BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shoaie S, Ghaffari P, Kovatcheva-Datchary P, Mardinoglu A, Sen P, Pujos-Guillot E, de Wouters T, Juste C, Rizkalla S, Chilloux J, Hoyles L, Nicholson JK, Dore J, Dumas ME, Clement K, Bäckhed F, Nielsen J; MICRO-Obes Consortium. Quantifying Diet-Induced Metabolic Changes of the Human Gut Microbiome. Cell Metab 2015;22:320-31. [PMID: 26244934 DOI: 10.1016/j.cmet.2015.07.001] [Cited by in Crossref: 248] [Cited by in F6Publishing: 213] [Article Influence: 41.3] [Reference Citation Analysis]
Number Citing Articles
1 Westfall S, Lomis N, Prakash S. Longevity extension in Drosophila through gut-brain communication. Sci Rep 2018;8:8362. [PMID: 29849035 DOI: 10.1038/s41598-018-25382-z] [Cited by in Crossref: 48] [Cited by in F6Publishing: 38] [Article Influence: 12.0] [Reference Citation Analysis]
2 Coras R, Murillo-Saich JD, Guma M. Circulating Pro- and Anti-Inflammatory Metabolites and Its Potential Role in Rheumatoid Arthritis Pathogenesis. Cells 2020;9:E827. [PMID: 32235564 DOI: 10.3390/cells9040827] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 8.5] [Reference Citation Analysis]
3 Hullar MAJ, Jenkins IC, Randolph TW, Curtis KR, Monroe KR, Ernst T, Shepherd JA, Stram DO, Cheng I, Kristal BS, Wilkens LR, Franke A, Le Marchand L, Lim U, Lampe JW. Associations of the gut microbiome with hepatic adiposity in the Multiethnic Cohort Adiposity Phenotype Study. Gut Microbes 2021;13:1965463. [PMID: 34491886 DOI: 10.1080/19490976.2021.1965463] [Reference Citation Analysis]
4 Cai J, Nichols RG, Koo I, Kalikow ZA, Zhang L, Tian Y, Zhang J, Smith PB, Patterson AD. Multiplatform Physiologic and Metabolic Phenotyping Reveals Microbial Toxicity. mSystems 2018;3:e00123-18. [PMID: 30417115 DOI: 10.1128/mSystems.00123-18] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
5 Gong SQ, Ye TT, Wang MX, Hong ZP, Liu L, Chen H, Qian J. Profiling the mid-adult cecal microbiota associated with host healthy by using herbal formula Kang ShuaiLao Pian treated mid-adult mice. Chin J Nat Med 2020;18:90-102. [PMID: 32172952 DOI: 10.1016/S1875-5364(20)30010-8] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Develaraja S, Reddy A, Yadav M, Jain S, Yadav H. Whole Grains in Amelioration of Metabolic Derangements. J Nutrit Health Food Sci 2016;4:1-11. [PMID: 28944285 DOI: 10.15226/jnhfs.2016.00173] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
7 Nielsen J. Systems Biology of Metabolism: A Driver for Developing Personalized and Precision Medicine. Cell Metabolism 2017;25:572-9. [DOI: 10.1016/j.cmet.2017.02.002] [Cited by in Crossref: 81] [Cited by in F6Publishing: 72] [Article Influence: 16.2] [Reference Citation Analysis]
8 Seganfredo FB, Blume CA, Moehlecke M, Giongo A, Casagrande DS, Spolidoro JVN, Padoin AV, Schaan BD, Mottin CC. Weight-loss interventions and gut microbiota changes in overweight and obese patients: a systematic review: Weight-loss impact on gut microbiota. Obesity Reviews 2017;18:832-51. [DOI: 10.1111/obr.12541] [Cited by in Crossref: 88] [Cited by in F6Publishing: 90] [Article Influence: 17.6] [Reference Citation Analysis]
9 Yin J, Li Y, Han H, Liu Z, Zeng X, Li T, Yin Y. Long-term effects of lysine concentration on growth performance, intestinal microbiome, and metabolic profiles in a pig model. Food Funct 2018;9:4153-63. [DOI: 10.1039/c8fo00973b] [Cited by in Crossref: 32] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
10 Van der Leek AP, Yanishevsky Y, Kozyrskyj AL. The Kynurenine Pathway As a Novel Link between Allergy and the Gut Microbiome. Front Immunol 2017;8:1374. [PMID: 29163472 DOI: 10.3389/fimmu.2017.01374] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 6.0] [Reference Citation Analysis]
11 Wilmanski T, Rappaport N, Diener C, Gibbons SM, Price ND. From taxonomy to metabolic output: what factors define gut microbiome health? Gut Microbes 2021;13:1-20. [PMID: 33890557 DOI: 10.1080/19490976.2021.1907270] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Proffitt C, Bidkhori G, Moyes D, Shoaie S. Disease, Drugs and Dysbiosis: Understanding Microbial Signatures in Metabolic Disease and Medical Interventions. Microorganisms 2020;8:E1381. [PMID: 32916966 DOI: 10.3390/microorganisms8091381] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
13 Cassotta M, Forbes-Hernández TY, Calderón Iglesias R, Ruiz R, Elexpuru Zabaleta M, Giampieri F, Battino M. Links between Nutrition, Infectious Diseases, and Microbiota: Emerging Technologies and Opportunities for Human-Focused Research. Nutrients 2020;12:E1827. [PMID: 32575399 DOI: 10.3390/nu12061827] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
14 Chowdhury S, Fong SS. Computational Modeling of the Human Microbiome. Microorganisms 2020;8:E197. [PMID: 32023941 DOI: 10.3390/microorganisms8020197] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
15 Calderón-Pérez L, Gosalbes MJ, Yuste S, Valls RM, Pedret A, Llauradó E, Jimenez-Hernandez N, Artacho A, Pla-Pagà L, Companys J, Ludwig I, Romero MP, Rubió L, Solà R. Gut metagenomic and short chain fatty acids signature in hypertension: a cross-sectional study. Sci Rep 2020;10:6436. [PMID: 32296109 DOI: 10.1038/s41598-020-63475-w] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
16 Wissenbach DK, Oliphant K, Rolle-Kampczyk U, Yen S, Höke H, Baumann S, Haange SB, Verdu EF, Allen-Vercoe E, von Bergen M. Optimization of metabolomics of defined in vitro gut microbial ecosystems. Int J Med Microbiol 2016;306:280-9. [PMID: 27020116 DOI: 10.1016/j.ijmm.2016.03.007] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
17 Sánchez-Tapia M, Hernández-Velázquez I, Pichardo-Ontiveros E, Granados-Portillo O, Gálvez A, R Tovar A, Torres N. Consumption of Cooked Black Beans Stimulates a Cluster of Some Clostridia Class Bacteria Decreasing Inflammatory Response and Improving Insulin Sensitivity. Nutrients 2020;12:E1182. [PMID: 32340138 DOI: 10.3390/nu12041182] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
18 Healey GR, Murphy R, Brough L, Butts CA, Coad J. Interindividual variability in gut microbiota and host response to dietary interventions. Nutr Rev 2017;75:1059-80. [PMID: 29190368 DOI: 10.1093/nutrit/nux062] [Cited by in Crossref: 73] [Cited by in F6Publishing: 69] [Article Influence: 18.3] [Reference Citation Analysis]
19 Peters DL, Wang W, Zhang X, Ning Z, Mayne J, Figeys D. Metaproteomic and Metabolomic Approaches for Characterizing the Gut Microbiome. Proteomics 2019;19:e1800363. [PMID: 31321880 DOI: 10.1002/pmic.201800363] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
20 Zuñiga C, Zaramela L, Zengler K. Elucidation of complexity and prediction of interactions in microbial communities. Microb Biotechnol 2017;10:1500-22. [PMID: 28925555 DOI: 10.1111/1751-7915.12855] [Cited by in Crossref: 59] [Cited by in F6Publishing: 47] [Article Influence: 11.8] [Reference Citation Analysis]
21 Afshinnekoo E, Ahsanuddin S, Mason CE. Globalizing and crowdsourcing biomedical research. Br Med Bull 2016;120:27-33. [PMID: 27941038 DOI: 10.1093/bmb/ldw044] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
22 Oluwagbemigun K, Anesi A, Ulaszewska M, Clarke G, Alexy U, Schmid M, Roden M, Herder C, Mattivi F, Nöthlings U. Longitudinal relationship of amino acids and indole metabolites with long-term body mass index and cardiometabolic risk markers in young individuals. Sci Rep 2020;10:6399. [PMID: 32286421 DOI: 10.1038/s41598-020-63313-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
