BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Khan MA, Das R, Iversen HK, Puthusserypady S. Review on motor imagery based BCI systems for upper limb post-stroke neurorehabilitation: From designing to application. Comput Biol Med 2020;123:103843. [PMID: 32768038 DOI: 10.1016/j.compbiomed.2020.103843] [Cited by in Crossref: 48] [Cited by in F6Publishing: 55] [Article Influence: 24.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhang Y, Yan G, Chang W, Huang W, Yuan Y. EEG-based multi-frequency band functional connectivity analysis and the application of spatio-temporal features in emotion recognition. Biomedical Signal Processing and Control 2023;79:104157. [DOI: 10.1016/j.bspc.2022.104157] [Reference Citation Analysis]
2 Barua PD, Keles T, Dogan S, Baygin M, Tuncer T, Demir CF, Fujita H, Tan R, Ooi CP, Rajendra Acharya U. Automated EEG sentence classification using novel dynamic-sized binary pattern and multilevel discrete wavelet transform techniques with TSEEG database. Biomedical Signal Processing and Control 2023;79:104055. [DOI: 10.1016/j.bspc.2022.104055] [Reference Citation Analysis]
3 Al-qaysi ZT, Ahmed MA, Hammash NM, Hussein AF, Albahri AS, Suzani MS, Al-bander B. A systematic rank of smart training environment applications with motor imagery brain-computer interface. Multimed Tools Appl 2022. [DOI: 10.1007/s11042-022-14118-x] [Reference Citation Analysis]
4 Saif AFMS, Mahayuddin ZR. Robust Analysis of Motor Imagery From Brain Signals for a BCI-Controlled Virtual Reality System to Aid Paralysis Patients. Handbook of Research on Artificial Intelligence and Knowledge Management in Asia’s Digital Economy 2022. [DOI: 10.4018/978-1-6684-5849-5.ch007] [Reference Citation Analysis]
5 Wan Z, Yang R, Huang M, Alsaadi FE, Sheikh MM, Wang Z. Segment alignment based cross-subject motor imagery classification under fading data. Computers in Biology and Medicine 2022. [DOI: 10.1016/j.compbiomed.2022.106267] [Reference Citation Analysis]
6 Liu S. Applying antagonistic activation pattern to the single-trial classification of mental arithmetic. Heliyon 2022;8:e11102. [PMID: 36303917 DOI: 10.1016/j.heliyon.2022.e11102] [Reference Citation Analysis]
7 Liang W, Jin J, Daly I, Sun H, Wang X, Cichocki A. Novel channel selection model based on graph convolutional network for motor imagery. Cogn Neurodyn. [DOI: 10.1007/s11571-022-09892-1] [Reference Citation Analysis]
8 Wu L, Dhanasekaran R. Multimodal Opera Performance Form Based on Human-Computer Interaction Technology. International Transactions on Electrical Energy Systems 2022;2022:1-13. [DOI: 10.1155/2022/4003245] [Reference Citation Analysis]
9 Behboodi A, Lee WA, Hinchberger VS, Damiano DL. Determining optimal mobile neurofeedback methods for motor neurorehabilitation in children and adults with non-progressive neurological disorders: a scoping review. J Neuroeng Rehabil 2022;19:104. [PMID: 36171602 DOI: 10.1186/s12984-022-01081-9] [Reference Citation Analysis]
10 Cao L, Wang W, Huang C, Xu Z, Wang H, Jia J, Chen S, Dong Y, Fan C, de Albuquerque VHC. An Effective Fusing Approach by Combining Connectivity Network Pattern and Temporal-Spatial Analysis for EEG-Based BCI Rehabilitation. IEEE Trans Neural Syst Rehabil Eng 2022;30:2264-74. [PMID: 35969547 DOI: 10.1109/TNSRE.2022.3198434] [Reference Citation Analysis]
11 Tobón-henao M, Álvarez-meza A, Castellanos-domínguez G. Subject-Dependent Artifact Removal for Enhancing Motor Imagery Classifier Performance under Poor Skills. Sensors 2022;22:5771. [DOI: 10.3390/s22155771] [Reference Citation Analysis]
