BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Fidelin K, Djenoune L, Stokes C, Prendergast A, Gomez J, Baradel A, Del Bene F, Wyart C. State-Dependent Modulation of Locomotion by GABAergic Spinal Sensory Neurons. Curr Biol 2015;25:3035-47. [PMID: 26752076 DOI: 10.1016/j.cub.2015.09.070] [Cited by in Crossref: 67] [Cited by in F6Publishing: 69] [Article Influence: 8.4] [Reference Citation Analysis]
Number Citing Articles
1 Wang J, Zhang L, Tao N, Wang X, Deng S, Li M, Zu Y, Xu C. Small Peptides Isolated from Enzymatic Hydrolyzate of Pneumatophorus japonicus Bone Promote Sleep by Regulating Circadian Rhythms. Foods 2023;12:464. [DOI: 10.3390/foods12030464] [Reference Citation Analysis]
2 Johnson E, Clark M, Oncul M, Pantiru A, MacLean C, Deuchars J, Deuchars SA, Johnston J. Graded spikes differentially signal neurotransmitter input in cerebrospinal fluid contacting neurons of the mouse spinal cord. iScience 2023;26:105914. [PMID: 36691620 DOI: 10.1016/j.isci.2022.105914] [Reference Citation Analysis]
3 Riondel P, Jurčić N, Trouslard J, Wanaverbecq N, Seddik R. GABA excitatory actions in cerebrospinal-fluid contacting neurones of adult mouse spinal cord.. [DOI: 10.1101/2022.12.14.520067] [Reference Citation Analysis]
4 Desban L, Roussel J, Mirat O, Lejeune F, Keiser L, Michalski N, Wyart C. Lateral line hair cells integrate mechanical and chemical cues to orient navigation.. [DOI: 10.1101/2022.08.31.505989] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Nakamura Y, Kurabe M, Matsumoto M, Sato T, Miyashita S, Hoshina K, Kamiya Y, Tainaka K, Matsuzawa H, Ohno N, Ueno M. Cerebrospinal fluid-contacting neuron tracing reveals structural and functional connectivity for locomotion in the mouse spinal cord.. [DOI: 10.1101/2022.08.15.501844] [Reference Citation Analysis]
6 Gerstmann K, Jurčić N, Blasco E, Kunz S, de Almeida Sassi F, Wanaverbecq N, Zampieri N. The role of intraspinal sensory neurons in the control of quadrupedal locomotion. Curr Biol 2022:S0960-9822(22)00588-7. [PMID: 35512696 DOI: 10.1016/j.cub.2022.04.019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Pallucchi I, Bertuzzi M, Michel JC, Miller AC, El Manira A. Transformation of an early-established motor circuit during maturation in zebrafish. Cell Rep 2022;39:110654. [PMID: 35417694 DOI: 10.1016/j.celrep.2022.110654] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
8 Kawano K, Kato K, Sugioka T, Kimura Y, Tanimoto M, Higashijima S. Long descending commissural V0v neurons ensure coordinated swimming movements along the body axis in larval zebrafish. Sci Rep 2022;12. [DOI: 10.1038/s41598-022-08283-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Jalalvand E, Alvelid J, Coceano G, Edwards S, Robertson B, Grillner S, Testa I. ExSTED microscopy reveals contrasting functions of dopamine and somatostatin CSF-c neurons along the lamprey central canal. Elife 2022;11:e73114. [PMID: 35103591 DOI: 10.7554/eLife.73114] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
10 Gerstmann K, Jurčić N, Kunz S, Wanaverbecq N, Zampieri N. The role of intraspinal sensory neurons in the control of quadrupedal locomotion.. [DOI: 10.1101/2021.12.21.473311] [Reference Citation Analysis]
11 Zaki H, Lushi E, Severi KE. Larval Zebrafish Exhibit Collective Circulation in Confined Spaces. Front Phys 2021;9:678600. [DOI: 10.3389/fphy.2021.678600] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