23 Venkatesan D, Iyer M, Narayanasamy A, Siva K, Vellingiri B. Kynurenine pathway in Parkinson's disease-An update. eNeurologicalSci 2020;21:100270. [PMID: 33134567 DOI: 10.1016/j.ensci.2020.100270] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
24 Kim WJ, Kim HU, Lee SY. Current state and applications of microbial genome-scale metabolic models. Current Opinion in Systems Biology 2017;2:10-8. [DOI: 10.1016/j.coisb.2017.03.001] [Cited by in Crossref: 61] [Cited by in F6Publishing: 21] [Article Influence: 12.2] [Reference Citation Analysis]
25 Sen P, Mardinogulu A, Nielsen J. Selection of complementary foods based on optimal nutritional values. Sci Rep 2017;7:5413. [PMID: 28710451 DOI: 10.1038/s41598-017-05650-0] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
26 Sen P, Kemppainen E, Orešič M. Perspectives on Systems Modeling of Human Peripheral Blood Mononuclear Cells. Front Mol Biosci 2017;4:96. [PMID: 29376056 DOI: 10.3389/fmolb.2017.00096] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 5.8] [Reference Citation Analysis]
27 Anesi A, Rubert J, Oluwagbemigun K, Orozco-Ruiz X, Nöthlings U, Breteler MMB, Mattivi F. Metabolic Profiling of Human Plasma and Urine, Targeting Tryptophan, Tyrosine and Branched Chain Amino Acid Pathways. Metabolites 2019;9:E261. [PMID: 31683910 DOI: 10.3390/metabo9110261] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
28 Bellissimo MP, Jones DP, Martin GS, Alvarez JA, Ziegler TR. Plasma high-resolution metabolomic phenotyping of lean mass in a United States adult cohort. JPEN J Parenter Enteral Nutr 2021. [PMID: 34111906 DOI: 10.1002/jpen.2201] [Reference Citation Analysis]
29 Arike L, Seiman A, van der Post S, Rodriguez Piñeiro AM, Ermund A, Schütte A, Bäckhed F, Johansson MEV, Hansson GC. Protein Turnover in Epithelial Cells and Mucus along the Gastrointestinal Tract Is Coordinated by the Spatial Location and Microbiota. Cell Rep 2020;30:1077-1087.e3. [PMID: 31995731 DOI: 10.1016/j.celrep.2019.12.068] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]
30 Hoyles L, Fernández-Real JM, Federici M, Serino M, Abbott J, Charpentier J, Heymes C, Luque JL, Anthony E, Barton RH, Chilloux J, Myridakis A, Martinez-Gili L, Moreno-Navarrete JM, Benhamed F, Azalbert V, Blasco-Baque V, Puig J, Xifra G, Ricart W, Tomlinson C, Woodbridge M, Cardellini M, Davato F, Cardolini I, Porzio O, Gentileschi P, Lopez F, Foufelle F, Butcher SA, Holmes E, Nicholson JK, Postic C, Burcelin R, Dumas ME. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat Med 2018;24:1070-80. [PMID: 29942096 DOI: 10.1038/s41591-018-0061-3] [Cited by in Crossref: 214] [Cited by in F6Publishing: 197] [Article Influence: 53.5] [Reference Citation Analysis]
31 Picca A, Fanelli F, Calvani R, Mulè G, Pesce V, Sisto A, Pantanelli C, Bernabei R, Landi F, Marzetti E. Gut Dysbiosis and Muscle Aging: Searching for Novel Targets against Sarcopenia. Mediators Inflamm 2018;2018:7026198. [PMID: 29686533 DOI: 10.1155/2018/7026198] [Cited by in Crossref: 44] [Cited by in F6Publishing: 42] [Article Influence: 11.0] [Reference Citation Analysis]
32 Zhang LS, Davies SS. Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions. Genome Med. 2016;8:46. [PMID: 27102537 DOI: 10.1186/s13073-016-0296-x] [Cited by in Crossref: 238] [Cited by in F6Publishing: 221] [Article Influence: 39.7] [Reference Citation Analysis]
33 Magnúsdóttir S, Thiele I. Modeling metabolism of the human gut microbiome. Curr Opin Biotechnol 2018;51:90-6. [PMID: 29258014 DOI: 10.1016/j.copbio.2017.12.005] [Cited by in Crossref: 72] [Cited by in F6Publishing: 49] [Article Influence: 14.4] [Reference Citation Analysis]
34 Harvanek ZM, Mourão MA, Schnell S, Pletcher SD. A computational approach to studying ageing at the individual level. Proc Biol Sci 2016;283:20152346. [PMID: 26865300 DOI: 10.1098/rspb.2015.2346] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
35 Ghaffari P, Shoaie S, Nielsen LK. Irritable bowel syndrome and microbiome; Switching from conventional diagnosis and therapies to personalized interventions. J Transl Med 2022;20. [DOI: 10.1186/s12967-022-03365-z] [Reference Citation Analysis]
36 Chong J, Xia J. Computational Approaches for Integrative Analysis of the Metabolome and Microbiome. Metabolites 2017;7:E62. [PMID: 29156542 DOI: 10.3390/metabo7040062] [Cited by in Crossref: 50] [Cited by in F6Publishing: 38] [Article Influence: 10.0] [Reference Citation Analysis]
37 Levy R, Magis AT, Earls JC, Manor O, Wilmanski T, Lovejoy J, Gibbons SM, Omenn GS, Hood L, Price ND. Longitudinal analysis reveals transition barriers between dominant ecological states in the gut microbiome. Proc Natl Acad Sci U S A 2020;117:13839-45. [PMID: 32471946 DOI: 10.1073/pnas.1922498117] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
38 Ang KS, Lakshmanan M, Lee NR, Lee DY. Metabolic Modeling of Microbial Community Interactions for Health, Environmental and Biotechnological Applications. Curr Genomics 2018;19:712-22. [PMID: 30532650 DOI: 10.2174/1389202919666180911144055] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 2.8] [Reference Citation Analysis]
39 Mabwi HA, Kim E, Song DG, Yoon HS, Pan CH, Komba EVG, Ko G, Cha KH. Synthetic gut microbiome: Advances and challenges. Comput Struct Biotechnol J 2021;19:363-71. [PMID: 33489006 DOI: 10.1016/j.csbj.2020.12.029] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
40 Tang WH, Kitai T, Hazen SL. Gut Microbiota in Cardiovascular Health and Disease. Circ Res. 2017;120:1183-1196. [PMID: 28360349 DOI: 10.1161/circresaha.117.309715] [Cited by in Crossref: 516] [Cited by in F6Publishing: 295] [Article Influence: 103.2] [Reference Citation Analysis]
41 Curry KD, Nute MG, Treangen TJ. It takes guts to learn: machine learning techniques for disease detection from the gut microbiome. Emerg Top Life Sci 2021;5:815-27. [PMID: 34779841 DOI: 10.1042/ETLS20210213] [Reference Citation Analysis]
42 Neves AL, Chilloux J, Sarafian MH, Rahim MB, Boulangé CL, Dumas ME. The microbiome and its pharmacological targets: therapeutic avenues in cardiometabolic diseases. Curr Opin Pharmacol 2015;25:36-44. [PMID: 26531326 DOI: 10.1016/j.coph.2015.09.013] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
43 Mardinoglu A, Shoaie S, Bergentall M, Ghaffari P, Zhang C, Larsson E, Bäckhed F, Nielsen J. The gut microbiota modulates host amino acid and glutathione metabolism in mice. Mol Syst Biol 2015;11:834. [PMID: 26475342 DOI: 10.15252/msb.20156487] [Cited by in Crossref: 182] [Cited by in F6Publishing: 163] [Article Influence: 26.0] [Reference Citation Analysis]
44 Lin D, Zheng X, Sanogo B, Ding T, Sun X, Wu Z. Bacterial composition of midgut and entire body of laboratory colonies of Aedes aegypti and Aedes albopictus from Southern China. Parasit Vectors 2021;14:586. [PMID: 34838108 DOI: 10.1186/s13071-021-05050-4] [Reference Citation Analysis]
45 Zhao F, An R, Wang L, Shan J, Wang X. Specific Gut Microbiome and Serum Metabolome Changes in Lung Cancer Patients. Front Cell Infect Microbiol 2021;11:725284. [PMID: 34527604 DOI: 10.3389/fcimb.2021.725284] [Reference Citation Analysis]
46 Ankrah NYD, Bernstein DB, Biggs M, Carey M, Engevik M, García-Jiménez B, Lakshmanan M, Pacheco AR, Sulheim S, Medlock GL. Enhancing Microbiome Research through Genome-Scale Metabolic Modeling. mSystems 2021;6:e0059921. [PMID: 34904863 DOI: 10.1128/mSystems.00599-21] [Reference Citation Analysis]
47 Altay O, Nielsen J, Uhlen M, Boren J, Mardinoglu A. Systems biology perspective for studying the gut microbiota in human physiology and liver diseases. EBioMedicine 2019;49:364-73. [PMID: 31636011 DOI: 10.1016/j.ebiom.2019.09.057] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