12 Halin H, Khairunizam W, Mustafa WA, Rahim MA, Razlan ZM, Bakar SA. Classification of Human Emotions Using EEG Signals in a Simulated Environment. 2022 IEEE 13th Control and System Graduate Research Colloquium (ICSGRC) 2022. [DOI: 10.1109/icsgrc55096.2022.9845131] [Reference Citation Analysis]
13 Jia T, Li C, Mo L, Qian C, Li W, Xu Q, Pan Y, Liu A, Ji L. Tailoring brain-machine interface rehabilitation training based on neural reorganization: towards personalized treatment for stroke patients. Cereb Cortex 2022:bhac259. [PMID: 35788284 DOI: 10.1093/cercor/bhac259] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Ma Z, Wu J, Hua X, Zheng M, Xing X, Ma J, Li S, Shan C, Xu J. Brain Function and Upper Limb Deficit in Stroke With Motor Execution and Imagery: A Cross-Sectional Functional Magnetic Resonance Imaging Study. Front Neurosci 2022;16:806406. [DOI: 10.3389/fnins.2022.806406] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Khorev VS. Effect of the fatigue in the equilibrium training. Computational Biophysics and Nanobiophotonics 2022. [DOI: 10.1117/12.2626289] [Reference Citation Analysis]
16 Lazurenko D, Shepelev I, Shaposhnikov D, Saevskiy A, Kiroy V. Discriminative Frequencies and Temporal EEG Segmentation in the Motor Imagery Classification Approach. Applied Sciences 2022;12:2736. [DOI: 10.3390/app12052736] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Hamid H, Naseer N, Nazeer H, Khan MJ, Khan RA, Shahbaz Khan U. Analyzing Classification Performance of fNIRS-BCI for Gait Rehabilitation Using Deep Neural Networks. Sensors (Basel) 2022;22:1932. [PMID: 35271077 DOI: 10.3390/s22051932] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
18 Halme H, Parkkonen L. The effect of visual and proprioceptive feedback on sensorimotor rhythms during BCI training. PLoS ONE 2022;17:e0264354. [DOI: 10.1371/journal.pone.0264354] [Reference Citation Analysis]
19 Gantenbein J, Dittli J, Meyer JT, Gassert R, Lambercy O. Intention Detection Strategies for Robotic Upper-Limb Orthoses: A Scoping Review Considering Usability, Daily Life Application, and User Evaluation. Front Neurorobot 2022;16:815693. [DOI: 10.3389/fnbot.2022.815693] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
20 Voinas AE, Das R, Khan MA, Brunner I, Puthusserypady S. Motor Imagery EEG Signal Classification for Stroke Survivors Rehabilitation. 2022 10th International Winter Conference on Brain-Computer Interface (BCI) 2022. [DOI: 10.1109/bci53720.2022.9734837] [Reference Citation Analysis]
21 Shen T, Zhang L, Yan S, Hu Y. An active and passive upper limb rehabilitation training system based on a hybrid brain–computer interface. JID 2022. [DOI: 10.3233/jid-220001] [Reference Citation Analysis]
22 Li C, Li N, Qiu Y, Peng Y, Wang Y, Deng L, Ma T, Li F, Yao D, Xu P. Multimodal collaborative BCI system based on the improved CSP feature extraction algorithm. Virtual Reality & Intelligent Hardware 2022;4:22-37. [DOI: 10.1016/j.vrih.2022.01.002] [Reference Citation Analysis]
23 Liu G, Tian L, Zhou W. Multiscale time-frequency method for multiclass Motor Imagery Brain Computer Interface. Computers in Biology and Medicine 2022. [DOI: 10.1016/j.compbiomed.2022.105299] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Crotti M, Koschutnig K, Wriessnegger SC. Handedness impacts the neural correlates of kinesthetic motor imagery and execution: A FMRI study. J Neurosci Res 2022. [PMID: 34981561 DOI: 10.1002/jnr.25003] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
25 Ab Aziz AW, Jalani J, Mohd Rejab S, Sadun AS. Preliminary Findings on EEG-Controlled Prosthetic Hand for Stroke Patients Based on Motor Control. Lecture Notes in Electrical Engineering 2022. [DOI: 10.1007/978-981-19-3923-5_10] [Reference Citation Analysis]
