BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lara Hernandez KA, Rienmüller T, Baumgartner D, Baumgartner C. Deep learning in spatiotemporal cardiac imaging: A review of methodologies and clinical usability. Comput Biol Med 2021;130:104200. [PMID: 33421825 DOI: 10.1016/j.compbiomed.2020.104200] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
Number Citing Articles
1 Kim YC, Choe YH. Automated identification of myocardial perfusion defects in dynamic cardiac computed tomography using deep learning. Phys Med 2023;107:102555. [PMID: 36878134 DOI: 10.1016/j.ejmp.2023.102555] [Reference Citation Analysis]
2 Tuna EE, Franson D, Seiberlich N, Çavuşoğlu MC. Deformable cardiac surface tracking by adaptive estimation algorithms. Sci Rep 2023;13:1387. [PMID: 36697497 DOI: 10.1038/s41598-023-28578-0] [Reference Citation Analysis]
3 Counseller Q, Aboelkassem Y. Recent technologies in cardiac imaging. Front Med Technol 2022;4:984492. [PMID: 36704232 DOI: 10.3389/fmedt.2022.984492] [Reference Citation Analysis]
4 Wang J, Liu Y, Liu Y, Huang H, Roy S, Song Z, Guo B. Recent advances in nanomedicines for imaging and therapy of myocardial ischemia-reperfusion injury. J Control Release 2023;353:563-90. [PMID: 36496052 DOI: 10.1016/j.jconrel.2022.11.057] [Reference Citation Analysis]
5 Hwang IC, Choi D, Choi YJ, Ju L, Kim M, Hong JE, Lee HJ, Yoon YE, Park JB, Lee SP, Kim HK, Kim YJ, Cho GY. Differential diagnosis of common etiologies of left ventricular hypertrophy using a hybrid CNN-LSTM model. Sci Rep 2022;12:20998. [PMID: 36470931 DOI: 10.1038/s41598-022-25467-w] [Reference Citation Analysis]
6 Szabo L, Raisi-estabragh Z, Salih A, Mccracken C, Ruiz Pujadas E, Gkontra P, Kiss M, Maurovich-horvath P, Vago H, Merkely B, Lee AM, Lekadir K, Petersen SE. Clinician's guide to trustworthy and responsible artificial intelligence in cardiovascular imaging. Front Cardiovasc Med 2022;9. [DOI: 10.3389/fcvm.2022.1016032] [Reference Citation Analysis]
7 Koulaouzidis G, Jadczyk T, Iakovidis DK, Koulaouzidis A, Bisnaire M, Charisopoulou D. Artificial Intelligence in Cardiology-A Narrative Review of Current Status. J Clin Med 2022;11:3910. [PMID: 35807195 DOI: 10.3390/jcm11133910] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Wadhawan S, Maini R. EBPSO: Enhanced binary particle swarm optimization for cardiac disease classification with feature selection. Expert Systems. [DOI: 10.1111/exsy.13002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Chen Y, Xie W, Zhang J, Qiu H, Zeng D, Shi Y, Yuan H, Zhuang J, Jia Q, Zhang Y, Dong Y, Huang M, Xu X. Myocardial Segmentation of Cardiac MRI Sequences With Temporal Consistency for Coronary Artery Disease Diagnosis. Front Cardiovasc Med 2022;9:804442. [DOI: 10.3389/fcvm.2022.804442] [Reference Citation Analysis]
10 Muhtaseb R, Yaqub M. EchoCoTr: Estimation of the Left Ventricular Ejection Fraction from Spatiotemporal Echocardiography. Lecture Notes in Computer Science 2022. [DOI: 10.1007/978-3-031-16440-8_36] [Reference Citation Analysis]
11 Lufiya GC, Thomas J, Aswathy SU. A Survey on Arrhythmia Disease Detection Using Deep Learning Methods. Innovations in Bio-Inspired Computing and Applications 2022. [DOI: 10.1007/978-3-030-96299-9_6] [Reference Citation Analysis]
12 Dong J, Zhu Y, Jia X, Shao M, Han X, Qiao J, Bai C, Tang X. Nation-scale reference evapotranspiration estimation by using deep learning and classical machine learning models in China. Journal of Hydrology 2022;604:127207. [DOI: 10.1016/j.jhydrol.2021.127207] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
13 Avard E, Shiri I, Hajianfar G, Abdollahi H, Kalantari KR, Houshmand G, Kasani K, Bitarafan-Rajabi A, Deevband MR, Oveisi M, Zaidi H. Non-contrast Cine Cardiac Magnetic Resonance image radiomics features and machine learning algorithms for myocardial infarction detection. Comput Biol Med 2021;141:105145. [PMID: 34929466 DOI: 10.1016/j.compbiomed.2021.105145] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
14 Gonzales RA, Zhang Q, Papież BW, Werys K, Lukaschuk E, Popescu IA, Burrage MK, Shanmuganathan M, Ferreira VM, Piechnik SK. MOCOnet: Robust Motion Correction of Cardiovascular Magnetic Resonance T1 Mapping Using Convolutional Neural Networks. Front Cardiovasc Med 2021;8:768245. [PMID: 34888366 DOI: 10.3389/fcvm.2021.768245] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Hssayni EH, Joudar N, Ettaouil M. KRR-CNN: kernels redundancy reduction in convolutional neural networks. Neural Comput & Applic 2022;34:2443-54. [DOI: 10.1007/s00521-021-06540-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]