedicine. Acta Biomater 2020;117:93-107. [PMID: 32980543 DOI: 10.1016/j.actbio.2020.09.034] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
79 Ding Z, Wang D, Shi W, Yang X, Duan S, Mo F, Hou X, Liu A, Lu X. In vivo Targeting of Liver Cancer with Tissue- and Nuclei-Specific Mesoporous Silica Nanoparticle-Based Nanocarriers in mice. Int J Nanomedicine 2020;15:8383-400. [PMID: 33149582 DOI: 10.2147/IJN.S272495] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
80 Gao D, Lo P. Combined pH-responsive chemotherapy and glutathione-triggered photosensitization to overcome drug-resistant hepatocellular carcinoma — a SPP/JPP Young Investigator Award paper. J Porphyrins Phthalocyanines 2020;24:1387-401. [DOI: 10.1142/s1088424620500212] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
81 Gad HA, Hathout RM. Can the Docking Experiments Select the Optimum Natural Bio-macromolecule for Doxorubicin Delivery? J Clust Sci 2021;32:1747-51. [DOI: 10.1007/s10876-020-01910-8] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
82 Majumder J, Minko T. Targeted Nanotherapeutics for Respiratory Diseases: Cancer, Fibrosis, and Coronavirus. Adv Ther (Weinh) 2020;:2000203. [PMID: 33173809 DOI: 10.1002/adtp.202000203] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
83 Wei QY, Xu YM, Lau ATY. Recent Progress of Nanocarrier-Based Therapy for Solid Malignancies. Cancers (Basel). 2020;12. [PMID: 32998391 DOI: 10.3390/cancers12102783] [Cited by in Crossref: 35] [Cited by in F6Publishing: 28] [Article Influence: 17.5] [Reference Citation Analysis]
84 Sciarrillo R, Wojtuszkiewicz A, Assaraf YG, Jansen G, Kaspers GJL, Giovannetti E, Cloos J. The role of alternative splicing in cancer: From oncogenesis to drug resistance. Drug Resist Updat 2020;53:100728. [PMID: 33070093 DOI: 10.1016/j.drup.2020.100728] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 7.5] [Reference Citation Analysis]
85 Kim J, Dey A, Malhotra A, Liu J, Ahn SI, Sei YJ, Kenney AM, MacDonald TJ, Kim Y. Engineered biomimetic nanoparticle for dual targeting of the cancer stem-like cell population in sonic hedgehog medulloblastoma. Proc Natl Acad Sci U S A 2020;117:24205-12. [PMID: 32934143 DOI: 10.1073/pnas.1911229117] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
86 Joo JI, Choi M, Jang SH, Choi S, Park SM, Shin D, Cho KH. Realizing Cancer Precision Medicine by Integrating Systems Biology and Nanomaterial Engineering. Adv Mater 2020;32:e1906783. [PMID: 32253807 DOI: 10.1002/adma.201906783] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
87 Barkat HA, Das SS, Barkat MA, Beg S, Hadi HA. Selective targeting of cancer signaling pathways with nanomedicines: challenges and progress. Future Oncol 2020;16:2959-79. [PMID: 32805124 DOI: 10.2217/fon-2020-0198] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
88 Moradi Kashkooli F, Soltani M, Souri M. Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies. J Control Release 2020;327:316-49. [PMID: 32800878 DOI: 10.1016/j.jconrel.2020.08.012] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 14.5] [Reference Citation Analysis]
89 Tian B, Liu Y, Liu J. Smart stimuli-responsive drug delivery systems based on cyclodextrin: A review. Carbohydr Polym 2021;251:116871. [PMID: 33142550 DOI: 10.1016/j.carbpol.2020.116871] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 5.5] [Reference Citation Analysis]
90 Fletcher NL, Kempe K, Thurecht KJ. Next-Generation Polymeric Nanomedicines for Oncology: Perspectives and Future Directions. Macromol Rapid Commun 2020;41:e2000319. [PMID: 32767396 DOI: 10.1002/marc.202000319] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
