BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang X, Li X, Dai X, Zhang X, Zhang J, Xu T, Lan Q. Coaxial extrusion bioprinted shell-core hydrogel microfibers mimic glioma microenvironment and enhance the drug resistance of cancer cells. Colloids Surf B Biointerfaces 2018;171:291-9. [PMID: 30048904 DOI: 10.1016/j.colsurfb.2018.07.042] [Cited by in Crossref: 37] [Cited by in F6Publishing: 46] [Article Influence: 9.3] [Reference Citation Analysis]
Number Citing Articles
1 Zhang Y, Chen J, Chen H, Wang Z, Li X, Xu R, Xu T. 3D bioprinted innervation ADMSC self-clustering culture model constructs for in vitro fat metabolism research: a preliminary study of ADMSC and neural progenitor cell co-culture model construct fabrication and characterization. Materials Today Chemistry 2022;26:101092. [DOI: 10.1016/j.mtchem.2022.101092] [Reference Citation Analysis]
2 Yigci D, Sarabi MR, Ustun M, Atceken N, Sokullu E, Bagci-onder T, Tasoglu S. 3D bioprinted glioma models. Prog Biomed Eng 2022;4:042001. [DOI: 10.1088/2516-1091/ac7833] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
3 Staros R, Michalak A, Rusinek K, Mucha K, Pojda Z, Zagożdżon R. Perspectives for 3D-Bioprinting in Modeling of Tumor Immune Evasion. Cancers 2022;14:3126. [DOI: 10.3390/cancers14133126] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
4 Alharthy SA, Tabrez S, Mirza AA, Zughaibi TA, Firoz CK, Dutta M. Sugiol Suppresses the Proliferation of Human U87 Glioma Cells via Induction of Apoptosis and Cell Cycle Arrest. Evid Based Complement Alternat Med 2022;2022:7658899. [PMID: 35677372 DOI: 10.1155/2022/7658899] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
5 Böttcher B, Pflieger A, Schumacher J, Jungnickel B, Feller K. 3D Bioprinting of Prevascularized Full-Thickness Gelatin-Alginate Structures with Embedded Co-Cultures. Bioengineering 2022;9:242. [DOI: 10.3390/bioengineering9060242] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Rahmani Dabbagh S, Rezapour Sarabi M, Birtek MT, Mustafaoglu N, Zhang YS, Tasoglu S. 3D bioprinted organ‐on‐chips. Aggregate. [DOI: 10.1002/agt2.197] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
7 Leong SW, Tan SC, Norhayati MN, Monif M, Lee SY. Effectiveness of Bioinks and the Clinical Value of 3D Bioprinted Glioblastoma Models: A Systematic Review. Cancers (Basel) 2022;14:2149. [PMID: 35565282 DOI: 10.3390/cancers14092149] [Reference Citation Analysis]
8 Sbirkov Y, Molander D, Milet C, Bodurov I, Atanasov B, Penkov R, Belev N, Forraz N, McGuckin C, Sarafian V. A Colorectal Cancer 3D Bioprinting Workflow as a Platform for Disease Modeling and Chemotherapeutic Screening. Front Bioeng Biotechnol 2021;9:755563. [PMID: 34869264 DOI: 10.3389/fbioe.2021.755563] [Reference Citation Analysis]
9 Liu P, Griffiths S, Veljanoski D, Vaughn-Beaucaire P, Speirs V, Brüning-Richardson A. Preclinical models of glioblastoma: limitations of current models and the promise of new developments. Expert Rev Mol Med 2021;23:e20. [PMID: 34852856 DOI: 10.1017/erm.2021.20] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
10 Samadian H, Jafari S, Sepand M, Alaei L, Sadegh Malvajerd S, Jaymand M, Ghobadinezhad F, Jahanshahi F, Hamblin M, Derakhshankhah H, Izadi Z. 3D bioprinting technology to mimic the tumor microenvironment: tumor-on-a-chip concept. Materials Today Advances 2021;12:100160. [DOI: 10.1016/j.mtadv.2021.100160] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