12 Jalalvand E, Alvelid J, Coceano G, Edwards S, Robertson B, Grillner S, Testa I. ExSTED microscopy reveals contrasting functions of dopamine and somatostatin CSF-c neurons along the central canal.. [DOI: 10.1101/2021.08.17.456595] [Reference Citation Analysis]
13 Deska-Gauthier D, Zhang Y. The Temporal Mechanisms Guiding Interneuron Differentiation in the Spinal Cord. Int J Mol Sci 2021;22:8025. [PMID: 34360788 DOI: 10.3390/ijms22158025] [Reference Citation Analysis]
14 Haspel G, Severi KE, Fauci LJ, Cohen N, Tytell ED, Morgan JR. Resilience of neural networks for locomotion. J Physiol 2021;599:3825-40. [PMID: 34187088 DOI: 10.1113/JP279214] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
15 Zaki H, Lushi E, Severi KE. Larval zebrafish exhibit collective motion behaviors in constrained spaces.. [DOI: 10.1101/2021.07.09.451841] [Reference Citation Analysis]
16 Wu MY, Carbo-Tano M, Mirat O, Lejeune FX, Roussel J, Quan FB, Fidelin K, Wyart C. Spinal sensory neurons project onto the hindbrain to stabilize posture and enhance locomotor speed. Curr Biol 2021;31:3315-3329.e5. [PMID: 34146485 DOI: 10.1016/j.cub.2021.05.042] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
17 Wu M, Carbó-tano M, Mirat O, Lejeune F, Roussel J, Quan F, Fidelin K, Wyart C. Spinal sensory neurons project onto hindbrain to stabilize posture and enhance locomotor speed.. [DOI: 10.1101/2021.03.16.435696] [Reference Citation Analysis]
18 Picton LD, Bertuzzi M, Pallucchi I, Fontanel P, Dahlberg E, Björnfors ER, Iacoviello F, Shearing PR, El Manira A. A spinal organ of proprioception for integrated motor action feedback. Neuron 2021;109:1188-1201.e7. [PMID: 33577748 DOI: 10.1016/j.neuron.2021.01.018] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 8.5] [Reference Citation Analysis]
19 Reinoß P, Ciglieri E, Minére M, Bremser S, Klein A, Löhr H, Fuller PM, Büschges A, Kloppenburg P, Fenselau H, Hammerschmidt M. Hypothalamic Pomc Neurons Innervate the Spinal Cord and Modulate the Excitability of Premotor Circuits. Curr Biol 2020;30:4579-4593.e7. [PMID: 32976803 DOI: 10.1016/j.cub.2020.08.103] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
20 Cantaut-Belarif Y, Orts Del'Immagine A, Penru M, Pézeron G, Wyart C, Bardet PL. Adrenergic activation modulates the signal from the Reissner fiber to cerebrospinal fluid-contacting neurons during development. Elife 2020;9:e59469. [PMID: 33048048 DOI: 10.7554/eLife.59469] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
21 Bagnat M, Gray RS. Development of a straight vertebrate body axis. Development 2020;147:dev175794. [PMID: 33023886 DOI: 10.1242/dev.175794] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
22 Johnson E, Clark M, Oncul M, Maclean C, Deuchars J, Deuchars SA, Johnston J. Graded spikes differentially signal neurotransmitter input in cerebrospinal fluid contacting neurons of the mouse spinal cord.. [DOI: 10.1101/2020.09.18.303347] [Reference Citation Analysis]
23 Yasmine C, Margot P, Adeline OD, Guillaume P, Claire W, Pierre-luc B. Adrenergic activation modulates the signal from the Reissner fiber to cerebrospinal fluid-contacting neurons during development.. [DOI: 10.1101/2020.05.26.117341] [Reference Citation Analysis]
24 Antinucci P, Dumitrescu A, Deleuze C, Morley HJ, Leung K, Hagley T, Kubo F, Baier H, Bianco IH, Wyart C. A calibrated optogenetic toolbox of stable zebrafish opsin lines. Elife 2020;9:e54937. [PMID: 32216873 DOI: 10.7554/eLife.54937] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