91 Dong W, Luo Y, Zhang G, Zhang H, Liang Y, Zhuo Y, Liang Y, Zou F, Zhong W. Carbon Nanospheres Exert Antitumor Effects Associated with Downregulation of 4E-BP1 Expression on Prostate Cancer. Int J Nanomedicine 2020;15:5545-59. [PMID: 32848387 DOI: 10.2147/IJN.S257522] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
92 Zhu Y, Jia H, Duan Q, Liu X, Yang J, Liu Y, Wu F. Photosensitizer-Doped and Plasma Membrane-Responsive Liposomes for Nuclear Drug Delivery and Multidrug Resistance Reversal. ACS Appl Mater Interfaces 2020;12:36882-94. [DOI: 10.1021/acsami.0c09110] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
93 Dal Bo M, De Mattia E, Baboci L, Mezzalira S, Cecchin E, Assaraf YG, Toffoli G. New insights into the pharmacological, immunological, and CAR-T-cell approaches in the treatment of hepatocellular carcinoma. Drug Resistance Updates 2020;51:100702. [DOI: 10.1016/j.drup.2020.100702] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 6.5] [Reference Citation Analysis]
94 Liu M, Peng Y, Nie Y, Liu P, Hu S, Ding J, Zhou W. Co-delivery of doxorubicin and DNAzyme using ZnO@polydopamine core-shell nanocomposites for chemo/gene/photothermal therapy. Acta Biomater 2020;110:242-53. [PMID: 32438113 DOI: 10.1016/j.actbio.2020.04.041] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 12.5] [Reference Citation Analysis]
95 Dinić J, Efferth T, García-Sosa AT, Grahovac J, Padrón JM, Pajeva I, Rizzolio F, Saponara S, Spengler G, Tsakovska I. Repurposing old drugs to fight multidrug resistant cancers. Drug Resist Updat 2020;52:100713. [PMID: 32615525 DOI: 10.1016/j.drup.2020.100713] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 9.0] [Reference Citation Analysis]
96 Wang H, Huang Y. Combination therapy based on nano codelivery for overcoming cancer drug resistance. Medicine in Drug Discovery 2020;6:100024. [DOI: 10.1016/j.medidd.2020.100024] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 5.5] [Reference Citation Analysis]
97 Subramaniam B, Siddik ZH, Nagoor NH. Optimization of nanostructured lipid carriers: understanding the types, designs, and parameters in the process of formulations. J Nanopart Res 2020;22. [DOI: 10.1007/s11051-020-04848-0] [Cited by in Crossref: 22] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
98 Luo Y, Qiao B, Zhang P, Yang C, Cao J, Yuan X, Ran H, Wang Z, Hao L, Cao Y, Ren J, Zhou Z. TME-activatable theranostic nanoplatform with ATP burning capability for tumor sensitization and synergistic therapy. Theranostics 2020;10:6987-7001. [PMID: 32550917 DOI: 10.7150/thno.44569] [Cited by in Crossref: 11] [Cited by in F6Publishing: 16] [Article Influence: 5.5] [Reference Citation Analysis]
99 Shahabadi N, Razlansari M. In vitro spectroscopic investigation of groove binding interaction of Fe3O4@CaAl-LDH@L-Dopa with calf thymus DNA. Nucleosides Nucleotides Nucleic Acids 2020;39:1020-35. [PMID: 32345148 DOI: 10.1080/15257770.2020.1740929] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
100 Li J, Zhao J, Tan T, Liu M, Zeng Z, Zeng Y, Zhang L, Fu C, Chen D, Xie T. Nanoparticle Drug Delivery System for Glioma and Its Efficacy Improvement Strategies: A Comprehensive Review. Int J Nanomedicine 2020;15:2563-82. [PMID: 32368041 DOI: 10.2147/IJN.S243223] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
101 Mello FVC, de Moraes GN, Maia RC, Kyeremateng J, Iram SH, Santos-Oliveira R. The Effect of Nanosystems on ATP-Binding Cassette Transporters: Understanding the Influence of Nanosystems on Multidrug Resistance Protein-1 and P-glycoprotein. Int J Mol Sci 2020;21:E2630. [PMID: 32290047 DOI: 10.3390/ijms21072630] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
