BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yang L, Garcia Canaveras JC, Chen Z, Wang L, Liang L, Jang C, Mayr JA, Zhang Z, Ghergurovich JM, Zhan L, Joshi S, Hu Z, McReynolds MR, Su X, White E, Morscher RJ, Rabinowitz JD. Serine Catabolism Feeds NADH when Respiration Is Impaired. Cell Metab 2020;31:809-821.e6. [PMID: 32187526 DOI: 10.1016/j.cmet.2020.02.017] [Cited by in Crossref: 41] [Cited by in F6Publishing: 38] [Article Influence: 20.5] [Reference Citation Analysis]
Number Citing Articles
1 Liu S, Liu S, Jiang H. Multifaceted roles of mitochondrial stress responses under ETC dysfunction - repair, destruction and pathogenesis. FEBS J 2021. [PMID: 34918460 DOI: 10.1111/febs.16323] [Reference Citation Analysis]
2 Rathore R, Schutt CR, Van Tine BA. PHGDH as a mechanism for resistance in metabolically-driven cancers. Cancer Drug Resist 2020;3:762-74. [PMID: 33511334 DOI: 10.20517/cdr.2020.46] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
3 Emfinger CH, de Klerk E, Schueler KL, Rabaglia ME, Stapleton DS, Simonett SP, Mitok KA, Wang Z, Liu X, Paulo JA, Yu Q, Cardone RL, Foster HR, Lewandowski SL, Perales JC, Kendziorski CM, Gygi SP, Kibbey RG, Keller MP, Hebrok M, Merrins MJ, Attie AD. β Cell–specific deletion of Zfp148 improves nutrient-stimulated β cell Ca2+ responses. JCI Insight 2022;7:e154198. [DOI: 10.1172/jci.insight.154198] [Reference Citation Analysis]
4 Yan LJ. NADH/NAD+ Redox Imbalance and Diabetic Kidney Disease. Biomolecules 2021;11:730. [PMID: 34068842 DOI: 10.3390/biom11050730] [Reference Citation Analysis]
5 Wang Y, Lu H, Sun L, Chen X, Wei H, Suo C, Feng J, Yuan M, Shen S, Jia W, Wang Y, Zhang H, Li Z, Zhong X, Gao P. Metformin sensitises hepatocarcinoma cells to methotrexate by targeting dihydrofolate reductase. Cell Death Dis 2021;12:902. [PMID: 34601503 DOI: 10.1038/s41419-021-04199-1] [Reference Citation Analysis]
6 Straub IR, Weraarpachai W, Shoubridge EA. Multi-OMICS study of a CHCHD10 variant causing ALS demonstrates metabolic rewiring and activation of endoplasmic reticulum and mitochondrial unfolded protein responses. Hum Mol Genet 2021;30:687-705. [PMID: 33749723 DOI: 10.1093/hmg/ddab078] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 10.0] [Reference Citation Analysis]
7 van der Walt G, Lindeque JZ, Mason S, Louw R. Sub-Cellular Metabolomics Contributes Mitochondria-Specific Metabolic Insights to a Mouse Model of Leigh Syndrome. Metabolites 2021;11:658. [PMID: 34677373 DOI: 10.3390/metabo11100658] [Reference Citation Analysis]
8 Nakhle J, Rodriguez AM, Vignais ML. Multifaceted Roles of Mitochondrial Components and Metabolites in Metabolic Diseases and Cancer. Int J Mol Sci 2020;21:E4405. [PMID: 32575796 DOI: 10.3390/ijms21124405] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
9 Hewton KG, Johal AS, Parker SJ. Transporters at the Interface between Cytosolic and Mitochondrial Amino Acid Metabolism. Metabolites 2021;11:112. [PMID: 33669382 DOI: 10.3390/metabo11020112] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
10 Fujita Y, Ito M, Ohsawa I. Mitochondrial stress and GDF15 in the pathophysiology of sepsis. Arch Biochem Biophys 2020;696:108668. [PMID: 33188737 DOI: 10.1016/j.abb.2020.108668] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