25 Orts-Del'Immagine A, Cantaut-Belarif Y, Thouvenin O, Roussel J, Baskaran A, Langui D, Koëth F, Bivas P, Lejeune FX, Bardet PL, Wyart C. Sensory Neurons Contacting the Cerebrospinal Fluid Require the Reissner Fiber to Detect Spinal Curvature In Vivo. Curr Biol 2020;30:827-839.e4. [PMID: 32084399 DOI: 10.1016/j.cub.2019.12.071] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 11.0] [Reference Citation Analysis]
26 Antinucci P, Dumitrescu A, Deleuze C, Morley H, Leung K, Hagley T, Kubo F, Baier H, Bianco I, Wyart C. A calibrated optogenetic toolbox of stable zebrafish opsin lines.. [DOI: 10.1101/2020.01.13.904185] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
27 Mcarthur KL, Chow DM, Fetcho JR. Zebrafish as a Model for Revealing the Neuronal Basis of Behavior. The Zebrafish in Biomedical Research 2020. [DOI: 10.1016/b978-0-12-812431-4.00046-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
28 Dumitrescu AS, Fidelin K, Wyart C. Toward a comprehensive model of circuits underlying locomotion: What did we learn from zebrafish? The Neural Control of Movement 2020. [DOI: 10.1016/b978-0-12-816477-8.00006-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
29 Skuplik I, Cobb J. Animal Models for Understanding Human Skeletal Defects. Advances in Experimental Medicine and Biology 2020. [DOI: 10.1007/978-981-15-2389-2_7] [Reference Citation Analysis]
30 Orts-del’immagine A, Cantaut-belarif Y, Thouvenin O, Roussel J, Baskaran A, Langui D, Koëth F, Bivas P, Lejeune F, Bardet P, Wyart C. Sensory neurons contacting the cerebrospinal fluid require the Reissner fiber to detect spinal curvature in vivo.. [DOI: 10.1101/861344] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
31 Babski H, Jovanic T, Surel C, Yoshikawa S, Zwart MF, Valmier J, Thomas JB, Enriquez J, Carroll P, Garcès A. A GABAergic Maf-expressing interneuron subset regulates the speed of locomotion in Drosophila. Nat Commun 2019;10:4796. [PMID: 31641138 DOI: 10.1038/s41467-019-12693-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
32 Grillner S, El Manira A. Current Principles of Motor Control, with Special Reference to Vertebrate Locomotion. Physiol Rev 2020;100:271-320. [PMID: 31512990 DOI: 10.1152/physrev.00015.2019] [Cited by in Crossref: 165] [Cited by in F6Publishing: 176] [Article Influence: 41.3] [Reference Citation Analysis]
33 Di Bella DJ, Carcagno AL, Bartolomeu ML, Pardi MB, Löhr H, Siegel N, Hammerschmidt M, Marín-burgin A, Lanuza GM. Ascl1 Balances Neuronal versus Ependymal Fate in the Spinal Cord Central Canal. Cell Reports 2019;28:2264-2274.e3. [DOI: 10.1016/j.celrep.2019.07.087] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
34 Callahan RA, Roberts R, Sengupta M, Kimura Y, Higashijima SI, Bagnall MW. Spinal V2b neurons reveal a role for ipsilateral inhibition in speed control. Elife 2019;8:e47837. [PMID: 31355747 DOI: 10.7554/eLife.47837] [Cited by in Crossref: 20] [Cited by in F6Publishing: 25] [Article Influence: 5.0] [Reference Citation Analysis]
35 Alibardi L. Cerebrospinal fluid-contacting neurons in the regenerating spinal cord of lizards and amphibians are likely mechanoreceptors. J Morphol 2019;280:1292-308. [PMID: 31233249 DOI: 10.1002/jmor.21031] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
36 Desban L, Prendergast A, Roussel J, Rosello M, Geny D, Wyart C, Bardet PL. Regulation of the apical extension morphogenesis tunes the mechanosensory response of microvilliated neurons. PLoS Biol 2019;17:e3000235. [PMID: 31002663 DOI: 10.1371/journal.pbio.3000235] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
