BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Iwamoto H, Abe M, Yang Y, Cui D, Seki T, Nakamura M, Hosaka K, Lim S, Wu J, He X, Sun X, Lu Y, Zhou Q, Shi W, Torimura T, Nie G, Li Q, Cao Y. Cancer Lipid Metabolism Confers Antiangiogenic Drug Resistance.Cell Metab. 2018;28:104-117.e5. [PMID: 29861385 DOI: 10.1016/j.cmet.2018.05.005] [Cited by in Crossref: 62] [Cited by in F6Publishing: 64] [Article Influence: 15.5] [Reference Citation Analysis]
Number Citing Articles
1 Sun X, Zhang Y, Chen Y, Xin S, Jin L, Liu X, Zhou Z, Zhang J, Mei W, Zhang B, Yao X, Yang G, Ye L, Cai D. In Silico Establishment and Validation of Novel Lipid Metabolism-Related Gene Signature in Bladder Cancer. Oxidative Medicine and Cellular Longevity 2022;2022:1-20. [DOI: 10.1155/2022/3170950] [Reference Citation Analysis]
2 Vivas-García Y, Falletta P, Liebing J, Louphrasitthiphol P, Feng Y, Chauhan J, Scott DA, Glodde N, Chocarro-Calvo A, Bonham S, Osterman AL, Fischer R, Ronai Z, García-Jiménez C, Hölzel M, Goding CR. Lineage-Restricted Regulation of SCD and Fatty Acid Saturation by MITF Controls Melanoma Phenotypic Plasticity. Mol Cell 2020;77:120-137.e9. [PMID: 31733993 DOI: 10.1016/j.molcel.2019.10.014] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 9.3] [Reference Citation Analysis]
3 Povero D, Johnson SM, Liu J. Hypoxia, hypoxia-inducible gene 2 (HIG2)/HILPDA, and intracellular lipolysis in cancer. Cancer Letters 2020;493:71-9. [DOI: 10.1016/j.canlet.2020.06.013] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
4 Rada M, Lazaris A, Kapelanski-Lamoureux A, Mayer TZ, Metrakos P. Tumor microenvironment conditions that favor vessel co-option in colorectal cancer liver metastases: A theoretical model. Semin Cancer Biol 2021;71:52-64. [PMID: 32920126 DOI: 10.1016/j.semcancer.2020.09.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
5 Tan Y, Li J, Zhao G, Huang KC, Cardenas H, Wang Y, Matei D, Cheng JX. Metabolic reprogramming from glycolysis to fatty acid uptake and beta-oxidation in platinum-resistant cancer cells. Nat Commun 2022;13:4554. [PMID: 35931676 DOI: 10.1038/s41467-022-32101-w] [Reference Citation Analysis]
6 Fan C, Kam S, Ramadori P. Metabolism-Associated Epigenetic and Immunoepigenetic Reprogramming in Liver Cancer. Cancers (Basel) 2021;13:5250. [PMID: 34680398 DOI: 10.3390/cancers13205250] [Reference Citation Analysis]
7 Schmidt J, Kajtár B, Juhász K, Péter M, Járai T, Burián A, Kereskai L, Gerlinger I, Tornóczki T, Balogh G, Vígh L, Márk L, Balogi Z. Lipid and protein tumor markers for head and neck squamous cell carcinoma identified by imaging mass spectrometry. Oncotarget 2020;11:2702-17. [PMID: 32733643 DOI: 10.18632/oncotarget.27649] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
8 Liu RZ, Godbout R. An Amplified Fatty Acid-Binding Protein Gene Cluster in Prostate Cancer: Emerging Roles in Lipid Metabolism and Metastasis. Cancers (Basel) 2020;12:E3823. [PMID: 33352874 DOI: 10.3390/cancers12123823] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Wei G, Sun H, Dong K, Hu L, Wang Q, Zhuang Q, Zhu Y, Zhang X, Shao Y, Tang H, Li Z, Chen S, Lu J, Wang Y, Gan X, Zhong TP, Gui D, Hu X, Wang L, Liu J. The thermogenic activity of adjacent adipocytes fuels the progression of ccRCC and compromises anti-tumor therapeutic efficacy. Cell Metab 2021;33:2021-2039.e8. [PMID: 34508696 DOI: 10.1016/j.cmet.2021.08.012] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Liu N, Liu M, Fu S, Wang J, Tang H, Isah AD, Chen D, Wang X. Ang2-Targeted Combination Therapy for Cancer Treatment. Front Immunol 2022;13:949553. [DOI: 10.3389/fimmu.2022.949553] [Reference Citation Analysis]
11 Li Z, Sun X. Non-Coding RNAs Operate in the Crosstalk Between Cancer Metabolic Reprogramming and Metastasis. Front Oncol 2020;10:810. [PMID: 32547948 DOI: 10.3389/fonc.2020.00810] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