102 Muley H, Fadó R, Rodríguez-Rodríguez R, Casals N. Drug uptake-based chemoresistance in breast cancer treatment. Biochem Pharmacol 2020;177:113959. [PMID: 32272110 DOI: 10.1016/j.bcp.2020.113959] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 10.5] [Reference Citation Analysis]
103 Merlos Rodrigo MA, Jimenez Jimemez AM, Haddad Y, Bodoor K, Adam P, Krizkova S, Heger Z, Adam V. Metallothionein isoforms as double agents - Their roles in carcinogenesis, cancer progression and chemoresistance. Drug Resist Updat 2020;52:100691. [PMID: 32615524 DOI: 10.1016/j.drup.2020.100691] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
104 Cao X, Hou J, An Q, Assaraf YG, Wang X. Towards the overcoming of anticancer drug resistance mediated by p53 mutations. Drug Resistance Updates 2020;49:100671. [DOI: 10.1016/j.drup.2019.100671] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 15.0] [Reference Citation Analysis]
105 Dallavalle S, Dobričić V, Lazzarato L, Gazzano E, Machuqueiro M, Pajeva I, Tsakovska I, Zidar N, Fruttero R. Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors. Drug Resist Updat 2020;50:100682. [PMID: 32087558 DOI: 10.1016/j.drup.2020.100682] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 18.5] [Reference Citation Analysis]
106 Wang X, Zhang H, Yang H, Bai M, Ning T, Deng T, Liu R, Fan Q, Zhu K, Li J, Zhan Y, Ying G, Ba Y. Exosome-delivered circRNA promotes glycolysis to induce chemoresistance through the miR-122-PKM2 axis in colorectal cancer. Mol Oncol 2020;14:539-55. [PMID: 31901148 DOI: 10.1002/1878-0261.12629] [Cited by in Crossref: 88] [Cited by in F6Publishing: 167] [Article Influence: 44.0] [Reference Citation Analysis]
107 Carvalho MR, Reis RL, Oliveira JM. Dendrimer nanoparticles for colorectal cancer applications. J Mater Chem B 2020;8:1128-38. [PMID: 31971528 DOI: 10.1039/c9tb02289a] [Cited by in Crossref: 25] [Cited by in F6Publishing: 7] [Article Influence: 12.5] [Reference Citation Analysis]
108 Dong J, Qin Z, Zhang WD, Cheng G, Yehuda AG, Ashby CR Jr, Chen ZS, Cheng XD, Qin JJ. Medicinal chemistry strategies to discover P-glycoprotein inhibitors: An update. Drug Resist Updat 2020;49:100681. [PMID: 32014648 DOI: 10.1016/j.drup.2020.100681] [Cited by in Crossref: 58] [Cited by in F6Publishing: 58] [Article Influence: 29.0] [Reference Citation Analysis]
109 Wang J, Li N, Cao L, Gao C, Zhang Y, Shuai Q, Xie J, Luo K, Yang J, Gu Z. DOX-loaded peptide dendritic copolymer nanoparticles for combating multidrug resistance by regulating the lysosomal pathway of apoptosis in breast cancer cells. J Mater Chem B 2020;8:1157-70. [PMID: 31951231 DOI: 10.1039/c9tb02130b] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
110 Hepel M. Magnetic Nanoparticles for Nanomedicine. Magnetochemistry 2020;6:3. [DOI: 10.3390/magnetochemistry6010003] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 6.5] [Reference Citation Analysis]
111 Borgheti-Cardoso LN, Viegas JSR, Silvestrini AVP, Caron AL, Praça FG, Kravicz M, Bentley MVLB. Nanotechnology approaches in the current therapy of skin cancer. Adv Drug Deliv Rev 2020;153:109-36. [PMID: 32113956 DOI: 10.1016/j.addr.2020.02.005] [Cited by in Crossref: 31] [Cited by in F6Publishing: 22] [Article Influence: 15.5] [Reference Citation Analysis]
112 Narayanan S, Cai C, Assaraf YG, Guo H, Cui Q, Wei L, Huang J, Ashby CR, Chen Z. Targeting the ubiquitin-proteasome pathway to overcome anti-cancer drug resistance. Drug Resistance Updates 2020;48:100663. [DOI: 10.1016/j.drup.2019.100663] [Cited by in Crossref: 47] [Cited by in F6Publishing: 46] [Article Influence: 23.5] [Reference Citation Analysis]
113 Gao L, Dong B, Zhang J, Chen Y, Qiao H, Liu Z, Chen E, Dong Y, Cao C, Huang D, Chen W. Functional Biodegradable Nitric Oxide Donor-Containing Polycarbonate-Based Micelles for Reduction-Triggered Drug Release and Overcoming Multidrug Resistance. ACS Macro Lett 2019;8:1552-8. [PMID: 35619381 DOI: 10.1021/acsmacrolett.9b00758] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 6.7] [Reference Citation Analysis]