37 Brocard F. New channel lineup in spinal circuits governing locomotion. Current Opinion in Physiology 2019;8:14-22. [DOI: 10.1016/j.cophys.2018.11.009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
38 Henderson KW, Menelaou E, Hale ME. Sensory neurons in the spinal cord of zebrafish and their local connectivity. Current Opinion in Physiology 2019;8:136-40. [DOI: 10.1016/j.cophys.2019.01.008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
39 Jay M, McLean DL. Reconciling the functions of even-skipped interneurons during crawling, swimming, and walking. Curr Opin Physiol 2019;8:188-92. [PMID: 31667448 DOI: 10.1016/j.cophys.2019.02.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
40 Orts-Del'Immagine A, Wyart C. Cerebrospinal-fluid-contacting neurons. Curr Biol 2017;27:R1198-200. [PMID: 29161552 DOI: 10.1016/j.cub.2017.09.017] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 6.8] [Reference Citation Analysis]
41 Van Gennip JLM, Boswell CW, Ciruna B. Neuroinflammatory signals drive spinal curve formation in zebrafish models of idiopathic scoliosis. Sci Adv 2018;4:eaav1781. [PMID: 30547092 DOI: 10.1126/sciadv.aav1781] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 7.8] [Reference Citation Analysis]
42 Sternberg JR, Prendergast AE, Brosse L, Cantaut-Belarif Y, Thouvenin O, Orts-Del'Immagine A, Castillo L, Djenoune L, Kurisu S, McDearmid JR, Bardet PL, Boccara C, Okamoto H, Delmas P, Wyart C. Pkd2l1 is required for mechanoception in cerebrospinal fluid-contacting neurons and maintenance of spine curvature. Nat Commun 2018;9:3804. [PMID: 30228263 DOI: 10.1038/s41467-018-06225-x] [Cited by in Crossref: 73] [Cited by in F6Publishing: 78] [Article Influence: 14.6] [Reference Citation Analysis]
43 Babski H, Surel C, Yoshikawa S, Valmier J, Thomas J, Carroll P, Garcès A. A GABAergic Maf-expressing interneuron subset regulates the speed of locomotion inDrosophila.. [DOI: 10.1101/421057] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
44 Berg EM, Björnfors ER, Pallucchi I, Picton LD, El Manira A. Principles Governing Locomotion in Vertebrates: Lessons From Zebrafish. Front Neural Circuits 2018;12:73. [PMID: 30271327 DOI: 10.3389/fncir.2018.00073] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 6.8] [Reference Citation Analysis]
45 Tolstenkov O, Van der Auwera P, Steuer Costa W, Bazhanova O, Gemeinhardt TM, Bergs AC, Gottschalk A. Functionally asymmetric motor neurons contribute to coordinating locomotion of Caenorhabditis elegans. Elife 2018;7:e34997. [PMID: 30204083 DOI: 10.7554/eLife.34997] [Cited by in Crossref: 24] [Cited by in F6Publishing: 28] [Article Influence: 4.8] [Reference Citation Analysis]
46 Sternberg JR, Prendergast AE, Brosse L, Cantaut-belarif Y, Thouvenin O, Orts-del’immagine A, Castillo L, Djenoune L, Kurisu S, Mcdearmid JR, Bardet P, Boccara C, Okamoto H, Delmas P, Wyart C. Pkd2l1 is required for mechanoception in cerebrospinal fluid-contacting neurons and maintenance of spine curvature.. [DOI: 10.1101/373589] [Reference Citation Analysis]
47 Knafo S, Wyart C. Active mechanosensory feedback during locomotion in the zebrafish spinal cord. Curr Opin Neurobiol 2018;52:48-53. [PMID: 29704750 DOI: 10.1016/j.conb.2018.04.010] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 5.0] [Reference Citation Analysis]