12 Seki T, Yang Y, Sun X, Lim S, Xie S, Guo Z, Xiong W, Kuroda M, Sakaue H, Hosaka K, Jing X, Yoshihara M, Qu L, Li X, Chen Y, Cao Y. Brown-fat-mediated tumour suppression by cold-altered global metabolism. Nature 2022. [PMID: 35922508 DOI: 10.1038/s41586-022-05030-3] [Reference Citation Analysis]
13 Zhang D, Xu X, Ye Q. Metabolism and immunity in breast cancer. Front Med 2021;15:178-207. [PMID: 33074528 DOI: 10.1007/s11684-020-0793-6] [Reference Citation Analysis]
14 Pai SI, Cesano A, Marincola FM. The Paradox of Cancer Immune Exclusion: Immune Oncology Next Frontier. Cancer Treat Res 2020;180:173-95. [PMID: 32215870 DOI: 10.1007/978-3-030-38862-1_6] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
15 Torresano L, Santacatterina F, Domínguez-zorita S, Nuevo-tapioles C, Núñez-salgado A, Esparza-moltó PB, González-llorente L, Romero-carramiñana I, Núñez de Arenas C, Sánchez-garrido B, Nájera L, Salas C, Provencio M, Cuezva JM. Analysis of the metabolic proteome of lung adenocarcinomas by reverse-phase protein arrays (RPPA) emphasizes mitochondria as targets for therapy. Oncogenesis 2022;11. [DOI: 10.1038/s41389-022-00400-y] [Reference Citation Analysis]
16 Liu Y, Khan AR, Du X, Zhai Y, Tan H, Zhai G. Progress in the polymer-paclitaxel conjugate. Journal of Drug Delivery Science and Technology 2019;54:101237. [DOI: 10.1016/j.jddst.2019.101237] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Ko SY, Lee W, Kenny HA, Dang LH, Ellis LM, Jonasch E, Lengyel E, Naora H. Cancer-derived small extracellular vesicles promote angiogenesis by heparin-bound, bevacizumab-insensitive VEGF, independent of vesicle uptake. Commun Biol 2019;2:386. [PMID: 31646189 DOI: 10.1038/s42003-019-0609-x] [Cited by in Crossref: 38] [Cited by in F6Publishing: 36] [Article Influence: 12.7] [Reference Citation Analysis]
18 Zhao Y, Li T, Tian S, Meng W, Sui Y, Yang J, Wang B, Liang Z, Zhao H, Han Y, Tang Y, Zhang L, Ma J. Effective Inhibition of MYC-Amplified Group 3 Medulloblastoma Through Targeting EIF4A1. Cancer Manag Res 2020;12:12473-85. [PMID: 33299354 DOI: 10.2147/CMAR.S278844] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
19 Wang R, Tao B, Fan Q, Wang S, Chen L, Zhang J, Hao Y, Dong S, Wang Z, Wang W, Cai Y, Li X, Bao T, Wang X, Qiu X, Wang K, Mo X, Kang Y, Wang Z. Fatty-acid receptor CD36 functions as a hydrogen sulfide-targeted receptor with its Cys333-Cys272 disulfide bond serving as a specific molecular switch to accelerate gastric cancer metastasis. EBioMedicine 2019;45:108-23. [PMID: 31262715 DOI: 10.1016/j.ebiom.2019.06.037] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
20 Bao L, Zhao Y, Liu C, Cao Q, Huang Y, Chen K, Song Z. The Identification of Key Gene Expression Signature and Biological Pathways in Metastatic Renal Cell Carcinoma. J Cancer 2020;11:1712-26. [PMID: 32194783 DOI: 10.7150/jca.38379] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Du W, Ren L, Hamblin MH, Fan Y. Endothelial Cell Glucose Metabolism and Angiogenesis. Biomedicines 2021;9:147. [PMID: 33546224 DOI: 10.3390/biomedicines9020147] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
22 Wei Z, Cheng G, Ye Y, Le C, Miao Q, Chen J, Yang H, Zhang X. A Fatty Acid Metabolism Signature Associated With Clinical Therapy in Clear Cell Renal Cell Carcinoma. Front Genet 2022;13:894736. [DOI: 10.3389/fgene.2022.894736] [Reference Citation Analysis]
23 Khalaf K, Hana D, Chou JT, Singh C, Mackiewicz A, Kaczmarek M. Aspects of the Tumor Microenvironment Involved in Immune Resistance and Drug Resistance. Front Immunol 2021;12:656364. [PMID: 34122412 DOI: 10.3389/fimmu.2021.656364] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