114 Seifert A, Kashi Y, Livney YD. Delivery to the gut microbiota: A rapidly proliferating research field. Adv Colloid Interface Sci 2019;274:102038. [PMID: 31683191 DOI: 10.1016/j.cis.2019.102038] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
115 Jiang X, Fan X, Xu W, Zhao C, Wu H, Zhang R, Wu G. Self-assembled peptide nanoparticles responsive to multiple tumor microenvironment triggers provide highly efficient targeted delivery and release of antitumor drug. J Control Release 2019;316:196-207. [PMID: 31682910 DOI: 10.1016/j.jconrel.2019.10.031] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
116 Pieper S, Onafuye H, Mulac D, Cinatl J Jr, Wass MN, Michaelis M, Langer K. Incorporation of doxorubicin in different polymer nanoparticles and their anticancer activity. Beilstein J Nanotechnol 2019;10:2062-72. [PMID: 31728254 DOI: 10.3762/bjnano.10.201] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
117 Tolios A, De Las Rivas J, Hovig E, Trouillas P, Scorilas A, Mohr T. Computational approaches in cancer multidrug resistance research: Identification of potential biomarkers, drug targets and drug-target interactions. Drug Resist Updat 2020;48:100662. [PMID: 31927437 DOI: 10.1016/j.drup.2019.100662] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
118 Giarra S, Lupo N, Campani V, Carotenuto A, Mayol L, De Rosa G, Bernkop-schnürch A. In vitro evaluation of tumor targeting ability of a parenteral enoxaparin-coated self-emulsifying drug delivery system. Journal of Drug Delivery Science and Technology 2019;53:101144. [DOI: 10.1016/j.jddst.2019.101144] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
119 Yen TY, Stephen ZR, Lin G, Mu Q, Jeon M, Untoro S, Welsh P, Zhang M. Catalase-Functionalized Iron Oxide Nanoparticles Reverse Hypoxia-Induced Chemotherapeutic Resistance. Adv Healthc Mater 2019;8:e1900826. [PMID: 31557421 DOI: 10.1002/adhm.201900826] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
120 Clegg JR, Irani AS, Ander EW, Ludolph CM, Venkataraman AK, Zhong JX, Peppas NA. Synthetic networks with tunable responsiveness, biodegradation, and molecular recognition for precision medicine applications. Sci Adv 2019;5:eaax7946. [PMID: 31598554 DOI: 10.1126/sciadv.aax7946] [Cited by in Crossref: 28] [Cited by in F6Publishing: 37] [Article Influence: 9.3] [Reference Citation Analysis]
121 Sarmento-Ribeiro AB, Scorilas A, Gonçalves AC, Efferth T, Trougakos IP. The emergence of drug resistance to targeted cancer therapies: Clinical evidence. Drug Resist Updat 2019;47:100646. [PMID: 31733611 DOI: 10.1016/j.drup.2019.100646] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
122 Xin X, Du X, Xiao Q, Azevedo HS, He W, Yin L. Drug Nanorod-Mediated Intracellular Delivery of microRNA-101 for Self-sensitization via Autophagy Inhibition. Nanomicro Lett 2019;11:82. [PMID: 34138035 DOI: 10.1007/s40820-019-0310-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
123 Leonetti A, Wever B, Mazzaschi G, Assaraf YG, Rolfo C, Quaini F, Tiseo M, Giovannetti E. Molecular basis and rationale for combining immune checkpoint inhibitors with chemotherapy in non-small cell lung cancer. Drug Resistance Updates 2019;46:100644. [DOI: 10.1016/j.drup.2019.100644] [Cited by in Crossref: 43] [Cited by in F6Publishing: 42] [Article Influence: 14.3] [Reference Citation Analysis]