11 Ravanbakhsh H, Karamzadeh V, Bao G, Mongeau L, Juncker D, Zhang YS. Emerging Technologies in Multi-Material Bioprinting. Adv Mater 2021;33:e2104730. [PMID: 34596923 DOI: 10.1002/adma.202104730] [Cited by in Crossref: 14] [Cited by in F6Publishing: 22] [Article Influence: 14.0] [Reference Citation Analysis]
12 Zhuang P, Chiang YH, Fernanda MS, He M. Using Spheroids as Building Blocks Towards 3D Bioprinting of Tumor Microenvironment. Int J Bioprint 2021;7:444. [PMID: 34805601 DOI: 10.18063/ijb.v7i4.444] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Wang X, Li X, Zhang Y, Long X, Zhang H, Xu T, Niu C. Coaxially Bioprinted Cell-Laden Tubular-Like Structure for Studying Glioma Angiogenesis. Front Bioeng Biotechnol 2021;9:761861. [PMID: 34660561 DOI: 10.3389/fbioe.2021.761861] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Lan D, Shang Y, Su H, Liang M, Liu Y, Li H, Feng Q, Cao X, Dong H. Facile Fabrication of Hollow Hydrogel Microfiber via 3D Printing-Assisted Microfluidics and Its Application as a Biomimetic Blood Capillary. ACS Biomater Sci Eng 2021;7:4971-81. [PMID: 34503336 DOI: 10.1021/acsbiomaterials.1c00980] [Reference Citation Analysis]
15 Jin Z, Li X, Liu B, Yan X, Han S, Xu T, Wu A. Coaxial bioprinted microfibers with mesenchymal stem cells for glioma microenvironment simulation. Bio-des Manuf . [DOI: 10.1007/s42242-021-00155-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Alcala-Orozco CR, Cui X, Hooper GJ, Lim KS, Woodfield TBF. Converging functionality: Strategies for 3D hybrid-construct biofabrication and the role of composite biomaterials for skeletal regeneration. Acta Biomater 2021;132:188-216. [PMID: 33713862 DOI: 10.1016/j.actbio.2021.03.008] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
17 Lobo DA, Ginestra P, Ceretti E, Miquel TP, Ciurana J. Cancer Cell Direct Bioprinting: A Focused Review. Micromachines (Basel) 2021;12:764. [PMID: 34203530 DOI: 10.3390/mi12070764] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Jamee R, Araf Y, Naser IB, Promon SK. The promising rise of bioprinting in revolutionalizing medical science: Advances and possibilities. Regen Ther 2021;18:133-45. [PMID: 34189195 DOI: 10.1016/j.reth.2021.05.006] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
19 Kalva SN, Augustine R, Al Mamun A, Dalvi YB, Vijay N, Hasan A. Active agents loaded extracellular matrix mimetic electrospun membranes for wound healing applications. Journal of Drug Delivery Science and Technology 2021;63:102500. [DOI: 10.1016/j.jddst.2021.102500] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
20 Chen L, Zhou D, Li X, Yang B, Xu T. Bioprinting of Human Cord Blood-Derived CD34+ Cells and Exploration of the Multilineage Differentiation Ability in Vitro. ACS Biomater Sci Eng 2021;7:2592-604. [PMID: 33939424 DOI: 10.1021/acsbiomaterials.0c01297] [Reference Citation Analysis]
21 Sánchez-salazar MG, Álvarez MM, Trujillo-de Santiago G. Advances in 3D bioprinting for the biofabrication of tumor models. Bioprinting 2021;21:e00120. [DOI: 10.1016/j.bprint.2020.e00120] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
22 Tang M, Rich JN, Chen S. Biomaterials and 3D Bioprinting Strategies to Model Glioblastoma and the Blood-Brain Barrier. Adv Mater 2021;33:e2004776. [PMID: 33326131 DOI: 10.1002/adma.202004776] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 13.0] [Reference Citation Analysis]