48 Cho KY. Lifestyle modifications result in alterations in the gut microbiota in obese children. BMC Microbiol 2021;21:10. [PMID: 33407104 DOI: 10.1186/s12866-020-02002-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
49 Zierer J, Jackson MA, Kastenmüller G, Mangino M, Long T, Telenti A, Mohney RP, Small KS, Bell JT, Steves CJ, Valdes AM, Spector TD, Menni C. The fecal metabolome as a functional readout of the gut microbiome. Nat Genet 2018;50:790-5. [PMID: 29808030 DOI: 10.1038/s41588-018-0135-7] [Cited by in Crossref: 197] [Cited by in F6Publishing: 176] [Article Influence: 49.3] [Reference Citation Analysis]
50 Taguer M, Maurice CF. The complex interplay of diet, xenobiotics, and microbial metabolism in the gut: Implications for clinical outcomes. Clin Pharmacol Ther 2016;99:588-99. [PMID: 26950037 DOI: 10.1002/cpt.366] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
51 Luque de Castro M, Quiles-zafra R. Lipidomics: An omics discipline with a key role in nutrition. Talanta 2020;219:121197. [DOI: 10.1016/j.talanta.2020.121197] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
52 Yoshida N, Kitahama S, Yamashita T, Hirono Y, Tabata T, Saito Y, Shinohara R, Nakashima H, Emoto T, Hirota Y, Takahashi T, Ogawa W, Hirata KI. Metabolic alterations in plasma after laparoscopic sleeve gastrectomy. J Diabetes Investig 2021;12:123-9. [PMID: 32563200 DOI: 10.1111/jdi.13328] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
53 Muñoz-Tamayo R, Popova M, Tillier M, Morgavi DP, Morel JP, Fonty G, Morel-Desrosiers N. Hydrogenotrophic methanogens of the mammalian gut: Functionally similar, thermodynamically different-A modelling approach. PLoS One 2019;14:e0226243. [PMID: 31826000 DOI: 10.1371/journal.pone.0226243] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
54 Chander AM, Yadav H, Jain S, Bhadada SK, Dhawan DK. Cross-Talk Between Gluten, Intestinal Microbiota and Intestinal Mucosa in Celiac Disease: Recent Advances and Basis of Autoimmunity. Front Microbiol. 2018;9:2597. [PMID: 30443241 DOI: 10.3389/fmicb.2018.02597] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 5.5] [Reference Citation Analysis]
55 Yang Y, Misra BB, Liang L, Bi D, Weng W, Wu W, Cai S, Qin H, Goel A, Li X, Ma Y. Integrated microbiome and metabolome analysis reveals a novel interplay between commensal bacteria and metabolites in colorectal cancer. Theranostics. 2019;9:4101-4114. [PMID: 31281534 DOI: 10.7150/thno.35186] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 11.3] [Reference Citation Analysis]
56 Silva de Carvalho T, Singh V, Mohamud Yusuf A, Wang J, Schultz Moreira AR, Sanchez-Mendoza EH, Sardari M, Nascentes Melo LM, Doeppner TR, Kehrmann J, Scholtysik R, Hitpass L, Gunzer M, Hermann DM. Post-ischemic protein restriction induces sustained neuroprotection, neurological recovery, brain remodeling, and gut microbiota rebalancing. Brain Behav Immun 2021;100:134-44. [PMID: 34848338 DOI: 10.1016/j.bbi.2021.11.016] [Reference Citation Analysis]
57 Vázquez-castellanos JF, Biclot A, Vrancken G, Huys GR, Raes J. Design of synthetic microbial consortia for gut microbiota modulation. Current Opinion in Pharmacology 2019;49:52-9. [DOI: 10.1016/j.coph.2019.07.005] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
58 Chan SHJ, Simons MN, Maranas CD. SteadyCom: Predicting microbial abundances while ensuring community stability. PLoS Comput Biol 2017;13:e1005539. [PMID: 28505184 DOI: 10.1371/journal.pcbi.1005539] [Cited by in Crossref: 81] [Cited by in F6Publishing: 54] [Article Influence: 16.2] [Reference Citation Analysis]
59 Zhang X, Li L, Butcher J, Stintzi A, Figeys D. Advancing functional and translational microbiome research using meta-omics approaches. Microbiome 2019;7:154. [PMID: 31810497 DOI: 10.1186/s40168-019-0767-6] [Cited by in Crossref: 56] [Cited by in F6Publishing: 47] [Article Influence: 18.7] [Reference Citation Analysis]
60 Rau MH, Zeidan AA. Constraint-based modeling in microbial food biotechnology. Biochem Soc Trans 2018;46:249-60. [PMID: 29588387 DOI: 10.1042/BST20170268] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
61 Johnson CH, Spilker ME, Goetz L, Peterson SN, Siuzdak G. Metabolite and Microbiome Interplay in Cancer Immunotherapy. Cancer Res 2016;76:6146-52. [PMID: 27729325 DOI: 10.1158/0008-5472.CAN-16-0309] [Cited by in Crossref: 48] [Cited by in F6Publishing: 29] [Article Influence: 8.0] [Reference Citation Analysis]
62 Saa P, Urrutia A, Silva-Andrade C, Martín AJ, Garrido D. Modeling approaches for probing cross-feeding interactions in the human gut microbiome. Comput Struct Biotechnol J 2022;20:79-89. [PMID: 34976313 DOI: 10.1016/j.csbj.2021.12.006] [Reference Citation Analysis]
63 Witherden EA, Shoaie S, Hall RA, Moyes DL. The Human Mucosal Mycobiome and Fungal Community Interactions. J Fungi (Basel) 2017;3:E56. [PMID: 29371572 DOI: 10.3390/jof3040056] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 4.2] [Reference Citation Analysis]
64 Verhagen FH, Stigter ECA, Pras-Raves ML, Burgering BMT, Imhof SM, Radstake TRDJ, de Boer JH, Kuiper JJW. Aqueous Humor Analysis Identifies Higher Branched Chain Amino Acid Metabolism as a Marker for Human Leukocyte Antigen-B27 Acute Anterior Uveitis and Disease Activity. Am J Ophthalmol 2019;198:97-110. [PMID: 30312576 DOI: 10.1016/j.ajo.2018.10.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
65 Karkaria BD, Treloar NJ, Barnes CP, Fedorec AJH. From Microbial Communities to Distributed Computing Systems. Front Bioeng Biotechnol 2020;8:834. [PMID: 32793576 DOI: 10.3389/fbioe.2020.00834] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
66 Altamirano Á, Saa PA, Garrido D. Inferring composition and function of the human gut microbiome in time and space: A review of genome-scale metabolic modelling tools. Comput Struct Biotechnol J 2020;18:3897-904. [PMID: 33335687 DOI: 10.1016/j.csbj.2020.11.035] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
67 Dao MC, Clément K. Gut microbiota and obesity: Concepts relevant to clinical care. Eur J Intern Med 2018;48:18-24. [PMID: 29110901 DOI: 10.1016/j.ejim.2017.10.005] [Cited by in Crossref: 53] [Cited by in F6Publishing: 53] [Article Influence: 10.6] [Reference Citation Analysis]
68 Mardinoglu A, Boren J, Smith U. Confounding Effects of Metformin on the Human Gut Microbiome in Type 2 Diabetes. Cell Metabolism 2016;23:10-2. [DOI: 10.1016/j.cmet.2015.12.012] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 6.2] [Reference Citation Analysis]
69 Grembi JA, Nguyen LH, Haggerty TD, Gardner CD, Holmes SP, Parsonnet J. Gut microbiota plasticity is correlated with sustained weight loss on a low-carb or low-fat dietary intervention. Sci Rep 2020;10:1405. [PMID: 31996717 DOI: 10.1038/s41598-020-58000-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
70 Behl T, Kaur I, Sehgal A, Singh S, Bhatia S, Al-Harrasi A, Zengin G, Bumbu AG, Andronie-Cioara FL, Nechifor AC, Gitea D, Bungau AF, Toma MM, Bungau SG. The Footprint of Kynurenine Pathway in Neurodegeneration: Janus-Faced Role in Parkinson's Disorder and Therapeutic Implications. Int J Mol Sci 2021;22:6737. [PMID: 34201647 DOI: 10.3390/ijms22136737] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
71 Eetemadi A, Rai N, Pereira BMP, Kim M, Schmitz H, Tagkopoulos I. The Computational Diet: A Review of Computational Methods Across Diet, Microbiome, and Health. Front Microbiol 2020;11:393. [PMID: 32318028 DOI: 10.3389/fmicb.2020.00393] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