11 Liu S, Fu S, Wang G, Cao Y, Li L, Li X, Yang J, Li N, Shan Y, Cao Y, Ma Y, Dong M, Liu Q, Jiang H. Glycerol-3-phosphate biosynthesis regenerates cytosolic NAD+ to alleviate mitochondrial disease. Cell Metab 2021:S1550-4131(21)00283-7. [PMID: 34270929 DOI: 10.1016/j.cmet.2021.06.013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Luna-Yolba R, Marmoiton J, Gigo V, Marechal X, Boet E, Sahal A, Alet N, Abramovich I, Gottlieb E, Visentin V, Paillasse MR, Sarry JE. Disrupting Mitochondrial Electron Transfer Chain Complex I Decreases Immune Checkpoints in Murine and Human Acute Myeloid Leukemic Cells. Cancers (Basel) 2021;13:3499. [PMID: 34298712 DOI: 10.3390/cancers13143499] [Reference Citation Analysis]
13 Kelly B, Pearce EL. Amino Assets: How Amino Acids Support Immunity. Cell Metab 2020;32:154-75. [PMID: 32649859 DOI: 10.1016/j.cmet.2020.06.010] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 16.5] [Reference Citation Analysis]
14 Audano M, Pedretti S, Ligorio S, Giavarini F, Caruso D, Mitro N. Investigating metabolism by mass spectrometry: From steady state to dynamic view. J Mass Spectrom 2021;56:e4658. [PMID: 33084147 DOI: 10.1002/jms.4658] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Graham C, Stefanatos R, Yek AEH, Spriggs RV, Loh SHY, Uribe AH, Zhang T, Martins LM, Maddocks ODK, Scialo F, Sanz A. Mitochondrial ROS signalling requires uninterrupted electron flow and is lost during ageing in flies. Geroscience 2022. [PMID: 35355221 DOI: 10.1007/s11357-022-00555-x] [Reference Citation Analysis]
16 González-García P, Hidalgo-Gutiérrez A, Mascaraque C, Barriocanal-Casado E, Bakkali M, Ziosi M, Abdihankyzy UB, Sánchez-Hernández S, Escames G, Prokisch H, Martín F, Quinzii CM, López LC. Coenzyme Q10 modulates sulfide metabolism and links the mitochondrial respiratory chain to pathways associated to one carbon metabolism. Hum Mol Genet 2020;29:3296-311. [PMID: 32975579 DOI: 10.1093/hmg/ddaa214] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
17 Moreira JD, Gopal DM, Kotton DN, Fetterman JL. Gaining Insight into Mitochondrial Genetic Variation and Downstream Pathophysiology: What Can i(PSCs) Do? Genes (Basel) 2021;12:1668. [PMID: 34828274 DOI: 10.3390/genes12111668] [Reference Citation Analysis]
18 Yang R, Ying G, Li B. Potential of electron transfer and its application in dictating routes of biochemical processes associated with metabolic reprogramming. Front Med 2021. [PMID: 34302614 DOI: 10.1007/s11684-021-0866-1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
19 Mazat JP. One-carbon metabolism in cancer cells: a critical review based on a core model of central metabolism. Biochem Soc Trans 2021;49:1-15. [PMID: 33616629 DOI: 10.1042/BST20190008] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
20 Collins KS, Eadon MT, Cheng Y, Barwinska D, Melo Ferreira R, Mccarthy TW, Janosevic D, Syed F, Maier B, El-achkar TM, Kelly KJ, Phillips CL, Hato T, Sutton TA, Dagher PC. Alterations in Protein Translation and Carboxylic Acid Catabolic Processes in Diabetic Kidney Disease. Cells 2022;11:1166. [DOI: 10.3390/cells11071166] [Reference Citation Analysis]
21 Liao Y, You R, Fan M, Feng S, Lu D, Lu Y. Determination of NADH by Surface Enhanced Raman Scattering Using Au@MB@Ag NPs. Aust J Chem 2021;74:722. [DOI: 10.1071/ch21178] [Reference Citation Analysis]