24 Hou L, Zhou H, Wang Y, Liu J, Zhang D, Li Y, Xue X, Xu Z. Identification of FABP7 as a Potential Biomarker for Predicting Prognosis and Antiangiogenic Drug Efficacy of Glioma. Disease Markers 2022;2022:1-16. [DOI: 10.1155/2022/2091791] [Reference Citation Analysis]
25 Li M, Xian HC, Tang YJ, Liang XH, Tang YL. Fatty acid oxidation: driver of lymph node metastasis. Cancer Cell Int 2021;21:339. [PMID: 34217300 DOI: 10.1186/s12935-021-02057-w] [Reference Citation Analysis]
26 Grosser B, Glückstein MI, Dhillon C, Schiele S, Dintner S, VanSchoiack A, Kroeppler D, Martin B, Probst A, Vlasenko D, Schenkirsch G, Märkl B. Stroma AReactive Invasion Front Areas (SARIFA) - a new prognostic biomarker in gastric cancer related to tumor-promoting adipocytes. J Pathol 2021. [PMID: 34580877 DOI: 10.1002/path.5810] [Reference Citation Analysis]
27 Jung JH, Taniguchi K, Lee HM, Lee MY, Bandu R, Komura K, Lee KY, Akao Y, Kim KP. Comparative lipidomics of 5-Fluorouracil-sensitive and -resistant colorectal cancer cells reveals altered sphingomyelin and ceramide controlled by acid sphingomyelinase (SMPD1). Sci Rep 2020;10:6124. [PMID: 32273521 DOI: 10.1038/s41598-020-62823-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
28 Germain N, Dhayer M, Boileau M, Fovez Q, Kluza J, Marchetti P. Lipid Metabolism and Resistance to Anticancer Treatment. Biology (Basel) 2020;9:E474. [PMID: 33339398 DOI: 10.3390/biology9120474] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
29 Zhou B, Wu D, Liu H, Du LT, Wang YS, Xu JW, Qiu FB, Hu SY, Zhan HX. Obesity and pancreatic cancer: An update of epidemiological evidence and molecular mechanisms. Pancreatology. 2019;19:941-950. [PMID: 31447281 DOI: 10.1016/j.pan.2019.08.008] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
30 Monavarian M, Elhaw A, Tang P, Javed Z, Shonibare Z, Scalise CB, Arend R, Jolly MK, Sewell- Loftin MK, Hempel N, Mythreye K. Emerging perspectives on growth factor metabolic relationships in the ovarian cancer ascites environment. Seminars in Cancer Biology 2022. [DOI: 10.1016/j.semcancer.2022.03.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Zhang D, Sun B, Zhao X, Sun H, An J, Lin X, Zhu D, Zhao X, Wang X, Liu F, Zhang Y, Liu J, Gu Q, Dong X, Qiu Z, Liu Z, Qi H, Che N, Li J, Cheng R, Zheng X. Twist1 accelerates tumour vasculogenic mimicry by inhibiting Claudin15 expression in triple-negative breast cancer. J Cell Mol Med 2020;24:7163-74. [PMID: 32469152 DOI: 10.1111/jcmm.15167] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
32 Bacci M, Lorito N, Smiriglia A, Morandi A. Fat and Furious: Lipid Metabolism in Antitumoral Therapy Response and Resistance. Trends Cancer 2021;7:198-213. [PMID: 33281098 DOI: 10.1016/j.trecan.2020.10.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
33 Dumas JF, Brisson L. Interaction between adipose tissue and cancer cells: role for cancer progression. Cancer Metastasis Rev 2021;40:31-46. [PMID: 33009650 DOI: 10.1007/s10555-020-09934-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
34 Xiong Z, Li X, Yang L, Wu L, Xie Y, Xu F, Xie X. Integrative Analysis of Gene Expression and DNA Methylation Depicting the Impact of Obesity on Breast Cancer. Front Cell Dev Biol 2022;10:818082. [PMID: 35350384 DOI: 10.3389/fcell.2022.818082] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Ye Z, Zou S, Niu Z, Xu Z, Hu Y. A Novel Risk Model Based on Lipid Metabolism-Associated Genes Predicts Prognosis and Indicates Immune Microenvironment in Breast Cancer. Front Cell Dev Biol 2021;9:691676. [PMID: 34195202 DOI: 10.3389/fcell.2021.691676] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