72 Marinos G, Kaleta C, Waschina S. Defining the nutritional input for genome-scale metabolic models: A roadmap. PLoS One 2020;15:e0236890. [PMID: 32797084 DOI: 10.1371/journal.pone.0236890] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
73 Amato KR. Incorporating the gut microbiota into models of human and non-human primate ecology and evolution. Am J Phys Anthropol 2016;159:S196-215. [PMID: 26808106 DOI: 10.1002/ajpa.22908] [Cited by in Crossref: 43] [Cited by in F6Publishing: 40] [Article Influence: 7.2] [Reference Citation Analysis]
74 Sen P, Orešič M. Metabolic Modeling of Human Gut Microbiota on a Genome Scale: An Overview. Metabolites 2019;9:E22. [PMID: 30695998 DOI: 10.3390/metabo9020022] [Cited by in Crossref: 39] [Cited by in F6Publishing: 25] [Article Influence: 13.0] [Reference Citation Analysis]
75 Dillard LR, Payne DD, Papin JA. Mechanistic models of microbial community metabolism. Mol Omics 2021;17:365-75. [PMID: 34125127 DOI: 10.1039/d0mo00154f] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
76 Wang H, Marcišauskas S, Sánchez BJ, Domenzain I, Hermansson D, Agren R, Nielsen J, Kerkhoven EJ. RAVEN 2.0: A versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor. PLoS Comput Biol 2018;14:e1006541. [PMID: 30335785 DOI: 10.1371/journal.pcbi.1006541] [Cited by in Crossref: 89] [Cited by in F6Publishing: 60] [Article Influence: 22.3] [Reference Citation Analysis]
77 Lamichhane S, Sen P, Alves MA, Ribeiro HC, Raunioniemi P, Hyötyläinen T, Orešič M. Linking Gut Microbiome and Lipid Metabolism: Moving beyond Associations. Metabolites 2021;11:55. [PMID: 33467644 DOI: 10.3390/metabo11010055] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
78 Dumas ME. Is the way we're dieting wrong? Genome Med 2016;8:7. [PMID: 26794239 DOI: 10.1186/s13073-016-0266-3] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
79 Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, de Los Reyes-Gavilán CG, Salazar N. Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health. Front Microbiol 2016;7:185. [PMID: 26925050 DOI: 10.3389/fmicb.2016.00185] [Cited by in Crossref: 784] [Cited by in F6Publishing: 709] [Article Influence: 130.7] [Reference Citation Analysis]
80 Song M, Chan AT, Sun J. Influence of the Gut Microbiome, Diet, and Environment on Risk of Colorectal Cancer.Gastroenterology. 2020;158:322-340. [PMID: 31586566 DOI: 10.1053/j.gastro.2019.06.048] [Cited by in Crossref: 92] [Cited by in F6Publishing: 86] [Article Influence: 30.7] [Reference Citation Analysis]
81 van der Ark KCH, van Heck RGA, Martins Dos Santos VAP, Belzer C, de Vos WM. More than just a gut feeling: constraint-based genome-scale metabolic models for predicting functions of human intestinal microbes. Microbiome 2017;5:78. [PMID: 28705224 DOI: 10.1186/s40168-017-0299-x] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 7.4] [Reference Citation Analysis]
82 Norsigian CJ, Fang X, Palsson BO, Monk JM. Pangenome Flux Balance Analysis Toward Panphenomes. In: Tettelin H, Medini D, editors. The Pangenome. Cham: Springer International Publishing; 2020. pp. 219-32. [DOI: 10.1007/978-3-030-38281-0_10] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
83 Henson MA, Orazi G, Phalak P, O'Toole GA. Metabolic Modeling of Cystic Fibrosis Airway Communities Predicts Mechanisms of Pathogen Dominance. mSystems 2019;4:e00026-19. [PMID: 31020043 DOI: 10.1128/mSystems.00026-19] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
84 Zhou H, Yu B, Chen H, Chen D. Carbohydrates effects on nutrition and health functions in pigs. Anim Sci J 2021;92:e13557. [PMID: 33899995 DOI: 10.1111/asj.13557] [Reference Citation Analysis]
85 Sheth RU, Cabral V, Chen SP, Wang HH. Manipulating Bacterial Communities by in situ Microbiome Engineering. Trends Genet. 2016;32:189-200. [PMID: 26916078 DOI: 10.1016/j.tig.2016.01.005] [Cited by in Crossref: 127] [Cited by in F6Publishing: 92] [Article Influence: 21.2] [Reference Citation Analysis]
86 Cao X, Hamilton JJ, Venturelli OS. Understanding and Engineering Distributed Biochemical Pathways in Microbial Communities. Biochemistry 2019;58:94-107. [PMID: 30457843 DOI: 10.1021/acs.biochem.8b01006] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
87 Peñalver Bernabé B, Cralle L, Gilbert JA. Systems biology of the human microbiome. Curr Opin Biotechnol 2018;51:146-53. [PMID: 29453029 DOI: 10.1016/j.copbio.2018.01.018] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 4.8] [Reference Citation Analysis]
88 Dao MC, Everard A, Clément K, Cani PD. Losing weight for a better health: Role for the gut microbiota. Clin Nutr Exp 2016;6:39-58. [PMID: 33094147 DOI: 10.1016/j.yclnex.2015.12.001] [Cited by in Crossref: 18] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
89 Molina Ortiz JP, McClure DD, Shanahan ER, Dehghani F, Holmes AJ, Read MN. Enabling rational gut microbiome manipulations by understanding gut ecology through experimentally-evidenced in silico models. Gut Microbes 2021;13:1965698. [PMID: 34455914 DOI: 10.1080/19490976.2021.1965698] [Reference Citation Analysis]
90 Hernandez-Baixauli J, Puigbò P, Torrell H, Palacios-Jordan H, Ripoll VJR, Caimari A, Del Bas JM, Baselga-Escudero L, Mulero M. A Pilot Study for Metabolic Profiling of Obesity-Associated Microbial Gut Dysbiosis in Male Wistar Rats. Biomolecules 2021;11:303. [PMID: 33670496 DOI: 10.3390/biom11020303] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
91 Sun D, Chen Y, Fang JY. Influence of the microbiota on epigenetics in colorectal cancer. Natl Sci Rev 2019;6:1138-48. [PMID: 34691992 DOI: 10.1093/nsr/nwy160] [Cited by in Crossref: 5] [Article Influence: 1.7] [Reference Citation Analysis]
92 Lee S, Zhang C, Liu Z, Klevstig M, Mukhopadhyay B, Bergentall M, Cinar R, Ståhlman M, Sikanic N, Park JK, Deshmukh S, Harzandi AM, Kuijpers T, Grøtli M, Elsässer SJ, Piening BD, Snyder M, Smith U, Nielsen J, Bäckhed F, Kunos G, Uhlen M, Boren J, Mardinoglu A. Network analyses identify liver-specific targets for treating liver diseases. Mol Syst Biol 2017;13:938. [PMID: 28827398 DOI: 10.15252/msb.20177703] [Cited by in Crossref: 59] [Cited by in F6Publishing: 58] [Article Influence: 11.8] [Reference Citation Analysis]
93 Shaffer M, Thurimella K, Quinn K, Doenges K, Zhang X, Bokatzian S, Reisdorph N, Lozupone CA. AMON: annotation of metabolite origins via networks to integrate microbiome and metabolome data. BMC Bioinformatics 2019;20:614. [PMID: 31779604 DOI: 10.1186/s12859-019-3176-8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
94 Hughes RL, Kable ME, Marco M, Keim NL. The Role of the Gut Microbiome in Predicting Response to Diet and the Development of Precision Nutrition Models. Part II: Results. Adv Nutr 2019;10:979-98. [PMID: 31225587 DOI: 10.1093/advances/nmz049] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 9.5] [Reference Citation Analysis]
95 Puccetti M, Xiroudaki S, Ricci M, Giovagnoli S. Postbiotic-Enabled Targeting of the Host-Microbiota-Pathogen Interface: Hints of Antibiotic Decline? Pharmaceutics 2020;12:E624. [PMID: 32635461 DOI: 10.3390/pharmaceutics12070624] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
96 Henson MA, Phalak P. Suboptimal community growth mediated through metabolite crossfeeding promotes species diversity in the gut microbiota. PLoS Comput Biol 2018;14:e1006558. [PMID: 30376571 DOI: 10.1371/journal.pcbi.1006558] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