22 Xian H, Liu Y, Rundberg Nilsson A, Gatchalian R, Crother TR, Tourtellotte WG, Zhang Y, Aleman-Muench GR, Lewis G, Chen W, Kang S, Luevanos M, Trudler D, Lipton SA, Soroosh P, Teijaro J, de la Torre JC, Arditi M, Karin M, Sanchez-Lopez E. Metformin inhibition of mitochondrial ATP and DNA synthesis abrogates NLRP3 inflammasome activation and pulmonary inflammation. Immunity 2021;54:1463-1477.e11. [PMID: 34115964 DOI: 10.1016/j.immuni.2021.05.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
23 Xiu Y, Field MS. The Roles of Mitochondrial Folate Metabolism in Supporting Mitochondrial DNA Synthesis, Oxidative Phosphorylation, and Cellular Function. Curr Dev Nutr 2020;4:nzaa153. [PMID: 33134792 DOI: 10.1093/cdn/nzaa153] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
24 Vasan K, Werner M, Chandel NS. Mitochondrial Metabolism as a Target for Cancer Therapy. Cell Metab 2020;32:341-52. [PMID: 32668195 DOI: 10.1016/j.cmet.2020.06.019] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 22.0] [Reference Citation Analysis]
25 Stine ZE, Schug ZT, Salvino JM, Dang CV. Targeting cancer metabolism in the era of precision oncology. Nat Rev Drug Discov 2021. [PMID: 34862480 DOI: 10.1038/s41573-021-00339-6] [Reference Citation Analysis]
26 Li AM, Ye J. Reprogramming of serine, glycine and one-carbon metabolism in cancer. Biochim Biophys Acta Mol Basis Dis 2020;1866:165841. [PMID: 32439610 DOI: 10.1016/j.bbadis.2020.165841] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
27 Bennett CF, Ronayne CT, Puigserver P. Targeting adaptive cellular responses to mitochondrial bioenergetic deficiencies in human disease. FEBS J 2021. [PMID: 34510753 DOI: 10.1111/febs.16195] [Reference Citation Analysis]
28 Lionaki E, Ploumi C, Tavernarakis N. One-Carbon Metabolism: Pulling the Strings behind Aging and Neurodegeneration. Cells 2022;11:214. [PMID: 35053330 DOI: 10.3390/cells11020214] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Gansemer ER, Rutkowski DT. Pathways Linking Nicotinamide Adenine Dinucleotide Phosphate Production to Endoplasmic Reticulum Protein Oxidation and Stress. Front Mol Biosci 2022;9:858142. [DOI: 10.3389/fmolb.2022.858142] [Reference Citation Analysis]
30 Torp M, Ranheim T, Schjalm C, Hjorth M, Heiestad C, Dalen KT, Nilsson PH, Mollnes TE, Pischke SE, Lien E, Vaage J, Yndestad A, Stensløkken K. Intracellular Complement Component 3 Attenuated Ischemia-Reperfusion Injury in the Isolated Buffer-Perfused Mouse Heart and Is Associated With Improved Metabolic Homeostasis. Front Immunol 2022;13:870811. [DOI: 10.3389/fimmu.2022.870811] [Reference Citation Analysis]
31 Rugolo M, Zanna C, Ghelli AM. Organization of the Respiratory Supercomplexes in Cells with Defective Complex III: Structural Features and Metabolic Consequences. Life (Basel) 2021;11:351. [PMID: 33920624 DOI: 10.3390/life11040351] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Benzarti M, Delbrouck C, Neises L, Kiweler N, Meiser J. Metabolic Potential of Cancer Cells in Context of the Metastatic Cascade. Cells 2020;9:E2035. [PMID: 32899554 DOI: 10.3390/cells9092035] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