36 Feng C, Pan L, Tang S, He L, Wang X, Tao Y, Xie Y, Lai Z, Tang Z, Wang Q, Li T. Integrative Transcriptomic, Lipidomic, and Metabolomic Analysis Reveals Potential Biomarkers of Basal and Luminal Muscle Invasive Bladder Cancer Subtypes. Front Genet 2021;12:695662. [PMID: 34484294 DOI: 10.3389/fgene.2021.695662] [Reference Citation Analysis]
37 Chen S, Xing C, Huang D, Zhou C, Ding B, Guo Z, Peng Z, Wang D, Zhu X, Liu S, Cai Z, Wu J, Zhao J, Wu Z, Zhang Y, Wei C, Yan Q, Wang H, Fan D, Liu L, Zhang H, Cao Y. Eradication of tumor growth by delivering novel photothermal selenium-coated tellurium nanoheterojunctions. Sci Adv 2020;6:eaay6825. [PMID: 32284997 DOI: 10.1126/sciadv.aay6825] [Cited by in Crossref: 39] [Cited by in F6Publishing: 27] [Article Influence: 19.5] [Reference Citation Analysis]
38 Huang M, Lin Y, Wang C, Deng L, Chen M, Assaraf YG, Chen ZS, Ye W, Zhang D. New insights into antiangiogenic therapy resistance in cancer: Mechanisms and therapeutic aspects. Drug Resist Updat 2022;64:100849. [PMID: 35842983 DOI: 10.1016/j.drup.2022.100849] [Reference Citation Analysis]
39 Attané C, Muller C. Drilling for Oil: Tumor-Surrounding Adipocytes Fueling Cancer. Trends Cancer 2020;6:593-604. [PMID: 32610069 DOI: 10.1016/j.trecan.2020.03.001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
40 Weng J, Zhou C, Zhou Q, Chen W, Yin Y, Atyah M, Dong Q, Shi Y, Ren N. Development and Validation of a Metabolic Gene-Based Prognostic Signature for Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021;8:193-209. [PMID: 33824863 DOI: 10.2147/JHC.S300633] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Yang R, Yi M, Xiang B. Novel Insights on Lipid Metabolism Alterations in Drug Resistance in Cancer. Front Cell Dev Biol 2022;10:875318. [DOI: 10.3389/fcell.2022.875318] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Muthu M, Kumar R, Syed Khaja AS, Gilthorpe JD, Persson JL, Nordström A. GLUL Ablation Can Confer Drug Resistance to Cancer Cells via a Malate-Aspartate Shuttle-Mediated Mechanism. Cancers (Basel) 2019;11:E1945. [PMID: 31817360 DOI: 10.3390/cancers11121945] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
43 Nakagawa H, Hayata Y, Kawamura S, Yamada T, Fujiwara N, Koike K. Lipid Metabolic Reprogramming in Hepatocellular Carcinoma. Cancers (Basel) 2018;10:E447. [PMID: 30445800 DOI: 10.3390/cancers10110447] [Cited by in Crossref: 54] [Cited by in F6Publishing: 54] [Article Influence: 13.5] [Reference Citation Analysis]
44 Peng S, Chen D, Cai J, Yuan Z, Huang B, Li Y, Wang H, Luo Q, Kuang Y, Liang W, Liu Z, Wang Q, Cui Y, Wang H, Liu X. Enhancing cancer-associated fibroblast fatty acid catabolism within a metabolically challenging tumor microenvironment drives colon cancer peritoneal metastasis. Mol Oncol 2021;15:1391-411. [PMID: 33528867 DOI: 10.1002/1878-0261.12917] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
45 Vander Linden C, Corbet C. Therapeutic Targeting of Cancer Stem Cells: Integrating and Exploiting the Acidic Niche. Front Oncol 2019;9:159. [PMID: 30941310 DOI: 10.3389/fonc.2019.00159] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 6.3] [Reference Citation Analysis]
46 Luis G, Godfroid A, Nishiumi S, Cimino J, Blacher S, Maquoi E, Wery C, Collignon A, Longuespée R, Montero-Ruiz L, Dassoul I, Maloujahmoum N, Pottier C, Mazzucchelli G, Depauw E, Bellahcène A, Yoshida M, Noel A, Sounni NE. Tumor resistance to ferroptosis driven by Stearoyl-CoA Desaturase-1 (SCD1) in cancer cells and Fatty Acid Biding Protein-4 (FABP4) in tumor microenvironment promote tumor recurrence. Redox Biol 2021;43:102006. [PMID: 34030117 DOI: 10.1016/j.redox.2021.102006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