97 Leggieri PA, Liu Y, Hayes M, Connors B, Seppälä S, O'Malley MA, Venturelli OS. Integrating Systems and Synthetic Biology to Understand and Engineer Microbiomes. Annu Rev Biomed Eng 2021;23:169-201. [PMID: 33781078 DOI: 10.1146/annurev-bioeng-082120-022836] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
98 de Bruijn V, Behr C, Sperber S, Walk T, Ternes P, Slopianka M, Haake V, Beekmann K, van Ravenzwaay B. Antibiotic-Induced Changes in Microbiome-Related Metabolites and Bile Acids in Rat Plasma. Metabolites 2020;10:E242. [PMID: 32545183 DOI: 10.3390/metabo10060242] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
99 Moya A, Ferrer M. Functional Redundancy-Induced Stability of Gut Microbiota Subjected to Disturbance. Trends Microbiol 2016;24:402-13. [PMID: 26996765 DOI: 10.1016/j.tim.2016.02.002] [Cited by in Crossref: 219] [Cited by in F6Publishing: 195] [Article Influence: 36.5] [Reference Citation Analysis]
100 Pallister T, Jackson MA, Martin TC, Glastonbury CA, Jennings A, Beaumont M, Mohney RP, Small KS, MacGregor A, Steves CJ, Cassidy A, Spector TD, Menni C, Valdes AM. Untangling the relationship between diet and visceral fat mass through blood metabolomics and gut microbiome profiling. Int J Obes (Lond) 2017;41:1106-13. [PMID: 28293020 DOI: 10.1038/ijo.2017.70] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 6.8] [Reference Citation Analysis]
101 Bauer E, Thiele I. From Network Analysis to Functional Metabolic Modeling of the Human Gut Microbiota. mSystems 2018;3:e00209-17. [PMID: 29600286 DOI: 10.1128/mSystems.00209-17] [Cited by in Crossref: 50] [Cited by in F6Publishing: 27] [Article Influence: 12.5] [Reference Citation Analysis]
102 Gao H, Zhang W, Wu Z, Wang H, Hui A, Meng L, Chen P, Xian Z, He Y, Li H, Du B, Zhang H. Preparation, characterization and improvement in intestinal function of polysaccharide fractions from okra. Journal of Functional Foods 2018;50:147-57. [DOI: 10.1016/j.jff.2018.09.035] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
103 [DOI: 10.1101/623173] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
104 Arnold JW, Roach J, Azcarate-Peril MA. Emerging Technologies for Gut Microbiome Research. Trends Microbiol 2016;24:887-901. [PMID: 27426971 DOI: 10.1016/j.tim.2016.06.008] [Cited by in Crossref: 91] [Cited by in F6Publishing: 79] [Article Influence: 15.2] [Reference Citation Analysis]
105 Wu Y, Liu W, Li Q, Li Y, Yan Y, Huang F, Wu X, Zhou Q, Shu X, Ruan Z. Dietary chlorogenic acid regulates gut microbiota, serum-free amino acids and colonic serotonin levels in growing pigs. International Journal of Food Sciences and Nutrition 2018;69:566-73. [DOI: 10.1080/09637486.2017.1394449] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]
106 Zheng Y, Wang T, Tu X, Huang Y, Zhang H, Tan D, Jiang W, Cai S, Zhao P, Song R, Li P, Qin N, Fang W. Gut microbiome affects the response to anti-PD-1 immunotherapy in patients with hepatocellular carcinoma. J Immunother Cancer. 2019;7:193. [PMID: 31337439 DOI: 10.1186/s40425-019-0650-9] [Cited by in Crossref: 80] [Cited by in F6Publishing: 82] [Article Influence: 26.7] [Reference Citation Analysis]
107 Ghaffari P, Mardinoglu A, Nielsen J. Cancer Metabolism: A Modeling Perspective. Front Physiol 2015;6:382. [PMID: 26733270 DOI: 10.3389/fphys.2015.00382] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 4.7] [Reference Citation Analysis]
108 Verma M. Mechanistic and Technical Challenges in Studying the Human Microbiome and Cancer Epidemiology. Technol Cancer Res Treat 2017;16:150-8. [PMID: 27121074 DOI: 10.1177/1533034616645219] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
109 Clavel T, Lagkouvardos I, Hiergeist A. Microbiome sequencing: challenges and opportunities for molecular medicine. Expert Review of Molecular Diagnostics 2016;16:795-805. [DOI: 10.1080/14737159.2016.1184574] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 4.2] [Reference Citation Analysis]
110 van Beek JH, Kirkwood TB, Bassingthwaighte JB. Understanding the physiology of the ageing individual: computational modelling of changes in metabolism and endurance. Interface Focus 2016;6:20150079. [PMID: 27051508 DOI: 10.1098/rsfs.2015.0079] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 2.7] [Reference Citation Analysis]
111 Shen G, Wu J, Ye BC, Qi N. Gut Microbiota-Derived Metabolites in the Development of Diseases. Can J Infect Dis Med Microbiol 2021;2021:6658674. [PMID: 33505541 DOI: 10.1155/2021/6658674] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
112 Maskarinec G, Raquinio P, Kristal BS, Setiawan VW, Wilkens LR, Franke AA, Lim U, Le Marchand L, Randolph TW, Lampe JW, Hullar MAJ. The gut microbiome and type 2 diabetes status in the Multiethnic Cohort. PLoS One 2021;16:e0250855. [PMID: 34161346 DOI: 10.1371/journal.pone.0250855] [Reference Citation Analysis]
113 Devika NT, Raman K. Deciphering the metabolic capabilities of Bifidobacteria using genome-scale metabolic models. Sci Rep 2019;9:18222. [PMID: 31796826 DOI: 10.1038/s41598-019-54696-9] [Cited by in Crossref: 26] [Cited by in F6Publishing: 8] [Article Influence: 8.7] [Reference Citation Analysis]
114 Estrela S, Brown SP. Community interactions and spatial structure shape selection on antibiotic resistant lineages. PLoS Comput Biol 2018;14:e1006179. [PMID: 29927925 DOI: 10.1371/journal.pcbi.1006179] [Cited by in Crossref: 38] [Cited by in F6Publishing: 28] [Article Influence: 9.5] [Reference Citation Analysis]
115 Lamichhane S, Sen P, Dickens AM, Orešič M, Bertram HC. Gut metabolome meets microbiome: A methodological perspective to understand the relationship between host and microbe. Methods 2018;149:3-12. [PMID: 29715508 DOI: 10.1016/j.ymeth.2018.04.029] [Cited by in Crossref: 54] [Cited by in F6Publishing: 46] [Article Influence: 13.5] [Reference Citation Analysis]
116 Luo H, Wu H, Wang L, Xiao S, Lu Y, Liu C, Yu X, Zhang X, Wang Z, Tang L. Hepatoprotective effects of Cassiae Semen on mice with non-alcoholic fatty liver disease based on gut microbiota. Commun Biol 2021;4:1357. [PMID: 34862475 DOI: 10.1038/s42003-021-02883-8] [Reference Citation Analysis]
117 Zaramela LS, Moyne O, Kumar M, Zuniga C, Tibocha-Bonilla JD, Zengler K. The sum is greater than the parts: exploiting microbial communities to achieve complex functions. Curr Opin Biotechnol 2021;67:149-57. [PMID: 33561703 DOI: 10.1016/j.copbio.2021.01.013] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
118 Martin FJ, Kussmann M. Bioactive host-microbial metabolites in human nutrition with a focus on aromatic amino acid co-metabolism. In: Kussmann M, Stover PJ, editors. Nutrigenomics and Proteomics in Health and Disease. Chichester: John Wiley & Sons, Ltd; 2017. pp. 258-74. [DOI: 10.1002/9781119101277.ch12] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
119 Lee S, Zhang C, Kilicarslan M, Piening BD, Bjornson E, Hallström BM, Groen AK, Ferrannini E, Laakso M, Snyder M, Blüher M, Uhlen M, Nielsen J, Smith U, Serlie MJ, Boren J, Mardinoglu A. Integrated Network Analysis Reveals an Association between Plasma Mannose Levels and Insulin Resistance. Cell Metab 2016;24:172-84. [PMID: 27345421 DOI: 10.1016/j.cmet.2016.05.026] [Cited by in Crossref: 91] [Cited by in F6Publishing: 84] [Article Influence: 15.2] [Reference Citation Analysis]
120 Baird PN, Hysi P. Twin Registries Moving Forward and Meeting the Future: A Review. Twin Res Hum Genet 2019;22:201-9. [PMID: 31498057 DOI: 10.1017/thg.2019.53] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