26 Yakovlev L, Kuznetsov I, Syrov N, Kaplan A. Motor Imagery Training Improves Reaction Time in Mouse Aiming Task. Human Interaction, Emerging Technologies and Future Systems V 2022. [DOI: 10.1007/978-3-030-85540-6_136] [Reference Citation Analysis]
27 Gutierrez-Martinez J, Mercado-Gutierrez JA, Carvajal-Gámez BE, Rosas-Trigueros JL, Contreras-Martinez AE. Artificial Intelligence Algorithms in Visual Evoked Potential-Based Brain-Computer Interfaces for Motor Rehabilitation Applications: Systematic Review and Future Directions. Front Hum Neurosci 2021;15:772837. [PMID: 34899220 DOI: 10.3389/fnhum.2021.772837] [Reference Citation Analysis]
28 Robinson N, Mane R, Chouhan T, Guan C. Emerging trends in BCI-robotics for motor control and rehabilitation. Current Opinion in Biomedical Engineering 2021;20:100354. [DOI: 10.1016/j.cobme.2021.100354] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
29 Poboroniuc M, Irimia D, Ionascu R, Roman AI, Mitocaru A, Baciu A. Design and Experimental Results of New Devices for Upper Limb Rehabilitation in Stroke. 2021 International Conference on e-Health and Bioengineering (EHB) 2021. [DOI: 10.1109/ehb52898.2021.9657726] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 [DOI: 10.1109/bibe52308.2021.9635586] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
31 Echtioui A, Mlaouah A, Zouch W, Ghorbel M, Mhiri C, Hamam H. A Novel Convolutional Neural Network Classification Approach of Motor-Imagery EEG Recording Based on Deep Learning. Applied Sciences 2021;11:9948. [DOI: 10.3390/app11219948] [Reference Citation Analysis]
32 Zhang K, Xu G, Du C, Liang R, Han C, Zheng X, Zhang S, Wang J, Tian P, Jia Y. Enhancement of capability for motor imagery using vestibular imbalance stimulation during brain computer interface. J Neural Eng 2021;18. [PMID: 34571497 DOI: 10.1088/1741-2552/ac2a6f] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Hagedorn LJ, Leeuwis N, Alimardani M. Prediction of Inefficient BCI Users based on Cognitive Skills and Personality Traits.. [DOI: 10.1101/2021.09.28.461955] [Reference Citation Analysis]
34 Douibi K, Le Bars S, Lemontey A, Nag L, Balp R, Breda G. Toward EEG-Based BCI Applications for Industry 4.0: Challenges and Possible Applications. Front Hum Neurosci 2021;15:705064. [PMID: 34483868 DOI: 10.3389/fnhum.2021.705064] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
35 Berlet R, Anthony S, Brooks B, Wang ZJ, Sadanandan N, Shear A, Cozene B, Gonzales-Portillo B, Parsons B, Salazar FE, Lezama Toledo AR, Monroy GR, Gonzales-Portillo JV, Borlongan CV. Combination of Stem Cells and Rehabilitation Therapies for Ischemic Stroke. Biomolecules 2021;11:1316. [PMID: 34572529 DOI: 10.3390/biom11091316] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
36 Mridha MF, Das SC, Kabir MM, Lima AA, Islam MR, Watanobe Y. Brain-Computer Interface: Advancement and Challenges. Sensors (Basel) 2021;21:5746. [PMID: 34502636 DOI: 10.3390/s21175746] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
37 Qu Q, Lin Y, He Z, Fu J, Zou F, Jiang Z, Guo F, Jia J. The Effect of Applying Robot-Assisted Task-Oriented Training Using Human-Robot Collaborative Interaction Force Control Technology on Upper Limb Function in Stroke Patients: Preliminary Findings. Biomed Res Int 2021;2021:9916492. [PMID: 34368358 DOI: 10.1155/2021/9916492] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
38 Portillo-Lara R, Tahirbegi B, Chapman CAR, Goding JA, Green RA. Mind the gap: State-of-the-art technologies and applications for EEG-based brain-computer interfaces. APL Bioeng 2021;5:031507. [PMID: 34327294 DOI: 10.1063/5.0047237] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