47 Dai G, Wang D, Ma S, Hong S, Ding K, Tan X, Ju W. ACSL4 promotes colorectal cancer and is a potential therapeutic target of emodin. Phytomedicine 2022;102:154149. [PMID: 35567995 DOI: 10.1016/j.phymed.2022.154149] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Abudurexiti M, Zhu W, Wang Y, Wang J, Xu W, Huang Y, Zhu Y, Shi G, Zhang H, Zhu Y, Shen Y, Dai B, Wan F, Lin G, Ye D. Targeting CPT1B as a potential therapeutic strategy in castration-resistant and enzalutamide-resistant prostate cancer. Prostate 2020;80:950-61. [PMID: 32648618 DOI: 10.1002/pros.24027] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
49 Rios RS, Zheng KI, Zheng MH. Non-alcoholic steatohepatitis and risk of hepatocellular carcinoma. Chin Med J (Engl) 2021;134:2911-21. [PMID: 34855640 DOI: 10.1097/CM9.0000000000001888] [Reference Citation Analysis]
50 Li H, Zhou L, Zhou J, Li Q, Ji Q. Underlying mechanisms and drug intervention strategies for the tumour microenvironment. J Exp Clin Cancer Res 2021;40:97. [PMID: 33722297 DOI: 10.1186/s13046-021-01893-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
51 Wu J, Xue R, Jiang RT, Meng QH. Characterization of metabolic landscape in hepatocellular carcinoma. World J Gastrointest Oncol 2021; 13(9): 1144-1156 [PMID: 34616519 DOI: 10.4251/wjgo.v13.i9.1144] [Cited by in CrossRef: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Guo R, Chen Y, Borgard H, Jijiwa M, Nasu M, He M, Deng Y. The Function and Mechanism of Lipid Molecules and Their Roles in The Diagnosis and Prognosis of Breast Cancer. Molecules 2020;25:E4864. [PMID: 33096860 DOI: 10.3390/molecules25204864] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
53 Jeffords E, Freeman S, Cole B, Root K, Chekouo T, Melvin RG, Bemis L, Simmons GE Jr. Y-box binding protein 1 acts as a negative regulator of stearoyl CoA desaturase 1 in clear cell renal cell carcinoma. Oncol Lett 2020;20:165. [PMID: 32952654 DOI: 10.3892/ol.2020.12026] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
54 Nenkov M, Ma Y, Gaßler N, Chen Y. Metabolic Reprogramming of Colorectal Cancer Cells and the Microenvironment: Implication for Therapy. Int J Mol Sci 2021;22:6262. [PMID: 34200820 DOI: 10.3390/ijms22126262] [Reference Citation Analysis]
55 Pietrobon V, Cesano A, Marincola F, Kather JN. Next Generation Imaging Techniques to Define Immune Topographies in Solid Tumors. Front Immunol 2020;11:604967. [PMID: 33584676 DOI: 10.3389/fimmu.2020.604967] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
56 Schulze A, Yuneva M. The big picture: exploring the metabolic cross-talk in cancer. Dis Model Mech 2018;11:dmm036673. [PMID: 30154190 DOI: 10.1242/dmm.036673] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
57 Li B, Liao Z, Mo Y, Zhao W, Zhou X, Xiao X, Cui W, Feng G, Zhong S, Liang Y, Du C, Huang G, Li P, Xiao X, Zhou X, Wang R, Zhang Z. Inactivation of 3-hydroxybutyrate dehydrogenase type 2 promotes proliferation and metastasis of nasopharyngeal carcinoma by iron retention. Br J Cancer 2020;122:102-10. [PMID: 31819181 DOI: 10.1038/s41416-019-0638-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
58 Yang C, Huang S, Cao F, Zheng Y. A lipid metabolism-related genes prognosis biomarker associated with the tumor immune microenvironment in colorectal carcinoma. BMC Cancer 2021;21:1182. [PMID: 34740325 DOI: 10.1186/s12885-021-08902-5] [Reference Citation Analysis]
59 Liu M, Liu Y, Feng H, Jing Y, Zhao S, Yang S, Zhang N, Jin S, Li Y, Weng M, Xue X, Wang F, Yang Y, Jin X, Kong D. Clinical Significance of Screening Differential Metabolites in Ovarian Cancer Tissue and Ascites by LC/MS. Front Pharmacol 2021;12:701487. [PMID: 34795577 DOI: 10.3389/fphar.2021.701487] [Reference Citation Analysis]
60 Yao H, He S. Multi‑faceted role of cancer‑associated adipocytes in the tumor microenvironment (Review). Mol Med Rep 2021;24:866. [PMID: 34676881 DOI: 10.3892/mmr.2021.12506] [Reference Citation Analysis]