48 Tolstenkov O, Van der Auwera P, Liewald JF, Costa WS, Bazhanova O, Gemeinhard T, Bergs ACF, Gottschalk A. Functionally asymmetric motor neurons coordinate locomotion of Caenorhabditis elegans.. [DOI: 10.1101/244434] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
49 Ryu S, De Marco RJ. Optogenetic Interpellation of Behavior Employing Unrestrained Zebrafish Larvae. Optogenetics: A Roadmap 2018. [DOI: 10.1007/978-1-4939-7417-7_7] [Reference Citation Analysis]
50 Coslovich T, Brumley MR, D'Angelo G, Della Mora A, Swann HE, Ortolani F, Taccola G. Histamine modulates spinal motoneurons and locomotor circuits. J Neurosci Res 2018;96:889-900. [PMID: 29114923 DOI: 10.1002/jnr.24195] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
51 Djenoune L, Wyart C. Light on a sensory interface linking the cerebrospinal fluid to motor circuits in vertebrates. J Neurogenet 2017;31:113-27. [PMID: 28789587 DOI: 10.1080/01677063.2017.1359833] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
52 Vanwalleghem G, Heap LA, Scott EK. A profile of auditory-responsive neurons in the larval zebrafish brain. J Comp Neurol 2017;525:3031-43. [DOI: 10.1002/cne.24258] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 5.3] [Reference Citation Analysis]
53 Knafo S, Fidelin K, Prendergast A, Tseng PB, Parrin A, Dickey C, Böhm UL, Figueiredo SN, Thouvenin O, Pascal-Moussellard H, Wyart C. Mechanosensory neurons control the timing of spinal microcircuit selection during locomotion. Elife 2017;6:e25260. [PMID: 28623664 DOI: 10.7554/eLife.25260] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 5.7] [Reference Citation Analysis]
54 Djenoune L, Desban L, Gomez J, Sternberg JR, Prendergast A, Langui D, Quan FB, Marnas H, Auer TO, Rio JP, Del Bene F, Bardet PL, Wyart C. The dual developmental origin of spinal cerebrospinal fluid-contacting neurons gives rise to distinct functional subtypes. Sci Rep 2017;7:719. [PMID: 28389647 DOI: 10.1038/s41598-017-00350-1] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 5.5] [Reference Citation Analysis]
55 Faustino AI, Tacão-Monteiro A, Oliveira RF. Mechanisms of social buffering of fear in zebrafish. Sci Rep 2017;7:44329. [PMID: 28361887 DOI: 10.1038/srep44329] [Cited by in Crossref: 61] [Cited by in F6Publishing: 63] [Article Influence: 10.2] [Reference Citation Analysis]
56 Liu YC, Hale ME. Local Spinal Cord Circuits and Bilateral Mauthner Cell Activity Function Together to Drive Alternative Startle Behaviors. Curr Biol 2017;27:697-704. [PMID: 28216316 DOI: 10.1016/j.cub.2017.01.019] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 4.3] [Reference Citation Analysis]
57 Wyart C. Locomotion: Control from the Periphery? Current Biology 2017;27:R152-3. [DOI: 10.1016/j.cub.2017.01.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
58 Orts-del’immagine A, Trouslard J, Airault C, Hugnot J, Cordier B, Doan T, Kastner A, Wanaverbecq N. Postnatal maturation of mouse medullo-spinal cerebrospinal fluid-contacting neurons. Neuroscience 2017;343:39-54. [DOI: 10.1016/j.neuroscience.2016.11.028] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
59 Tuk B. Syphilis may be a confounding factor, not a causative agent, in syphilitic ALS. F1000Res 2016;5:1904. [PMID: 27830059 DOI: 10.12688/f1000research.9318.1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