124 Assaraf YG, Brozovic A, Gonçalves AC, Jurkovicova D, Linē A, Machuqueiro M, Saponara S, Sarmento-ribeiro AB, Xavier CP, Vasconcelos MH. The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resistance Updates 2019;46:100645. [DOI: 10.1016/j.drup.2019.100645] [Cited by in Crossref: 81] [Cited by in F6Publishing: 80] [Article Influence: 27.0] [Reference Citation Analysis]
125 Alexa-Stratulat T, Pešić M, Gašparović AČ, Trougakos IP, Riganti C. What sustains the multidrug resistance phenotype beyond ABC efflux transporters? Looking beyond the tip of the iceberg. Drug Resist Updat 2019;46:100643. [PMID: 31493711 DOI: 10.1016/j.drup.2019.100643] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 9.3] [Reference Citation Analysis]
126 Onafuye H, Pieper S, Mulac D, Cinatl J Jr, Wass MN, Langer K, Michaelis M. Doxorubicin-loaded human serum albumin nanoparticles overcome transporter-mediated drug resistance in drug-adapted cancer cells. Beilstein J Nanotechnol 2019;10:1707-15. [PMID: 31501742 DOI: 10.3762/bjnano.10.166] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 6.3] [Reference Citation Analysis]
127 Milman N, Ginini L, Gil Z. Exosomes and their role in tumorigenesis and anticancer drug resistance. Drug Resist Updat 2019;45:1-12. [PMID: 31369918 DOI: 10.1016/j.drup.2019.07.003] [Cited by in Crossref: 48] [Cited by in F6Publishing: 51] [Article Influence: 16.0] [Reference Citation Analysis]
128 Doroudian M, MacLoughlin R, Poynton F, Prina-Mello A, Donnelly SC. Nanotechnology based therapeutics for lung disease. Thorax 2019;74:965-76. [PMID: 31285360 DOI: 10.1136/thoraxjnl-2019-213037] [Cited by in Crossref: 13] [Cited by in F6Publishing: 25] [Article Influence: 4.3] [Reference Citation Analysis]
129 Meel MH, Kaspers GJL, Hulleman E. Preclinical therapeutic targets in diffuse midline glioma. Drug Resist Updat 2019;44:15-25. [PMID: 31202081 DOI: 10.1016/j.drup.2019.06.001] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
130 Zhang J, Huang J, Huang K, Zhang J, Li Z, Zhao T, Wu J. Egg white coated alginate nanoparticles with electron sprayer for potential anticancer application. International Journal of Pharmaceutics 2019;564:188-96. [DOI: 10.1016/j.ijpharm.2019.04.045] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
131 Liu X, Chu H, Cui N, Wang T, Dong S, Cui S, Dai Y, Wang D. In vitro and in vivo evaluation of biotin-mediated PEGylated nanostructured lipid as carrier of disulfiram coupled with copper ion. Journal of Drug Delivery Science and Technology 2019;51:651-61. [DOI: 10.1016/j.jddst.2019.03.037] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.7] [Reference Citation Analysis]
132 Levin M, Stark M, Berman B, Assaraf YG. Surmounting Cytarabine-resistance in acute myeloblastic leukemia cells and specimens with a synergistic combination of hydroxyurea and azidothymidine. Cell Death Dis 2019;10:390. [PMID: 31101804 DOI: 10.1038/s41419-019-1626-x] [Cited by in Crossref: 18] [Cited by in F6Publishing: 27] [Article Influence: 6.0] [Reference Citation Analysis]
133 Chen M, Wang L, Wang F, Li F, Xia W, Gu H, Chen Y. Quick synthesis of a novel combinatorial delivery system of siRNA and doxorubicin for a synergistic anticancer effect. Int J Nanomedicine 2019;14:3557-69. [PMID: 31190812 DOI: 10.2147/IJN.S198511] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
134 Choudhury H, Gorain B, Pandey M, Khurana RK, Kesharwani P. Strategizing biodegradable polymeric nanoparticles to cross the biological barriers for cancer targeting. Int J Pharm 2019;565:509-22. [PMID: 31102804 DOI: 10.1016/j.ijpharm.2019.05.042] [Cited by in Crossref: 32] [Cited by in F6Publishing: 24] [Article Influence: 10.7] [Reference Citation Analysis]
135 Gupta AK, Tulsyan S, Bharadwaj M, Mehrotra R. Systematic Review on Cytotoxic and Anticancer Potential of N-Substituted Isatins as Novel Class of Compounds Useful in Multidrug-Resistant Cancer Therapy: In Silico and In Vitro Analysis. Top Curr Chem (Cham) 2019;377:15. [PMID: 31073777 DOI: 10.1007/s41061-019-0240-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
