BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: O'Regan DP. Putting machine learning into motion: applications in cardiovascular imaging. Clin Radiol 2020;75:33-7. [PMID: 31079952 DOI: 10.1016/j.crad.2019.04.008] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
Number Citing Articles
1 Zakariaee SS, Salmanipour H, Naderi N, Kazemi-arpanahi H, Shanbehzadeh M. Association of chest CT severity score with mortality of COVID-19 patients: a systematic review and meta-analysis. Clin Transl Imaging. [DOI: 10.1007/s40336-022-00512-w] [Reference Citation Analysis]
2 Peng F, Zheng T, Tang X, Liu Q, Sun Z, Feng Z, Zhao H, Gong L. Magnetic Resonance Texture Analysis in Myocardial Infarction. Front Cardiovasc Med 2021;8:724271. [PMID: 34778395 DOI: 10.3389/fcvm.2021.724271] [Reference Citation Analysis]
3 Yu X, Yao X, Wu B, Zhou H, Xia S, Su W, Wu Y, Zheng X. Using deep learning method to identify left ventricular hypertrophy on echocardiography. Int J Cardiovasc Imaging 2021. [PMID: 34757566 DOI: 10.1007/s10554-021-02461-3] [Reference Citation Analysis]
4 Lang M, Bernier A, Knoppers BM. AI in Cardiovascular Imaging: "Unexplainable" Legal and Ethical Challenges? Can J Cardiol 2021:S0828-282X(21)00810-2. [PMID: 34737036 DOI: 10.1016/j.cjca.2021.10.009] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
5 Sermesant M, Delingette H, Cochet H, Jaïs P, Ayache N. Applications of artificial intelligence in cardiovascular imaging. Nat Rev Cardiol 2021;18:600-9. [PMID: 33712806 DOI: 10.1038/s41569-021-00527-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
6 Alabed S, Garg P, Johns CS, Alandejani F, Shahin Y, Dwivedi K, Zafar H, Wild JM, Kiely DG, Swift AJ. Cardiac Magnetic Resonance in Pulmonary Hypertension-an Update. Curr Cardiovasc Imaging Rep 2020;13:30. [PMID: 33184585 DOI: 10.1007/s12410-020-09550-2] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
7 Ahammad SH, Rajesh V, Rahman MZU, Lay-ekuakille A. A Hybrid CNN-Based Segmentation and Boosting Classifier for Real Time Sensor Spinal Cord Injury Data. IEEE Sensors J 2020;20:10092-101. [DOI: 10.1109/jsen.2020.2992879] [Cited by in Crossref: 14] [Cited by in F6Publishing: 1] [Article Influence: 7.0] [Reference Citation Analysis]