39 Simon C, Bolton DAE, Kennedy NC, Soekadar SR, Ruddy KL. Challenges and Opportunities for the Future of Brain-Computer Interface in Neurorehabilitation. Front Neurosci 2021;15:699428. [PMID: 34276299 DOI: 10.3389/fnins.2021.699428] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
40 Collazos-huertas D, Álvarez-meza A, Castellanos-dominguez G. Spatial interpretability of time-frequency relevance optimized in motor imagery discrimination using Deep&Wide networks. Biomedical Signal Processing and Control 2021;68:102626. [DOI: 10.1016/j.bspc.2021.102626] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
41 Bobrova EV, Reshetnikova VV, Vershinina EA, Grishin AA, Bobrov PD, Frolov AA, Gerasimenko YP. Success of Hand Movement Imagination Depends on Personality Traits, Brain Asymmetry, and Degree of Handedness. Brain Sci 2021;11:853. [PMID: 34202413 DOI: 10.3390/brainsci11070853] [Reference Citation Analysis]
42 Al-qaysi ZT, Ahmed MA, Hammash NM, Hussein AF, Albahri AS, Suzani MS, Al-bander B, Shuwandy ML, Salih MM. Systematic review of training environments with motor imagery brain–computer interface: Coherent taxonomy, open issues and recommendation pathway solution. Health Technol 2021;11:783-801. [DOI: 10.1007/s12553-021-00560-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
43 Bao S, Yuan K, Chen C, Lau CC, Tong RK. A Motor Imagery-based Brain-Computer Interface Scheme for a Spinal Muscular Atrophy Subject in CYBATHLON Race. 2021 10th International IEEE/EMBS Conference on Neural Engineering (NER) 2021. [DOI: 10.1109/ner49283.2021.9441351] [Reference Citation Analysis]
44 Gong Z, Wang T, Zhao Z, Liu X, Guo Y; Member, IEEE. Accuracy electroencephalography classification by a regularized long short-term memory network. Journal of Vibration and Control. [DOI: 10.1177/10775463211009373] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Sun X, Xu K, Shi Y, Li H, Li R, Yang S, Jin H, Feng C, Li B, Xing C, Qu Y, Wang Q, Chen Y, Yang T. Discussion on the Rehabilitation of Stroke Hemiplegia Based on Interdisciplinary Combination of Medicine and Engineering. Evid Based Complement Alternat Med 2021;2021:6631835. [PMID: 33815554 DOI: 10.1155/2021/6631835] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
46 Iannacci J. The WEAF Mnecosystem (water, earth, air, fire micro/nano ecosystem): a perspective of micro/nanotechnologies as pillars of future 6G and tactile internet (with focus on MEMS). Microsyst Technol 2021;27:3943-51. [DOI: 10.1007/s00542-020-05202-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
47 Arpaia P, Esposito A, Mancino F, Moccaldi N, Natalizio A. Active and Passive Brain-Computer Interfaces Integrated with Extended Reality for Applications in Health 4.0. Lecture Notes in Computer Science 2021. [DOI: 10.1007/978-3-030-87595-4_29] [Reference Citation Analysis]
48 Hagedorn LJ, Leeuwis N, Alimardani M. Prediction of Inefficient BCI Users Based on Cognitive Skills and Personality Traits. Communications in Computer and Information Science 2021. [DOI: 10.1007/978-3-030-92310-5_10] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Xue J, Ren F, Sun X, Yin M, Wu J, Ma C, Gao Z. A Multifrequency Brain Network-Based Deep Learning Framework for Motor Imagery Decoding. Neural Plast 2020;2020:8863223. [PMID: 33505456 DOI: 10.1155/2020/8863223] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
50 Choi JW, Huh S, Jo S. Improving performance in motor imagery BCI-based control applications via virtually embodied feedback. Comput Biol Med 2020;127:104079. [PMID: 33126130 DOI: 10.1016/j.compbiomed.2020.104079] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]