136 Sharma N, Sharma M, Sajid Jamal QM, Kamal MA, Akhtar S. Nanoinformatics and biomolecular nanomodeling: a novel move en route for effective cancer treatment. Environ Sci Pollut Res Int 2020;27:19127-41. [PMID: 31025282 DOI: 10.1007/s11356-019-05152-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
137 Riaz MK, Zhang X, Wong KH, Chen H, Liu Q, Chen X, Zhang G, Lu A, Yang Z. Pulmonary delivery of transferrin receptors targeting peptide surface-functionalized liposomes augments the chemotherapeutic effect of quercetin in lung cancer therapy. Int J Nanomedicine 2019;14:2879-902. [PMID: 31118613 DOI: 10.2147/IJN.S192219] [Cited by in Crossref: 28] [Cited by in F6Publishing: 5] [Article Influence: 9.3] [Reference Citation Analysis]
138 Hays E, Bonavida B. YY1 regulates cancer cell immune resistance by modulating PD-L1 expression. Drug Resist Updat 2019;43:10-28. [PMID: 31005030 DOI: 10.1016/j.drup.2019.04.001] [Cited by in Crossref: 36] [Cited by in F6Publishing: 29] [Article Influence: 12.0] [Reference Citation Analysis]
139 Xing Y, Ding T, Wang Z, Wang L, Guan H, Tang J, Mo D, Zhang J. Temporally Controlled Photothermal/Photodynamic and Combined Therapy for Overcoming Multidrug Resistance of Cancer by Polydopamine Nanoclustered Micelles. ACS Appl Mater Interfaces 2019;11:13945-53. [PMID: 30907570 DOI: 10.1021/acsami.9b00472] [Cited by in Crossref: 40] [Cited by in F6Publishing: 31] [Article Influence: 13.3] [Reference Citation Analysis]
140 Paydarnia N, Khoshtinat Nikkhoi S, Fakhravar A, Mehdiabdol M, Heydarzadeh H, Ranjbar S. Synergistic effect of granzyme B-azurin fusion protein on breast cancer cells. Mol Biol Rep 2019;46:3129-40. [DOI: 10.1007/s11033-019-04767-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
141 Sharifzad F, Ghavami S, Verdi J, Mardpour S, Mollapour Sisakht M, Azizi Z, Taghikhani A, Łos MJ, Fakharian E, Ebrahimi M, Hamidieh AA. Glioblastoma cancer stem cell biology: Potential theranostic targets. Drug Resist Updat 2019;42:35-45. [PMID: 30877905 DOI: 10.1016/j.drup.2018.03.003] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 12.3] [Reference Citation Analysis]
142 Feng C, Zhang H, Chen J, Wang S, Xin Y, Qu Y, Zhang Q, Ji W, Yamashita F, Rui M, Xu X. Ratiometric co-encapsulation and co-delivery of doxorubicin and paclitaxel by tumor-targeted lipodisks for combination therapy of breast cancer. Int J Pharm 2019;560:191-204. [PMID: 30769131 DOI: 10.1016/j.ijpharm.2019.02.009] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
143 Pawar A, Prabhu P. Nanosoldiers: A promising strategy to combat triple negative breast cancer. Biomedicine & Pharmacotherapy 2019;110:319-41. [DOI: 10.1016/j.biopha.2018.11.122] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 9.0] [Reference Citation Analysis]
144 Satpathy M, Wang L, Zielinski RJ, Qian W, Wang YA, Mohs AM, Kairdolf BA, Ji X, Capala J, Lipowska M, Nie S, Mao H, Yang L. Targeted Drug Delivery and Image-Guided Therapy of Heterogeneous Ovarian Cancer Using HER2-Targeted Theranostic Nanoparticles. Theranostics 2019;9:778-95. [PMID: 30809308 DOI: 10.7150/thno.29964] [Cited by in Crossref: 47] [Cited by in F6Publishing: 48] [Article Influence: 15.7] [Reference Citation Analysis]
145 Villaverde G, Baeza A. Targeting strategies for improving the efficacy of nanomedicine in oncology. Beilstein J Nanotechnol 2019;10:168-81. [PMID: 30746311 DOI: 10.3762/bjnano.10.16] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 9.0] [Reference Citation Analysis]