33 Yang C, Zhang J, Liao M, Yang Y, Wang Y, Yuan Y, Ouyang L. Folate-mediated one-carbon metabolism: a targeting strategy in cancer therapy. Drug Discov Today 2021;26:817-25. [PMID: 33316375 DOI: 10.1016/j.drudis.2020.12.006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
34 Maynard AG, Kanarek N. NADH Ties One-Carbon Metabolism to Cellular Respiration. Cell Metab 2020;31:660-2. [PMID: 32268110 DOI: 10.1016/j.cmet.2020.03.012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
35 Ghergurovich JM, Xu X, Wang JZ, Yang L, Ryseck RP, Wang L, Rabinowitz JD. Methionine synthase supports tumour tetrahydrofolate pools. Nat Metab 2021;3:1512-20. [PMID: 34799699 DOI: 10.1038/s42255-021-00465-w] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
36 Tramonti A, Cuyàs E, Encinar JA, Pietzke M, Paone A, Verdura S, Arbusà A, Martin-Castillo B, Giardina G, Joven J, Vazquez A, Contestabile R, Cutruzzolà F, Menendez JA. Metformin Is a Pyridoxal-5'-phosphate (PLP)-Competitive Inhibitor of SHMT2. Cancers (Basel) 2021;13:4009. [PMID: 34439169 DOI: 10.3390/cancers13164009] [Reference Citation Analysis]
37 Owen MD, Baker BC, Scott EM, Forbes K. Interaction between Metformin, Folate and Vitamin B12 and the Potential Impact on Fetal Growth and Long-Term Metabolic Health in Diabetic Pregnancies. Int J Mol Sci 2021;22:5759. [PMID: 34071182 DOI: 10.3390/ijms22115759] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
38 Anamika, Trigun SK. Sirtuin-3 activation by honokiol restores mitochondrial dysfunction in the hippocampus of the hepatic encephalopathy rat model of ammonia neurotoxicity. J Biochem Mol Toxicol 2021;35:e22735. [PMID: 33522075 DOI: 10.1002/jbt.22735] [Reference Citation Analysis]
39 Li F, Simon MC. Cancer Cells Don't Live Alone: Metabolic Communication within Tumor Microenvironments. Dev Cell 2020;54:183-95. [PMID: 32640203 DOI: 10.1016/j.devcel.2020.06.018] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 10.5] [Reference Citation Analysis]
40 McElroy GS, Reczek CR, Reyfman PA, Mithal DS, Horbinski CM, Chandel NS. NAD+ Regeneration Rescues Lifespan, but Not Ataxia, in a Mouse Model of Brain Mitochondrial Complex I Dysfunction. Cell Metab 2020;32:301-308.e6. [PMID: 32574562 DOI: 10.1016/j.cmet.2020.06.003] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
41 Ignatenko O, Nikkanen J, Kononov A, Zamboni N, Ince-Dunn G, Suomalainen A. Mitochondrial spongiotic brain disease: astrocytic stress and harmful rapamycin and ketosis effect. Life Sci Alliance 2020;3:e202000797. [PMID: 32737078 DOI: 10.26508/lsa.202000797] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
42 Kurniawan H, Kobayashi T, Brenner D. The emerging role of one-carbon metabolism in T cells. Curr Opin Biotechnol 2021;68:193-201. [PMID: 33422815 DOI: 10.1016/j.copbio.2020.12.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
43 Yang L, Teslaa T, Ng S, Nofal M, Wang L, Lan T, Zeng X, Cowan A, Mcbride M, Lu W, Davidson S, Liang G, Oh TG, Downes M, Evans R, Von Hoff D, Guo JY, Han H, Rabinowitz JD. Ketogenic diet and chemotherapy combine to disrupt pancreatic cancer metabolism and growth. Med 2022;3:119-136.e8. [DOI: 10.1016/j.medj.2021.12.008] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Zarou MM, Vazquez A, Vignir Helgason G. Folate metabolism: a re-emerging therapeutic target in haematological cancers. Leukemia 2021;35:1539-51. [PMID: 33707653 DOI: 10.1038/s41375-021-01189-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