121 Lamichhane S, Sen P, Dickens AM, Hyötyläinen T, Orešič M. An Overview of Metabolomics Data Analysis: Current Tools and Future Perspectives. Data Analysis for Omic Sciences: Methods and Applications. Elsevier; 2018. pp. 387-413. [DOI: 10.1016/bs.coac.2018.07.001] [Cited by in Crossref: 15] [Cited by in F6Publishing: 6] [Article Influence: 3.8] [Reference Citation Analysis]
122 Liao X, Liu B, Qu H, Zhang L, Lu Y, Xu Y, Lyu Z, Zheng H. A High Level of Circulating Valine Is a Biomarker for Type 2 Diabetes and Associated with the Hypoglycemic Effect of Sitagliptin. Mediators Inflamm 2019;2019:8247019. [PMID: 31827381 DOI: 10.1155/2019/8247019] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
123 Bajpai P, Darra A, Agrawal A. Microbe-mitochondrion crosstalk and health: An emerging paradigm. Mitochondrion 2018;39:20-5. [PMID: 28838618 DOI: 10.1016/j.mito.2017.08.008] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 4.2] [Reference Citation Analysis]
124 Yan Q, Gu Y, Li X, Yang W, Jia L, Chen C, Han X, Huang Y, Zhao L, Li P, Fang Z, Zhou J, Guan X, Ding Y, Wang S, Khan M, Xin Y, Li S, Ma Y. Alterations of the Gut Microbiome in Hypertension. Front Cell Infect Microbiol 2017;7:381. [PMID: 28884091 DOI: 10.3389/fcimb.2017.00381] [Cited by in Crossref: 137] [Cited by in F6Publishing: 127] [Article Influence: 27.4] [Reference Citation Analysis]
125 Turanli B, Grøtli M, Boren J, Nielsen J, Uhlen M, Arga KY, Mardinoglu A. Drug Repositioning for Effective Prostate Cancer Treatment. Front Physiol 2018;9:500. [PMID: 29867548 DOI: 10.3389/fphys.2018.00500] [Cited by in Crossref: 33] [Cited by in F6Publishing: 24] [Article Influence: 8.3] [Reference Citation Analysis]
126 Chan, Friedman, Wu, Maranas. Predicting the Longitudinally and Radially Varying Gut Microbiota Composition Using Multi-Scale Microbial Metabolic Modeling. Processes 2019;7:394. [DOI: 10.3390/pr7070394] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 3.3] [Reference Citation Analysis]
127 Le Roy CI, Bowyer RCE, Castillo-Fernandez JE, Pallister T, Menni C, Steves CJ, Berry SE, Spector TD, Bell JT. Dissecting the role of the gut microbiota and diet on visceral fat mass accumulation. Sci Rep 2019;9:9758. [PMID: 31278309 DOI: 10.1038/s41598-019-46193-w] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 6.7] [Reference Citation Analysis]
128 Chilloux J, Neves AL, Boulangé CL, Dumas ME. The microbial-mammalian metabolic axis: a critical symbiotic relationship. Curr Opin Clin Nutr Metab Care 2016;19:250-6. [PMID: 27137897 DOI: 10.1097/MCO.0000000000000284] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 3.3] [Reference Citation Analysis]
129 Kumar M, Babaei P, Ji B, Nielsen J. Human gut microbiota and healthy aging: Recent developments and future prospective. Nutr Healthy Aging. 2016;4:3-16. [PMID: 28035338 DOI: 10.3233/nha-150002] [Cited by in Crossref: 70] [Cited by in F6Publishing: 34] [Article Influence: 11.7] [Reference Citation Analysis]
130 Rosario D, Benfeitas R, Bidkhori G, Zhang C, Uhlen M, Shoaie S, Mardinoglu A. Understanding the Representative Gut Microbiota Dysbiosis in Metformin-Treated Type 2 Diabetes Patients Using Genome-Scale Metabolic Modeling. Front Physiol. 2018;9:775. [PMID: 29988585 DOI: 10.3389/fphys.2018.00775] [Cited by in Crossref: 36] [Cited by in F6Publishing: 29] [Article Influence: 9.0] [Reference Citation Analysis]
131 Chellapandi P, Bharathi M, Sangavai C, Prathiviraj R. Methanobacterium formicicum as a target rumen methanogen for the development of new methane mitigation interventions: A review. Vet Anim Sci 2018;6:86-94. [PMID: 32734058 DOI: 10.1016/j.vas.2018.09.001] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
132 Faruque S, Tong J, Lacmanovic V, Agbonghae C, Minaya DM, Czaja K. The Dose Makes the Poison: Sugar and Obesity in the United States - a Review. Pol J Food Nutr Sci 2019;69:219-33. [PMID: 31938015 DOI: 10.31883/pjfns/110735] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
133 Tramontano M, Andrejev S, Pruteanu M, Klünemann M, Kuhn M, Galardini M, Jouhten P, Zelezniak A, Zeller G, Bork P, Typas A, Patil KR. Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies. Nat Microbiol 2018;3:514-22. [PMID: 29556107 DOI: 10.1038/s41564-018-0123-9] [Cited by in Crossref: 97] [Cited by in F6Publishing: 77] [Article Influence: 24.3] [Reference Citation Analysis]
134 Zhang X, Browman G, Siu W, Basen-Engquist KM, Hanash SM, Hoffman KL, Okhuysen PC, Scheet P, Petrosino JF, Kopetz S, Daniel CR. The BE GONE trial study protocol: a randomized crossover dietary intervention of dry beans targeting the gut microbiome of overweight and obese patients with a history of colorectal polyps or cancer. BMC Cancer 2019;19:1233. [PMID: 31852462 DOI: 10.1186/s12885-019-6400-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
135 Koh A, Molinaro A, Ståhlman M, Khan MT, Schmidt C, Mannerås-holm L, Wu H, Carreras A, Jeong H, Olofsson LE, Bergh P, Gerdes V, Hartstra A, de Brauw M, Perkins R, Nieuwdorp M, Bergström G, Bäckhed F. Microbially Produced Imidazole Propionate Impairs Insulin Signaling through mTORC1. Cell 2018;175:947-961.e17. [DOI: 10.1016/j.cell.2018.09.055] [Cited by in Crossref: 199] [Cited by in F6Publishing: 185] [Article Influence: 49.8] [Reference Citation Analysis]
136 Bassignani A, Plancade S, Berland M, Blein-Nicolas M, Guillot A, Chevret D, Moritz C, Huet S, Rizkalla S, Clément K, Doré J, Langella O, Juste C. Benefits of Iterative Searches of Large Databases to Interpret Large Human Gut Metaproteomic Data Sets. J Proteome Res 2021;20:1522-34. [PMID: 33528260 DOI: 10.1021/acs.jproteome.0c00669] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
137 Xiao HH, Sham TT, Chan CO, Li MH, Chen X, Wu QC, Mok DK, Yao XS, Wong MS. A Metabolomics Study on the Bone Protective Effects of a Lignan-Rich Fraction From Sambucus Williamsii Ramulus in Aged Rats. Front Pharmacol 2018;9:932. [PMID: 30186170 DOI: 10.3389/fphar.2018.00932] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
138 Vijayakumar S, Conway M, Lió P, Angione C. Seeing the wood for the trees: a forest of methods for optimization and omic-network integration in metabolic modelling. Brief Bioinform 2018;19:1218-35. [PMID: 28575143 DOI: 10.1093/bib/bbx053] [Cited by in Crossref: 9] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
139 Qiang W, Xuan H, Yu S, Hailun P, Yueli Z, Zhiguo P, Lei S. Impact of the gut microbiota on heat stroke rat mediated by Xuebijing metabolism. Microb Pathog 2021;155:104861. [PMID: 33864878 DOI: 10.1016/j.micpath.2021.104861] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
140 Brennan L. Use of metabotyping for optimal nutrition. Curr Opin Biotechnol 2017;44:35-8. [PMID: 27835796 DOI: 10.1016/j.copbio.2016.10.008] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
141 Wu G, Chen L, Gu Y, Hong Y, Ma J, Zheng N, Zhong J, Liu AJ, Sheng L, Zhang W, Li H. Exploring the mechanism underlying the cardioprotective effect of shexiang baoxin pill on acute myocardial infarction rats by comprehensive metabolomics. J Ethnopharmacol 2020;259:113001. [PMID: 32464316 DOI: 10.1016/j.jep.2020.113001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
142 Yang MJ, Cheng ZX, Jiang M, Zeng ZH, Peng B, Peng XX, Li H. Boosted TCA cycle enhances survival of zebrafish to Vibrio alginolyticus infection. Virulence 2018;9:634-44. [PMID: 29338666 DOI: 10.1080/21505594.2017.1423188] [Cited by in Crossref: 29] [Cited by in F6Publishing: 20] [Article Influence: 7.3] [Reference Citation Analysis]