61 Yang E, Wang X, Gong Z, Yu M, Wu H, Zhang D. Exosome-mediated metabolic reprogramming: the emerging role in tumor microenvironment remodeling and its influence on cancer progression. Signal Transduct Target Ther. 2020;5:242. [PMID: 33077737 DOI: 10.1038/s41392-020-00359-5] [Cited by in Crossref: 14] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
62 Yang Y, Cao Y. The impact of VEGF on cancer metastasis and systemic disease. Seminars in Cancer Biology 2022. [DOI: 10.1016/j.semcancer.2022.03.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
63 Miao L, Zhuo Z, Tang J, Huang X, Liu J, Wang HY, Xia H, He J. FABP4 deactivates NF-κB-IL1α pathway by ubiquitinating ATPB in tumor-associated macrophages and promotes neuroblastoma progression. Clin Transl Med 2021;11:e395. [PMID: 33931964 DOI: 10.1002/ctm2.395] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
64 Guo W, Tan HY, Chen F, Wang N, Feng Y. Targeting Cancer Metabolism to Resensitize Chemotherapy: Potential Development of Cancer Chemosensitizers from Traditional Chinese Medicines. Cancers (Basel) 2020;12:E404. [PMID: 32050640 DOI: 10.3390/cancers12020404] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 8.5] [Reference Citation Analysis]
65 Han Y, Chen P, Zhang Y, Lu W, Ding W, Luo Y, Wen S, Xu R, Liu P, Huang P. Synergy between Auranofin and Celecoxib against Colon Cancer In Vitro and In Vivo through a Novel Redox-Mediated Mechanism. Cancers (Basel) 2019;11:E931. [PMID: 31277230 DOI: 10.3390/cancers11070931] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
66 Sweeney NW, Gomes CJ, De Armond R, Centuori SM, Parthasarathy S, Martinez JD. Hypoxia Suppresses High Fat Diet-Induced Steatosis And Development Of Hepatic Adenomas. Hypoxia (Auckl) 2019;7:53-63. [PMID: 31696128 DOI: 10.2147/HP.S217569] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
67 Sangineto M, Villani R, Cavallone F, Romano A, Loizzi D, Serviddio G. Lipid Metabolism in Development and Progression of Hepatocellular Carcinoma.Cancers (Basel). 2020;12. [PMID: 32486341 DOI: 10.3390/cancers12061419] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 9.5] [Reference Citation Analysis]
68 Zhang Z, Yang C, Li L, Zhu Y, Su K, Zhai L, Wang Z, Huang J. "γδT Cell-IL17A-Neutrophil" Axis Drives Immunosuppression and Confers Breast Cancer Resistance to High-Dose Anti-VEGFR2 Therapy. Front Immunol 2021;12:699478. [PMID: 34721375 DOI: 10.3389/fimmu.2021.699478] [Reference Citation Analysis]
69 Hu J, Zhang L, Chen W, Shen L, Jiang J, Sun S, Chen Z. Role of Intra- and Extracellular Lipid Signals in Cancer Stemness and Potential Therapeutic Strategy. Front Pharmacol 2021;12:730751. [PMID: 34603046 DOI: 10.3389/fphar.2021.730751] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
70 Lv L, Lei Q. Proteins moonlighting in tumor metabolism and epigenetics. Front Med 2021;15:383-403. [PMID: 33387254 DOI: 10.1007/s11684-020-0818-1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
71 Wu H, Han Y, Rodriguez Sillke Y, Deng H, Siddiqui S, Treese C, Schmidt F, Friedrich M, Keye J, Wan J, Qin Y, Kühl AA, Qin Z, Siegmund B, Glauben R. Lipid droplet-dependent fatty acid metabolism controls the immune suppressive phenotype of tumor-associated macrophages. EMBO Mol Med 2019;11:e10698. [PMID: 31602788 DOI: 10.15252/emmm.201910698] [Cited by in Crossref: 29] [Cited by in F6Publishing: 36] [Article Influence: 9.7] [Reference Citation Analysis]
72 Li H, Feng Z, He ML. Lipid metabolism alteration contributes to and maintains the properties of cancer stem cells. Theranostics 2020;10:7053-69. [PMID: 32641978 DOI: 10.7150/thno.41388] [Cited by in Crossref: 34] [Cited by in F6Publishing: 28] [Article Influence: 17.0] [Reference Citation Analysis]