23 Zhang Y, Kumar P, Lv S, Xiong D, Zhao H, Cai Z, Zhao X. Recent advances in 3D bioprinting of vascularized tissues. Materials & Design 2021;199:109398. [DOI: 10.1016/j.matdes.2020.109398] [Cited by in Crossref: 12] [Cited by in F6Publishing: 18] [Article Influence: 12.0] [Reference Citation Analysis]
24 Augustine R, Kalva SN, Ahmad R, Zahid AA, Hasan S, Nayeem A, McClements L, Hasan A. 3D Bioprinted cancer models: Revolutionizing personalized cancer therapy. Transl Oncol 2021;14:101015. [PMID: 33493799 DOI: 10.1016/j.tranon.2021.101015] [Cited by in Crossref: 8] [Cited by in F6Publishing: 31] [Article Influence: 8.0] [Reference Citation Analysis]
25 Zhang Y, Wang B, Hu J, Yin T, Yue T, Liu N, Liu Y. 3D Composite Bioprinting for Fabrication of Artificial Biological Tissues. Int J Bioprint 2021;7:299. [PMID: 33585709 DOI: 10.18063/ijb.v7i1.299] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
26 Ruiz-Garcia H, Alvarado-Estrada K, Schiapparelli P, Quinones-Hinojosa A, Trifiletti DM. Engineering Three-Dimensional Tumor Models to Study Glioma Cancer Stem Cells and Tumor Microenvironment. Front Cell Neurosci 2020;14:558381. [PMID: 33177991 DOI: 10.3389/fncel.2020.558381] [Cited by in Crossref: 10] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
27 Fonseca AC, Melchels FPW, Ferreira MJS, Moxon SR, Potjewyd G, Dargaville TR, Kimber SJ, Domingos M. Emulating Human Tissues and Organs: A Bioprinting Perspective Toward Personalized Medicine. Chem Rev 2020;120:11128-74. [PMID: 32937071 DOI: 10.1021/acs.chemrev.0c00342] [Cited by in Crossref: 11] [Cited by in F6Publishing: 23] [Article Influence: 5.5] [Reference Citation Analysis]
28 Kjar A, McFarland B, Mecham K, Harward N, Huang Y. Engineering of tissue constructs using coaxial bioprinting. Bioact Mater 2021;6:460-71. [PMID: 32995673 DOI: 10.1016/j.bioactmat.2020.08.020] [Cited by in Crossref: 8] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
29 Schwab A, Levato R, D'Este M, Piluso S, Eglin D, Malda J. Printability and Shape Fidelity of Bioinks in 3D Bioprinting. Chem Rev 2020;120:11028-55. [PMID: 32856892 DOI: 10.1021/acs.chemrev.0c00084] [Cited by in Crossref: 67] [Cited by in F6Publishing: 179] [Article Influence: 33.5] [Reference Citation Analysis]
30 Wang X, Li X, Ding J, Long X, Zhang H, Zhang X, Jiang X, Xu T. 3D bioprinted glioma microenvironment for glioma vascularization. J Biomed Mater Res A 2021;109:915-25. [PMID: 32779363 DOI: 10.1002/jbm.a.37082] [Cited by in Crossref: 3] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
31 Kang Y, Datta P, Shanmughapriya S, Ozbolat IT. 3D Bioprinting of Tumor Models for Cancer Research. ACS Appl Bio Mater 2020;3:5552-73. [DOI: 10.1021/acsabm.0c00791] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
32 Datta P, Dey M, Ataie Z, Unutmaz D, Ozbolat IT. 3D bioprinting for reconstituting the cancer microenvironment. NPJ Precis Oncol 2020;4:18. [PMID: 32793806 DOI: 10.1038/s41698-020-0121-2] [Cited by in Crossref: 28] [Cited by in F6Publishing: 71] [Article Influence: 14.0] [Reference Citation Analysis]
33 Bae J, Han S, Park S. Recent Advances in 3D Bioprinted Tumor Microenvironment. BioChip J 2020;14:137-47. [DOI: 10.1007/s13206-020-4201-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
34 Walus K, Beyer S, Willerth SM. Three-dimensional bioprinting healthy and diseased models of the brain tissue using stem cells. Current Opinion in Biomedical Engineering 2020;14:25-33. [DOI: 10.1016/j.cobme.2020.03.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