143 Cai J, Tan T, Joshua Chan SH. Predicting Nash equilibria for microbial metabolic interactions. Bioinformatics 2020:btaa1014. [PMID: 33315094 DOI: 10.1093/bioinformatics/btaa1014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
144 Su Q, Liu Q. Factors Affecting Gut Microbiome in Daily Diet. Front Nutr 2021;8:644138. [PMID: 34041257 DOI: 10.3389/fnut.2021.644138] [Reference Citation Analysis]
145 Yang Y, Wang X, Xie K, Zhu C, Chen N, Chen T. kLDM: Inferring Multiple Metagenomic Association Networks based on the Variation of Environmental Factors. Genomics Proteomics Bioinformatics 2021:S1672-0229(21)00020-6. [PMID: 33607296 DOI: 10.1016/j.gpb.2020.06.015] [Reference Citation Analysis]
146 Wang F, Chandler PD, Zeleznik OA, Wu K, Wu Y, Yin K, Song R, Avila-pacheco J, Clish CB, Meyerhardt JA, Zhang X, Song M, Ogino S, Lee I, Eliassen AH, Liang L, Smith-warner SA, Willett WC, Giovannucci EL. Plasma Metabolite Profiles of Red Meat, Poultry, and Fish Consumption, and Their Associations with Colorectal Cancer Risk. Nutrients 2022;14:978. [DOI: 10.3390/nu14050978] [Reference Citation Analysis]
147 Sieow BF, Nurminen TJ, Ling H, Chang MW. Meta-Omics- and Metabolic Modeling-Assisted Deciphering of Human Microbiota Metabolism. Biotechnol J 2019;14:e1800445. [PMID: 31144773 DOI: 10.1002/biot.201800445] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
148 Nilsson A, Nielsen J. Genome scale metabolic modeling of cancer. Metab Eng 2017;43:103-12. [PMID: 27825806 DOI: 10.1016/j.ymben.2016.10.022] [Cited by in Crossref: 44] [Cited by in F6Publishing: 32] [Article Influence: 7.3] [Reference Citation Analysis]
149 Mardinoglu A, Heiker JT, Gärtner D, Björnson E, Schön MR, Flehmig G, Klöting N, Krohn K, Fasshauer M, Stumvoll M, Nielsen J, Blüher M. Extensive weight loss reveals distinct gene expression changes in human subcutaneous and visceral adipose tissue. Sci Rep 2015;5:14841. [PMID: 26434764 DOI: 10.1038/srep14841] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 6.3] [Reference Citation Analysis]
150 Rosario D, Bidkhori G, Lee S, Bedarf J, Hildebrand F, Le Chatelier E, Uhlen M, Ehrlich SD, Proctor G, Wüllner U, Mardinoglu A, Shoaie S. Systematic analysis of gut microbiome reveals the role of bacterial folate and homocysteine metabolism in Parkinson's disease. Cell Rep 2021;34:108807. [PMID: 33657381 DOI: 10.1016/j.celrep.2021.108807] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
151 Palau-Rodriguez M, Tulipani S, Isabel Queipo-Ortuño M, Urpi-Sarda M, Tinahones FJ, Andres-Lacueva C. Metabolomic insights into the intricate gut microbial-host interaction in the development of obesity and type 2 diabetes. Front Microbiol 2015;6:1151. [PMID: 26579078 DOI: 10.3389/fmicb.2015.01151] [Cited by in F6Publishing: 62] [Reference Citation Analysis]
152 Mukherjee A, Lordan C, Ross RP, Cotter PD. Gut microbes from the phylogenetically diverse genus Eubacterium and their various contributions to gut health. Gut Microbes 2020;12:1802866. [PMID: 32835590 DOI: 10.1080/19490976.2020.1802866] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 18.0] [Reference Citation Analysis]
153 Mussap M, Noto A, Piras C, Atzori L, Fanos V. Slotting metabolomics into routine precision medicine. Expert Review of Precision Medicine and Drug Development 2021;6:173-87. [DOI: 10.1080/23808993.2021.1911639] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
154 Bifari F, Ruocco C, Decimo I, Fumagalli G, Valerio A, Nisoli E. Amino acid supplements and metabolic health: a potential interplay between intestinal microbiota and systems control. Genes Nutr 2017;12:27. [PMID: 29043007 DOI: 10.1186/s12263-017-0582-2] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 5.2] [Reference Citation Analysis]
155 Guillén Y, Noguera-Julian M, Rivera J, Casadellà M, Zevin AS, Rocafort M, Parera M, Rodríguez C, Arumí M, Carrillo J, Mothe B, Estany C, Coll J, Bravo I, Herrero C, Saz J, Sirera G, Torrella A, Navarro J, Crespo M, Negredo E, Brander C, Blanco J, Calle ML, Klatt NR, Clotet B, Paredes R. Low nadir CD4+ T-cell counts predict gut dysbiosis in HIV-1 infection. Mucosal Immunol 2019;12:232-46. [PMID: 30171206 DOI: 10.1038/s41385-018-0083-7] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 7.5] [Reference Citation Analysis]
156 Yang WS, Zeng XF, Liu ZN, Zhao QH, Tan YT, Gao J, Li HL, Xiang YB. Diet and liver cancer risk: a narrative review of epidemiological evidence. Br J Nutr 2020;124:330-40. [PMID: 32234090 DOI: 10.1017/S0007114520001208] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
157 Zengler K, Zaramela LS. The social network of microorganisms - how auxotrophies shape complex communities. Nat Rev Microbiol 2018;16:383-90. [PMID: 29599459 DOI: 10.1038/s41579-018-0004-5] [Cited by in Crossref: 119] [Cited by in F6Publishing: 94] [Article Influence: 39.7] [Reference Citation Analysis]
158 Wolff SM, Ellison MJ, Hao Y, Cockrum RR, Austin KJ, Baraboo M, Burch K, Lee HJ, Maurer T, Patil R, Ravelo A, Taxis TM, Truong H, Lamberson WR, Cammack KM, Conant GC. Diet shifts provoke complex and variable changes in the metabolic networks of the ruminal microbiome. Microbiome 2017;5:60. [PMID: 28595639 DOI: 10.1186/s40168-017-0274-6] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 3.4] [Reference Citation Analysis]
159 Babaei P, Shoaie S, Ji B, Nielsen J. Challenges in modeling the human gut microbiome. Nat Biotechnol 2018;36:682-6. [PMID: 30080831 DOI: 10.1038/nbt.4213] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 5.3] [Reference Citation Analysis]
160 Sung J, Kim S, Cabatbat JJT, Jang S, Jin YS, Jung GY, Chia N, Kim PJ. Global metabolic interaction network of the human gut microbiota for context-specific community-scale analysis. Nat Commun 2017;8:15393. [PMID: 28585563 DOI: 10.1038/ncomms15393] [Cited by in Crossref: 100] [Cited by in F6Publishing: 86] [Article Influence: 20.0] [Reference Citation Analysis]
161 Heirendt L, Arreckx S, Pfau T, Mendoza SN, Richelle A, Heinken A, Haraldsdóttir HS, Wachowiak J, Keating SM, Vlasov V, Magnusdóttir S, Ng CY, Preciat G, Žagare A, Chan SHJ, Aurich MK, Clancy CM, Modamio J, Sauls JT, Noronha A, Bordbar A, Cousins B, El Assal DC, Valcarcel LV, Apaolaza I, Ghaderi S, Ahookhosh M, Ben Guebila M, Kostromins A, Sompairac N, Le HM, Ma D, Sun Y, Wang L, Yurkovich JT, Oliveira MAP, Vuong PT, El Assal LP, Kuperstein I, Zinovyev A, Hinton HS, Bryant WA, Aragón Artacho FJ, Planes FJ, Stalidzans E, Maass A, Vempala S, Hucka M, Saunders MA, Maranas CD, Lewis NE, Sauter T, Palsson BØ, Thiele I, Fleming RMT. Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0. Nat Protoc 2019;14:639-702. [PMID: 30787451 DOI: 10.1038/s41596-018-0098-2] [Cited by in Crossref: 317] [Cited by in F6Publishing: 224] [Article Influence: 105.7] [Reference Citation Analysis]
162 Norvaisas P, Cabreiro F. Pharmacology in the age of the holobiont. Current Opinion in Systems Biology 2018;10:34-42. [DOI: 10.1016/j.coisb.2018.05.006] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
163 Son JW, Shoaie S, Lee S. Systems Biology: A Multi-Omics Integration Approach to Metabolism and the Microbiome. Endocrinol Metab (Seoul) 2020;35:507-14. [PMID: 32981293 DOI: 10.3803/EnM.2020.303] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
164 Witherden EA, Moyes DL, Bruce KD, Ehrlich SD, Shoaie S. Using systems biology approaches to elucidate cause and effect in host–microbiome interactions. Current Opinion in Systems Biology 2017;3:141-6. [DOI: 10.1016/j.coisb.2017.05.003] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