73 Pang B, Zhang J, Zhang X, Yuan J, Shi Y, Qiao L. Inhibition of lipogenesis and induction of apoptosis by valproic acid in prostate cancer cells via the C/EBPα/SREBP-1 pathway. Acta Biochim Biophys Sin (Shanghai) 2021;53:354-64. [PMID: 33471067 DOI: 10.1093/abbs/gmab002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
74 Zhang X, Li Q, Du A, Li Y, Shi Q, Chen Y, Zhao Y, Wang B, Pan F. Adipocytic Glutamine Synthetase Upregulation via Altered Histone Methylation Promotes 5FU Chemoresistance in Peritoneal Carcinomatosis of Colorectal Cancer. Front Oncol 2021;11:748730. [PMID: 34712612 DOI: 10.3389/fonc.2021.748730] [Reference Citation Analysis]
75 Liu T, Yu J, Ge C, Zhao F, Chen J, Miao C, Jin W, Zhou Q, Geng Q, Lin H, Tian H, Chen T, Xie H, Cui Y, Yao M, Xiao X, Li J, Li H. Sperm associated antigen 4 promotes SREBP1-mediated de novo lipogenesis via interaction with lamin A/C and contributes to tumor progression in hepatocellular carcinoma. Cancer Letters 2022. [DOI: 10.1016/j.canlet.2022.215642] [Reference Citation Analysis]
76 Sun Q, Ye Y, Gui A, Sun X, Xie S, Zhan Y, Chen R, Yan Y, Gu J, Qiu S, Liu W, Zuo J, Zhang Q, Yang L. MORTALIN-Ca2+ axis drives innate rituximab resistance in diffuse large B-cell lymphoma. Cancer Lett 2022;:215678. [PMID: 35447282 DOI: 10.1016/j.canlet.2022.215678] [Reference Citation Analysis]
77 Chen L, Yan Y, Kong F, Wang J, Zeng J, Fang Z, Wang Z, Liu Z, Liu F. Contribution of Oxidative Stress Induced by Sonodynamic Therapy to the Calcium Homeostasis Imbalance Enhances Macrophage Infiltration in Glioma Cells. Cancers (Basel) 2022;14:2036. [PMID: 35454942 DOI: 10.3390/cancers14082036] [Reference Citation Analysis]
78 Falletta P, Goding CR, Vivas-garcía Y. Connecting Metabolic Rewiring With Phenotype Switching in Melanoma. Front Cell Dev Biol 2022;10:930250. [DOI: 10.3389/fcell.2022.930250] [Reference Citation Analysis]
79 Zhang D, Shi R, Xiang W, Kang X, Tang B, Li C, Gao L, Zhang X, Zhang L, Dai R, Miao H. The Agpat4/LPA axis in colorectal cancer cells regulates antitumor responses via p38/p65 signaling in macrophages. Signal Transduct Target Ther 2020;5:24. [PMID: 32296017 DOI: 10.1038/s41392-020-0117-y] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
80 Lo Iacono M, Modica C, Porcelli G, Brancato OR, Muratore G, Bianca P, Gaggianesi M, Turdo A, Veschi V, Todaro M, Di Franco S, Stassi G. Targeting of the Peritumoral Adipose Tissue Microenvironment as an Innovative Antitumor Therapeutic Strategy. Biomolecules 2022;12:702. [DOI: 10.3390/biom12050702] [Reference Citation Analysis]
81 Mentoor I, Nell T, Emjedi Z, van Jaarsveld PJ, de Jager L, Engelbrecht AM. Decreased Efficacy of Doxorubicin Corresponds With Modifications in Lipid Metabolism Markers and Fatty Acid Profiles in Breast Tumors From Obese vs. Lean Mice. Front Oncol 2020;10:306. [PMID: 32257945 DOI: 10.3389/fonc.2020.00306] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
82 Sun X, Feng X, Wu X, Lu Y, Chen K, Ye Y. Fat Wasting Is Damaging: Role of Adipose Tissue in Cancer-Associated Cachexia. Front Cell Dev Biol 2020;8:33. [PMID: 32117967 DOI: 10.3389/fcell.2020.00033] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
83 Mundo AI, Muhammad A, Balza K, Nelson CE, Muldoon TJ. Longitudinal examination of perfusion and angiogenesis markers in primary colorectal tumors shows distinct signatures for metronomic and maximum-tolerated dose strategies. Neoplasia 2022;32:100825. [PMID: 35901621 DOI: 10.1016/j.neo.2022.100825] [Reference Citation Analysis]
84 Wu J, Chen Z, Wickström SL, Gao J, He X, Jing X, Wu J, Du Q, Yang M, Chen Y, Zhang D, Yin X, Guo Z, Jensen L, Yang Y, Tao W, Lundqvist A, Kiessling R, Cao Y. Interleukin-33 is a Novel Immunosuppressor that Protects Cancer Cells from TIL Killing by a Macrophage-Mediated Shedding Mechanism. Adv Sci (Weinh) 2021;8:e2101029. [PMID: 34486239 DOI: 10.1002/advs.202101029] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