35 Ma L, Li Y, Wu Y, Yu M, Aazmi A, Gao L, Xue Q, Luo Y, Zhou H, Zhang B, Yang H. 3D bioprinted hyaluronic acid-based cell-laden scaffold for brain microenvironment simulation. Bio-des Manuf 2020;3:164-74. [DOI: 10.1007/s42242-020-00076-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
36 Ma L, Li Y, Wu Y, Aazmi A, Zhang B, Zhou H, Yang H. The construction of in vitro tumor models based on 3D bioprinting. Bio-des Manuf 2020;3:227-36. [DOI: 10.1007/s42242-020-00068-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
37 Li H, Li N, Zhang H, Zhang Y, Suo H, Wang L, Xu M. Three-Dimensional Bioprinting of Perfusable Hierarchical Microchannels with Alginate and Silk Fibroin Double Cross-linked Network. 3D Printing and Additive Manufacturing 2020;7:78-84. [DOI: 10.1089/3dp.2019.0115] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
38 Levato R, Jungst T, Scheuring RG, Blunk T, Groll J, Malda J. From Shape to Function: The Next Step in Bioprinting. Adv Mater 2020;32:e1906423. [PMID: 32045053 DOI: 10.1002/adma.201906423] [Cited by in Crossref: 147] [Cited by in F6Publishing: 143] [Article Influence: 73.5] [Reference Citation Analysis]
39 Oztan YC, Nawafleh N, Zhou Y, Liyanage PY, Hettiarachchi SD, Seven ES, Leblanc RM, Ouhtit A, Celik E. Recent Advances on Utilization of Bioprinting for Tumor Modeling. Bioprinting 2020;18. [PMID: 32099931 DOI: 10.1016/j.bprint.2020.e00079] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
40 Abdullah MF, Nuge T, Andriyana A, Ang BC, Muhamad F. Core-Shell Fibers: Design, Roles, and Controllable Release Strategies in Tissue Engineering and Drug Delivery. Polymers (Basel) 2019;11:E2008. [PMID: 31817133 DOI: 10.3390/polym11122008] [Cited by in Crossref: 21] [Cited by in F6Publishing: 32] [Article Influence: 7.0] [Reference Citation Analysis]
41 Zhou K, Guo H, Zhang J, Zhao D, Zhou Y, Zheng Z, Xu Y, Li Y, Wang D. Potential role of TET2 in gastric cancer cisplatin resistance. Pathology - Research and Practice 2019;215:152637. [DOI: 10.1016/j.prp.2019.152637] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
42 Zhang Y, Zhou D, Chen J, Zhang X, Li X, Zhao W, Xu T. Biomaterials Based on Marine Resources for 3D Bioprinting Applications. Mar Drugs 2019;17:E555. [PMID: 31569366 DOI: 10.3390/md17100555] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
43 Chai RC, Chang YZ, Wang QW, Zhang KN, Li JJ, Huang H, Wu F, Liu YQ, Wang YZ. A Novel DNA Methylation-Based Signature Can Predict the Responses of MGMT Promoter Unmethylated Glioblastomas to Temozolomide. Front Genet 2019;10:910. [PMID: 31611911 DOI: 10.3389/fgene.2019.00910] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
44 de la Vega L, Lee C, Sharma R, Amereh M, Willerth SM. 3D bioprinting models of neural tissues: The current state of the field and future directions. Brain Research Bulletin 2019;150:240-9. [DOI: 10.1016/j.brainresbull.2019.06.007] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
45 Ashammakhi N, Ahadian S, Xu C, Montazerian H, Ko H, Nasiri R, Barros N, Khademhosseini A. Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mater Today Bio 2019;1:100008. [PMID: 32159140 DOI: 10.1016/j.mtbio.2019.100008] [Cited by in Crossref: 126] [Cited by in F6Publishing: 169] [Article Influence: 42.0] [Reference Citation Analysis]
46 Mehrotra S, Moses JC, Bandyopadhyay A, Mandal BB. 3D Printing/Bioprinting Based Tailoring of in Vitro Tissue Models: Recent Advances and Challenges. ACS Appl Bio Mater 2019;2:1385-405. [DOI: 10.1021/acsabm.9b00073] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 10.0] [Reference Citation Analysis]