146 Hauser D, Estermann M, Milosevic A, Steinmetz L, Vanhecke D, Septiadi D, Drasler B, Petri-Fink A, Ball V, Rothen-Rutishauser B. Polydopamine/Transferrin Hybrid Nanoparticles for Targeted Cell-Killing. Nanomaterials (Basel) 2018;8:E1065. [PMID: 30562983 DOI: 10.3390/nano8121065] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
147 Ahmed AA, Vundamati DS, Farooqi MS, Guest E. Precision Medicine in Pediatric Cancer: Current Applications and Future Prospects. High Throughput 2018;7:E39. [PMID: 30551569 DOI: 10.3390/ht7040039] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
148 Bar-zeev M, Kelmansky D, Assaraf YG, Livney YD. β-Casein micelles for oral delivery of SN-38 and elacridar to overcome BCRP-mediated multidrug resistance in gastric cancer. European Journal of Pharmaceutics and Biopharmaceutics 2018;133:240-9. [DOI: 10.1016/j.ejpb.2018.10.018] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
149 Cui Q, Wang J, Assaraf YG, Ren L, Gupta P, Wei L, Ashby CR, Yang D, Chen Z. Modulating ROS to overcome multidrug resistance in cancer. Drug Resistance Updates 2018;41:1-25. [DOI: 10.1016/j.drup.2018.11.001] [Cited by in Crossref: 155] [Cited by in F6Publishing: 154] [Article Influence: 38.8] [Reference Citation Analysis]
150 Abdul KU, Houweling M, Svensson F, Narayan RS, Cornelissen FMG, Küçükosmanoglu A, Metzakopian E, Watts C, Bailey D, Wurdinger T, Westerman BA. WINDOW consortium: A path towards increased therapy efficacy against glioblastoma. Drug Resist Updat 2018;40:17-24. [PMID: 30439622 DOI: 10.1016/j.drup.2018.10.001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
151 Kasprzak A, Gunka K, Fronczak M, Bystrzejewski M, Poplawska M. Folic Acid-Navigated and β-Cyclodextrin-Decorated Carbon-Encapsulated Iron Nanoparticles as the Nanotheranostic Platform for Controlled Release of 5-Fluorouracil. ChemistrySelect 2018;3:10821-30. [DOI: 10.1002/slct.201802318] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
152 Dianat-moghadam H, Heidarifard M, Jahanban-esfahlan R, Panahi Y, Hamishehkar H, Pouremamali F, Rahbarghazi R, Nouri M. Cancer stem cells-emanated therapy resistance: Implications for liposomal drug delivery systems. Journal of Controlled Release 2018;288:62-83. [DOI: 10.1016/j.jconrel.2018.08.043] [Cited by in Crossref: 45] [Cited by in F6Publishing: 42] [Article Influence: 11.3] [Reference Citation Analysis]
153 Tu Z, Qiao H, Yan Y, Guday G, Chen W, Adeli M, Haag R. Directed Graphene-Based Nanoplatforms for Hyperthermia: Overcoming Multiple Drug Resistance. Angew Chem Int Ed 2018;57:11198-202. [DOI: 10.1002/anie.201804291] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 10.3] [Reference Citation Analysis]
154 Tu Z, Qiao H, Yan Y, Guday G, Chen W, Adeli M, Haag R. Directed Graphene-Based Nanoplatforms for Hyperthermia: Overcoming Multiple Drug Resistance. Angew Chem 2018;130:11368-72. [DOI: 10.1002/ange.201804291] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
155 Shariati B, Yektadoost E, Behzadi E, Azmoodeh E, Attar F, Sari S, Akhtari K, Falahati M. Interaction of silica nanoparticles with tau proteins and PC12 cells: Colloidal stability, thermodynamic, docking, and cellular studies. Int J Biol Macromol 2018;118:1963-73. [PMID: 30009913 DOI: 10.1016/j.ijbiomac.2018.07.041] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
156 Sahu A, Choi WI, Tae G. Recent Progress in the Design of Hypoxia-Specific Nano Drug Delivery Systems for Cancer Therapy. Adv Therap 2018;1:1800026. [DOI: 10.1002/adtp.201800026] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 6.0] [Reference Citation Analysis]
157 Li H, Jin H, Wan W, Wu C, Wei L. Cancer nanomedicine: mechanisms, obstacles and strategies. Nanomedicine 2018;13:1639-56. [DOI: 10.2217/nnm-2018-0007] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