85 Ma K, Zhang L. Overview: Lipid Metabolism in the Tumor Microenvironment. Adv Exp Med Biol 2021;1316:41-7. [PMID: 33740242 DOI: 10.1007/978-981-33-6785-2_3] [Reference Citation Analysis]
86 Cao Y. Adipocyte and lipid metabolism in cancer drug resistance. J Clin Invest 2019;129:3006-17. [PMID: 31264969 DOI: 10.1172/JCI127201] [Cited by in Crossref: 55] [Cited by in F6Publishing: 49] [Article Influence: 18.3] [Reference Citation Analysis]
87 Gonçalves AC, Richiardone E, Jorge J, Polónia B, Xavier CPR, Salaroglio IC, Riganti C, Vasconcelos MH, Corbet C, Sarmento-Ribeiro AB. Impact of cancer metabolism on therapy resistance - Clinical implications. Drug Resist Updat 2021;:100797. [PMID: 34955385 DOI: 10.1016/j.drup.2021.100797] [Reference Citation Analysis]
88 Hu B, Lin JZ, Yang XB, Sang XT. Aberrant lipid metabolism in hepatocellular carcinoma cells as well as immune microenvironment: A review. Cell Prolif 2020;53:e12772. [PMID: 32003505 DOI: 10.1111/cpr.12772] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
89 Liu D, Zhang T, Chen X, Zhang B, Wang Y, Xie M, Ji X, Sun M, Huang W, Xia L. ONECUT2 facilitates hepatocellular carcinoma metastasis by transcriptionally upregulating FGF2 and ACLY. Cell Death Dis 2021;12:1113. [PMID: 34839358 DOI: 10.1038/s41419-021-04410-3] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
90 Huang J, Diaz-Meco MT, Moscat J. The macroenviromental control of cancer metabolism by p62. Cell Cycle 2018;17:2110-21. [PMID: 30198373 DOI: 10.1080/15384101.2018.1520566] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
91 Gyamfi J, Yeo JH, Kwon D, Min BS, Cha YJ, Koo JS, Jeong J, Lee J, Choi J. Interaction between CD36 and FABP4 modulates adipocyte-induced fatty acid import and metabolism in breast cancer. NPJ Breast Cancer 2021;7:129. [PMID: 34561446 DOI: 10.1038/s41523-021-00324-7] [Reference Citation Analysis]
92 Sun M, Wang C, Lv M, Fan Z, Du J. Mitochondrial-targeting nanoprodrugs to mutually reinforce metabolic inhibition and autophagy for combating resistant cancer. Biomaterials 2021;278:121168. [PMID: 34600158 DOI: 10.1016/j.biomaterials.2021.121168] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
93 Yang Z, Deng W, Zhang X, An Y, Liu Y, Yao H, Zhang Z. Opportunities and Challenges of Nanoparticles in Digestive Tumours as Anti-Angiogenic Therapies. Front Oncol 2021;11:789330. [PMID: 35083147 DOI: 10.3389/fonc.2021.789330] [Reference Citation Analysis]
94 Brocco D, Florio R, De Lellis L, Veschi S, Grassadonia A, Tinari N, Cama A. The Role of Dysfunctional Adipose Tissue in Pancreatic Cancer: A Molecular Perspective. Cancers (Basel) 2020;12:E1849. [PMID: 32659999 DOI: 10.3390/cancers12071849] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
95 Jin P, Jiang J, Zhou L, Huang Z, Nice EC, Huang C, Fu L. Mitochondrial adaptation in cancer drug resistance: prevalence, mechanisms, and management. J Hematol Oncol 2022;15:97. [PMID: 35851420 DOI: 10.1186/s13045-022-01313-4] [Reference Citation Analysis]
96 Iwamoto H, Suzuki H, Shimose S, Niizeki T, Nakano M, Shirono T, Okamura S, Noda Y, Kamachi N, Nakamura T, Masuda A, Sakaue T, Tanaka T, Nakano D, Sakai M, Yamaguchi T, Kuromatsu R, Koga H, Torimura T. Weekends-Off Lenvatinib for Unresectable Hepatocellular Carcinoma Improves Therapeutic Response and Tolerability toward Adverse Events. Cancers (Basel) 2020;12:E1010. [PMID: 32325921 DOI: 10.3390/cancers12041010] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
97 Yang L, Sun X, Ye Y, Lu Y, Zuo J, Liu W, Elcock A, Zhu S. p38α Mitogen-Activated Protein Kinase Is a Druggable Target in Pancreatic Adenocarcinoma. Front Oncol 2019;9:1294. [PMID: 31828036 DOI: 10.3389/fonc.2019.01294] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]