60 Hubbard JM, Böhm UL, Prendergast A, Tseng PB, Newman M, Stokes C, Wyart C. Intraspinal Sensory Neurons Provide Powerful Inhibition to Motor Circuits Ensuring Postural Control during Locomotion. Curr Biol 2016;26:2841-53. [PMID: 27720623 DOI: 10.1016/j.cub.2016.08.026] [Cited by in Crossref: 54] [Cited by in F6Publishing: 37] [Article Influence: 7.7] [Reference Citation Analysis]
61 Böhm UL, Wyart C. Spinal sensory circuits in motion. Curr Opin Neurobiol 2016;41:38-43. [PMID: 27573214 DOI: 10.1016/j.conb.2016.07.007] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
62 Björnfors ER, El Manira A. Functional diversity of excitatory commissural interneurons in adult zebrafish. Elife 2016;5:e18579. [PMID: 27559611 DOI: 10.7554/eLife.18579] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 4.0] [Reference Citation Analysis]
63 Sternberg JR, Severi KE, Fidelin K, Gomez J, Ihara H, Alcheikh Y, Hubbard JM, Kawakami K, Suster M, Wyart C. Optimization of a Neurotoxin to Investigate the Contribution of Excitatory Interneurons to Speed Modulation In Vivo. Curr Biol 2016;26:2319-28. [PMID: 27524486 DOI: 10.1016/j.cub.2016.06.037] [Cited by in Crossref: 51] [Cited by in F6Publishing: 55] [Article Influence: 7.3] [Reference Citation Analysis]
64 Hernandez O, Papagiakoumou E, Tanese D, Fidelin K, Wyart C, Emiliani V. Three-dimensional spatiotemporal focusing of holographic patterns. Nat Commun 2016;7:11928. [PMID: 27306044 DOI: 10.1038/ncomms11928] [Cited by in Crossref: 78] [Cited by in F6Publishing: 84] [Article Influence: 11.1] [Reference Citation Analysis]
65 Shen Y, Wen Q, Liu H, Zhong C, Qin Y, Harris G, Kawano T, Wu M, Xu T, Samuel AD, Zhang Y. An extrasynaptic GABAergic signal modulates a pattern of forward movement in Caenorhabditis elegans. Elife 2016;5:e14197. [PMID: 27138642 DOI: 10.7554/eLife.14197] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 4.9] [Reference Citation Analysis]
66 Jalalvand E, Robertson B, Tostivint H, Wallén P, Grillner S. The Spinal Cord Has an Intrinsic System for the Control of pH. Current Biology 2016;26:1346-51. [DOI: 10.1016/j.cub.2016.03.048] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 5.6] [Reference Citation Analysis]
67 Böhm UL, Prendergast A, Djenoune L, Nunes Figueiredo S, Gomez J, Stokes C, Kaiser S, Suster M, Kawakami K, Charpentier M, Concordet JP, Rio JP, Del Bene F, Wyart C. CSF-contacting neurons regulate locomotion by relaying mechanical stimuli to spinal circuits. Nat Commun 2016;7:10866. [PMID: 26946992 DOI: 10.1038/ncomms10866] [Cited by in Crossref: 110] [Cited by in F6Publishing: 112] [Article Influence: 15.7] [Reference Citation Analysis]
68 Petracca YL, Sartoretti MM, Di Bella DJ, Marin-Burgin A, Carcagno AL, Schinder AF, Lanuza GM. The late and dual origin of cerebrospinal fluid-contacting neurons in the mouse spinal cord. Development 2016;143:880-91. [PMID: 26839365 DOI: 10.1242/dev.129254] [Cited by in Crossref: 45] [Cited by in F6Publishing: 52] [Article Influence: 6.4] [Reference Citation Analysis]
69 Jay M, McDearmid JR. Motor Control: The Curious Case of Cerebrospinal-Fluid-Contacting Neurons. Curr Biol 2015;25:R1138-40. [PMID: 26654375 DOI: 10.1016/j.cub.2015.10.034] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
70 Lauterbach MA, Ronzitti E, Sternberg JR, Wyart C, Emiliani V. Fast Calcium Imaging with Optical Sectioning via HiLo Microscopy. PLoS One 2015;10:e0143681. [PMID: 26625116 DOI: 10.1371/journal.pone.0143681] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.5] [Reference Citation Analysis]