158 Li J, Liang H, Liu J, Wang Z. Poly (amidoamine) (PAMAM) dendrimer mediated delivery of drug and pDNA/siRNA for cancer therapy. Int J Pharm 2018;546:215-25. [PMID: 29787895 DOI: 10.1016/j.ijpharm.2018.05.045] [Cited by in Crossref: 106] [Cited by in F6Publishing: 108] [Article Influence: 26.5] [Reference Citation Analysis]
159 Anh J, Jeong G, Nah J. Anticancer Effect of Intracellular-Delivered Doxorubicin Using a Redox-Responsive LMWSC-g-Lipoic Acid Micelles. Macromol Res 2018;26:650-8. [DOI: 10.1007/s13233-018-6113-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
160 Meirson T, Gil-Henn H. Targeting invadopodia for blocking breast cancer metastasis. Drug Resist Updat 2018;39:1-17. [PMID: 30075834 DOI: 10.1016/j.drup.2018.05.002] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 10.0] [Reference Citation Analysis]
161 Guan H, Wang L, Zhang J, Xing Y, Cai K. Selective Enrichment of Polydopamine in Mesoporous Nanocarriers for Nuclear-Targeted Drug Delivery. Part Part Syst Charact 2018;35:1800011. [DOI: 10.1002/ppsc.201800011] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
162 Stiewe T, Haran TE. How mutations shape p53 interactions with the genome to promote tumorigenesis and drug resistance. Drug Resist Updat 2018;38:27-43. [PMID: 29857816 DOI: 10.1016/j.drup.2018.05.001] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 11.3] [Reference Citation Analysis]
163 Merino M, Zalba S, Garrido MJ. Immunoliposomes in clinical oncology: State of the art and future perspectives. Journal of Controlled Release 2018;275:162-76. [DOI: 10.1016/j.jconrel.2018.02.015] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 9.0] [Reference Citation Analysis]
164 Gacche RN, Assaraf YG. Redundant angiogenic signaling and tumor drug resistance. Drug Resistance Updates 2018;36:47-76. [DOI: 10.1016/j.drup.2018.01.002] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 11.0] [Reference Citation Analysis]
165 Doerflinger A, Quang NN, Gravel E, Pinna G, Vandamme M, Ducongé F, Doris E. Biotin-functionalized targeted polydiacetylene micelles. Chem Commun 2018;54:3613-6. [DOI: 10.1039/c8cc00553b] [Cited by in Crossref: 18] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
166 Zhao F, Liu H, Mathe SDR, Dong A, Zhang J. Covalent Organic Frameworks: From Materials Design to Biomedical Application. Nanomaterials (Basel) 2017;8:E15. [PMID: 29283423 DOI: 10.3390/nano8010015] [Cited by in Crossref: 93] [Cited by in F6Publishing: 80] [Article Influence: 18.6] [Reference Citation Analysis]
167 Son S, Rao NV, Ko H, Shin S, Jeon J, Han HS, Nguyen VQ, Thambi T, Suh YD, Park JH. Carboxymethyl dextran-based hypoxia-responsive nanoparticles for doxorubicin delivery. Int J Biol Macromol 2018;110:399-405. [PMID: 29133095 DOI: 10.1016/j.ijbiomac.2017.11.048] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 6.2] [Reference Citation Analysis]
168 Owyong M, Hosseini-Nassab N, Efe G, Honkala A, van den Bijgaart RJE, Plaks V, Smith BR. Cancer Immunotherapy Getting Brainy: Visualizing the Distinctive CNS Metastatic Niche to Illuminate Therapeutic Resistance. Drug Resist Updat 2017;33-35:23-35. [PMID: 29145972 DOI: 10.1016/j.drup.2017.10.001] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
169 Genovese I, Ilari A, Assaraf YG, Fazi F, Colotti G. Not only P-glycoprotein: Amplification of the ABCB1- containing chromosome region 7q21 confers multidrug resistance upon cancer cells by coordinated overexpression of an assortment of resistance-related proteins. Drug Resistance Updates 2017;32:23-46. [DOI: 10.1016/j.drup.2017.10.003] [Cited by in Crossref: 56] [Cited by in F6Publishing: 52] [Article Influence: 11.2] [Reference Citation Analysis]