BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wildeboer RR, van Sloun RJG, Wijkstra H, Mischi M. Artificial intelligence in multiparametric prostate cancer imaging with focus on deep-learning methods. Comput Methods Programs Biomed 2020;189:105316. [PMID: 31951873 DOI: 10.1016/j.cmpb.2020.105316] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Aslim EJ, Law YXT, Fook-Chong SMC, Ho HSS, Yuen JSP, Lau WKO, Lee LS, Cheng CWS, Ngo NT, Law YM, Tay KJ. Defining prostate cancer size and treatment margin for focal therapy: does intralesional heterogeneity impact the performance of multiparametric MRI? BJU Int 2021;128:178-86. [PMID: 33539650 DOI: 10.1111/bju.15355] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Cui M, Zhang DY. Artificial intelligence and computational pathology. Lab Invest 2021;101:412-22. [PMID: 33454724 DOI: 10.1038/s41374-020-00514-0] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 12.0] [Reference Citation Analysis]
3 Appakkannu A, Govindaraj E, Balakrishnan K. Detection of Abnormality in Prostate Tissues Using Two-dimensional Photonic Crystal Tactile Sensor. Plasmonics. [DOI: 10.1007/s11468-022-01635-6] [Reference Citation Analysis]
4 Brodie A, Dai N, Teoh JY, Decaestecker K, Dasgupta P, Vasdev N. Artificial intelligence in urological oncology: An update and future applications. Urol Oncol 2021;39:379-99. [PMID: 34024704 DOI: 10.1016/j.urolonc.2021.03.012] [Reference Citation Analysis]
5 Győrfi Á, Szilágyi L, Kovács L. A Fully Automatic Procedure for Brain Tumor Segmentation from Multi-Spectral MRI Records Using Ensemble Learning and Atlas-Based Data Enhancement. Applied Sciences 2021;11:564. [DOI: 10.3390/app11020564] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
6 Ferro M, de Cobelli O, Vartolomei MD, Lucarelli G, Crocetto F, Barone B, Sciarra A, Del Giudice F, Muto M, Maggi M, Carrieri G, Busetto GM, Falagario U, Terracciano D, Cormio L, Musi G, Tataru OS. Prostate Cancer Radiogenomics-From Imaging to Molecular Characterization. Int J Mol Sci 2021;22:9971. [PMID: 34576134 DOI: 10.3390/ijms22189971] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Zhang B, Qi S, Pan X, Li C, Yao Y, Qian W, Guan Y. Deep CNN Model Using CT Radiomics Feature Mapping Recognizes EGFR Gene Mutation Status of Lung Adenocarcinoma. Front Oncol 2020;10:598721. [PMID: 33643902 DOI: 10.3389/fonc.2020.598721] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Shah M, Naik N, Somani BK, Hameed BMZ. Artificial intelligence (AI) in urology-Current use and future directions: An iTRUE study. Turk J Urol 2020;46:S27-39. [PMID: 32479253 DOI: 10.5152/tud.2020.20117] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
9 Bertelli E, Mercatelli L, Marzi C, Pachetti E, Baccini M, Barucci A, Colantonio S, Gherardini L, Lattavo L, Pascali MA, Agostini S, Miele V. Machine and Deep Learning Prediction Of Prostate Cancer Aggressiveness Using Multiparametric MRI. Front Oncol 2021;11:802964. [PMID: 35096605 DOI: 10.3389/fonc.2021.802964] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Duran A, Dussert G, Rouviére O, Jaouen T, Jodoin P, Lartizien C. ProstAttention-Net: a deep attention model for prostate cancer segmentation by aggressiveness in MRI scans. Medical Image Analysis 2022. [DOI: 10.1016/j.media.2021.102347] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Zhang KS, Schelb P, Netzer N, Tavakoli AA, Keymling M, Wehrse E, Hog R, Rotkopf LT, Wennmann M, Glemser PA, Thierjung H, von Knebel Doeberitz N, Kleesiek J, Görtz M, Schütz V, Hielscher T, Stenzinger A, Hohenfellner M, Schlemmer HP, Maier-Hein K, Bonekamp D. Pseudoprospective Paraclinical Interaction of Radiology Residents With a Deep Learning System for Prostate Cancer Detection: Experience, Performance, and Identification of the Need for Intermittent Recalibration. Invest Radiol 2022. [PMID: 35467572 DOI: 10.1097/RLI.0000000000000878] [Reference Citation Analysis]
12 Hunter B, Hindocha S, Lee RW. The Role of Artificial Intelligence in Early Cancer Diagnosis. Cancers (Basel) 2022;14:1524. [PMID: 35326674 DOI: 10.3390/cancers14061524] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
13 Tătaru OS, Vartolomei MD, Rassweiler JJ, Virgil O, Lucarelli G, Porpiglia F, Amparore D, Manfredi M, Carrieri G, Falagario U, Terracciano D, de Cobelli O, Busetto GM, Del Giudice F, Ferro M. Artificial Intelligence and Machine Learning in Prostate Cancer Patient Management-Current Trends and Future Perspectives. Diagnostics (Basel) 2021;11:354. [PMID: 33672608 DOI: 10.3390/diagnostics11020354] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
14 Mannaerts CK, Engelbrecht MRW, Postema AW, van Kollenburg RAA, Hoeks CMA, Savci-Heijink CD, Van Sloun RJG, Wildeboer RR, De Reijke TM, Mischi M, Wijkstra H. Detection of clinically significant prostate cancer in biopsy-naïve men: direct comparison of systematic biopsy, multiparametric MRI- and contrast-ultrasound-dispersion imaging-targeted biopsy. BJU Int 2020;126:481-93. [PMID: 32315112 DOI: 10.1111/bju.15093] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Abdelmaksoud IR, Shalaby A, Mahmoud A, Elmogy M, Aboelfetouh A, Abou El-Ghar M, El-Melegy M, Alghamdi NS, El-Baz A. Precise Identification of Prostate Cancer from DWI Using Transfer Learning. Sensors (Basel) 2021;21:3664. [PMID: 34070290 DOI: 10.3390/s21113664] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Razek AAKA, El-Diasty T, Elhendy A, Fahmy D, El-Adalany MA. Prostate Imaging Reporting and Data System (PI-RADS): What the radiologists need to know? Clin Imaging 2021;79:183-200. [PMID: 34098371 DOI: 10.1016/j.clinimag.2021.05.026] [Reference Citation Analysis]
17 John J, Ravikumar A, Abraham B. Prostate cancer prediction from multiple pretrained computer vision model. Health Technol 2021;11:1003-11. [DOI: 10.1007/s12553-021-00586-y] [Reference Citation Analysis]
18 Hammouda K, Khalifa F, El-Melegy M, Ghazal M, Darwish HE, Abou El-Ghar M, El-Baz A. A Deep Learning Pipeline for Grade Groups Classification Using Digitized Prostate Biopsy Specimens. Sensors (Basel) 2021;21:6708. [PMID: 34695922 DOI: 10.3390/s21206708] [Reference Citation Analysis]
19 Moroianu ŞL, Bhattacharya I, Seetharaman A, Shao W, Kunder CA, Sharma A, Ghanouni P, Fan RE, Sonn GA, Rusu M. Computational Detection of Extraprostatic Extension of Prostate Cancer on Multiparametric MRI Using Deep Learning. Cancers (Basel) 2022;14:2821. [PMID: 35740487 DOI: 10.3390/cancers14122821] [Reference Citation Analysis]