45 Almeida L, Dhillon-LaBrooy A, Castro CN, Adossa N, Carriche GM, Guderian M, Lippens S, Dennerlein S, Hesse C, Lambrecht BN, Berod L, Schauser L, Blazar BR, Kalesse M, Müller R, Moita LF, Sparwasser T. Ribosome-Targeting Antibiotics Impair T Cell Effector Function and Ameliorate Autoimmunity by Blocking Mitochondrial Protein Synthesis. Immunity 2021;54:68-83.e6. [PMID: 33238133 DOI: 10.1016/j.immuni.2020.11.001] [Cited by in Crossref: 11] [Cited by in F6Publishing: 19] [Article Influence: 5.5] [Reference Citation Analysis]
46 Cuthbertson CR, Arabzada Z, Bankhead A 3rd, Kyani A, Neamati N. A Review of Small-Molecule Inhibitors of One-Carbon Enzymes: SHMT2 and MTHFD2 in the Spotlight. ACS Pharmacol Transl Sci 2021;4:624-46. [PMID: 33860190 DOI: 10.1021/acsptsci.0c00223] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
47 Zhang Y, Liu Z, Wang X, Jian H, Xiao H, Wen T. SHMT2 promotes cell viability and inhibits ROS-dependent, mitochondrial-mediated apoptosis via the intrinsic signaling pathway in bladder cancer cells. Cancer Gene Ther. [DOI: 10.1038/s41417-022-00470-5] [Reference Citation Analysis]
48 Terburgh K, Lindeque JZ, van der Westhuizen FH, Louw R. Cross-comparison of systemic and tissue-specific metabolomes in a mouse model of Leigh syndrome. Metabolomics 2021;17:101. [PMID: 34792662 DOI: 10.1007/s11306-021-01854-8] [Reference Citation Analysis]
49 Coleman MF, O'Flanagan CH, Pfeil AJ, Chen X, Pearce JB, Sumner S, Krupenko SA, Hursting SD. Metabolic Response of Triple-Negative Breast Cancer to Folate Restriction. Nutrients 2021;13:1637. [PMID: 34068120 DOI: 10.3390/nu13051637] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Ding H, Chen Z, Wu K, Huang SM, Wu WL, LeBoeuf SE, Pillai RG, Rabinowitz JD, Papagiannakopoulos T. Activation of the NRF2 antioxidant program sensitizes tumors to G6PD inhibition. Sci Adv 2021;7:eabk1023. [PMID: 34788087 DOI: 10.1126/sciadv.abk1023] [Reference Citation Analysis]
51 Li H, Uittenbogaard M, Hao L, Chiaramello A. Clinical Insights into Mitochondrial Neurodevelopmental and Neurodegenerative Disorders: Their Biosignatures from Mass Spectrometry-Based Metabolomics. Metabolites 2021;11:233. [PMID: 33920115 DOI: 10.3390/metabo11040233] [Reference Citation Analysis]
52 Xia Y, Cebrián R, Xu C, Jong A, Wu W, Kuipers OP. Elucidating the mechanism by which synthetic helper peptides sensitize Pseudomonas aeruginosa to multiple antibiotics. PLoS Pathog 2021;17:e1009909. [PMID: 34478485 DOI: 10.1371/journal.ppat.1009909] [Reference Citation Analysis]
53 Zhao P, Qu J, Wu A, Wang S, Tang X, Ou A, Zhang J, Xu Y, Zhao Q, Huang Y. Anti-alcoholism drug disulfiram for targeting glioma energy metabolism using BBB-penetrating delivery of fixed-dose combination. Nano Today 2022;44:101448. [DOI: 10.1016/j.nantod.2022.101448] [Reference Citation Analysis]
54 Terburgh K, Coetzer J, Lindeque JZ, van der Westhuizen FH, Louw R. Aberrant BCAA and glutamate metabolism linked to regional neurodegeneration in a mouse model of Leigh syndrome. Biochim Biophys Acta Mol Basis Dis 2021;1867:166082. [PMID: 33486097 DOI: 10.1016/j.bbadis.2021.166082] [Cited by in F6Publishing: 1] [Reference Citation Analysis]