165 Schmidt TSB, Raes J, Bork P. The Human Gut Microbiome: From Association to Modulation. Cell 2018;172:1198-215. [PMID: 29522742 DOI: 10.1016/j.cell.2018.02.044] [Cited by in Crossref: 285] [Cited by in F6Publishing: 238] [Article Influence: 95.0] [Reference Citation Analysis]
166 Kumar M, Ji B, Zengler K, Nielsen J. Modelling approaches for studying the microbiome. Nat Microbiol 2019;4:1253-67. [PMID: 31337891 DOI: 10.1038/s41564-019-0491-9] [Cited by in Crossref: 38] [Cited by in F6Publishing: 31] [Article Influence: 12.7] [Reference Citation Analysis]
167 Amato KR. An introduction to microbiome analysis for human biology applications. Am J Hum Biol 2017;29. [PMID: 27762069 DOI: 10.1002/ajhb.22931] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
168 García-Jiménez B, Torres-Bacete J, Nogales J. Metabolic modelling approaches for describing and engineering microbial communities. Comput Struct Biotechnol J 2021;19:226-46. [PMID: 33425254 DOI: 10.1016/j.csbj.2020.12.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
169 Sepich-Poore GD, Guccione C, Laplane L, Pradeu T, Curtius K, Knight R. Cancer's second genome: Microbial cancer diagnostics and redefining clonal evolution as a multispecies process: Humans and their tumors are not aseptic, and the multispecies nature of cancer modulates clinical care and clonal evolution. Bioessays 2022;:e2100252. [PMID: 35253252 DOI: 10.1002/bies.202100252] [Reference Citation Analysis]
170 Spacova I, Dodiya HB, Happel AU, Strain C, Vandenheuvel D, Wang X, Reid G. Future of Probiotics and Prebiotics and the Implications for Early Career Researchers. Front Microbiol 2020;11:1400. [PMID: 32714306 DOI: 10.3389/fmicb.2020.01400] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
171 Rosario D, Boren J, Uhlen M, Proctor G, Aarsland D, Mardinoglu A, Shoaie S. Systems Biology Approaches to Understand the Host-Microbiome Interactions in Neurodegenerative Diseases. Front Neurosci 2020;14:716. [PMID: 32733199 DOI: 10.3389/fnins.2020.00716] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
172 Zhang C, Hua Q. Applications of Genome-Scale Metabolic Models in Biotechnology and Systems Medicine. Front Physiol 2015;6:413. [PMID: 26779040 DOI: 10.3389/fphys.2015.00413] [Cited by in Crossref: 57] [Cited by in F6Publishing: 58] [Article Influence: 9.5] [Reference Citation Analysis]
173 Esvap E, Ulgen KO. Advances in Genome-Scale Metabolic Modeling toward Microbial Community Analysis of the Human Microbiome. ACS Synth Biol 2021;10:2121-37. [PMID: 34402617 DOI: 10.1021/acssynbio.1c00140] [Reference Citation Analysis]
174 Mohr AE, Gumpricht E, Sears DD, Sweazea KL. Recent advances and health implications of dietary fasting regimens on the gut microbiome. Am J Physiol Gastrointest Liver Physiol 2021;320:G847-63. [PMID: 33729005 DOI: 10.1152/ajpgi.00475.2020] [Reference Citation Analysis]
175 Martin FJ, Montoliu I, Kussmann M. Metabonomics of ageing – Towards understanding metabolism of a long and healthy life. Mechanisms of Ageing and Development 2017;165:171-9. [DOI: 10.1016/j.mad.2016.12.009] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
176 Sakowski E, Uritskiy G, Cooper R, Gomes M, McLaren MR, Meisel JS, Mickol RL, Mintz CD, Mongodin EF, Pop M, Rahman MA, Sanchez A, Timp W, Vela JD, Wolz CM, Zackular JP, Chopyk J, Commichaux S, Davis M, Dluzen D, Ganesan SM, Haruna M, Nasko D, Regan MJ, Sarria S, Shah N, Stacy B, Taylor D, DiRuggiero J, Preheim SP. Current State of and Future Opportunities for Prediction in Microbiome Research: Report from the Mid-Atlantic Microbiome Meet-up in Baltimore on 9 January 2019. mSystems 2019;4:e00392-19. [PMID: 31594828 DOI: 10.1128/mSystems.00392-19] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
177 Geng J, Ji B, Li G, López-Isunza F, Nielsen J. CODY enables quantitatively spatiotemporal predictions on in vivo gut microbial variability induced by diet intervention. Proc Natl Acad Sci U S A 2021;118:e2019336118. [PMID: 33753486 DOI: 10.1073/pnas.2019336118] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
178 Henry CS, Bernstein HC, Weisenhorn P, Taylor RC, Lee JY, Zucker J, Song HS. Microbial Community Metabolic Modeling: A Community Data-Driven Network Reconstruction. J Cell Physiol 2016;231:2339-45. [PMID: 27186840 DOI: 10.1002/jcp.25428] [Cited by in Crossref: 53] [Cited by in F6Publishing: 44] [Article Influence: 8.8] [Reference Citation Analysis]
179 Kreft JU. Editorial: The microbiome as a source of new enterprises and job creation. Microb Biotechnol 2018;11:145-8. [PMID: 29205849 DOI: 10.1111/1751-7915.13026] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
180 Mardinoglu A, Boren J, Smith U, Uhlen M, Nielsen J. Systems biology in hepatology: approaches and applications. Nat Rev Gastroenterol Hepatol. 2018;15:365-377. [PMID: 29686404 DOI: 10.1038/s41575-018-0007-8] [Cited by in Crossref: 54] [Cited by in F6Publishing: 48] [Article Influence: 18.0] [Reference Citation Analysis]
181 Xie C, Halegoua-DeMarzio D. Role of Probiotics in Non-alcoholic Fatty Liver Disease: Does Gut Microbiota Matter? Nutrients. 2019;11. [PMID: 31752378 DOI: 10.3390/nu11112837] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
182 Shan Z, Li Y, Zong G, Guo Y, Li J, Manson JE, Hu FB, Willett WC, Schernhammer ES, Bhupathiraju SN. Rotating night shift work and adherence to unhealthy lifestyle in predicting risk of type 2 diabetes: results from two large US cohorts of female nurses. BMJ. 2018;363:k4641. [PMID: 30464025 DOI: 10.1136/bmj.k4641] [Cited by in Crossref: 52] [Cited by in F6Publishing: 45] [Article Influence: 13.0] [Reference Citation Analysis]
183 Harrison CA, Taren D. How poverty affects diet to shape the microbiota and chronic disease. Nat Rev Immunol 2018;18:279-87. [PMID: 29109542 DOI: 10.1038/nri.2017.121] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
184 Dumas ME, Rothwell AR, Hoyles L, Aranias T, Chilloux J, Calderari S, Noll EM, Péan N, Boulangé CL, Blancher C, Barton RH, Gu Q, Fearnside JF, Deshayes C, Hue C, Scott J, Nicholson JK, Gauguier D. Microbial-Host Co-metabolites Are Prodromal Markers Predicting Phenotypic Heterogeneity in Behavior, Obesity, and Impaired Glucose Tolerance. Cell Rep 2017;20:136-48. [PMID: 28683308 DOI: 10.1016/j.celrep.2017.06.039] [Cited by in Crossref: 51] [Cited by in F6Publishing: 41] [Article Influence: 12.8] [Reference Citation Analysis]
185 Frioux C, Singh D, Korcsmaros T, Hildebrand F. From bag-of-genes to bag-of-genomes: metabolic modelling of communities in the era of metagenome-assembled genomes. Comput Struct Biotechnol J 2020;18:1722-34. [PMID: 32670511 DOI: 10.1016/j.csbj.2020.06.028] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
186 Shestakova EA, Pokrovskaya EV, Samsonova MD. Different approaches to change gut microbiota and its influence on metabolic disorders. Consilium Medicum 2021;23:905-9. [DOI: 10.26442/20751753.2021.12.201289] [Reference Citation Analysis]
187 Zhang X, Shao H, Zheng X. Amino acids at the intersection of nutrition and insulin sensitivity. Drug Discov Today 2019;24:1038-43. [PMID: 30818029 DOI: 10.1016/j.drudis.2019.02.008] [Reference Citation Analysis]
188 Bischoff SC, Boirie Y, Cederholm T, Chourdakis M, Cuerda C, Delzenne NM, Deutz NE, Fouque D, Genton L, Gil C, Koletzko B, Leon-sanz M, Shamir R, Singer J, Singer P, Stroebele-benschop N, Thorell A, Weimann A, Barazzoni R. Towards a multidisciplinary approach to understand and manage obesity and related diseases. Clinical Nutrition 2017;36:917-38. [DOI: 10.1016/j.clnu.2016.11.007] [Cited by in Crossref: 83] [Cited by in F6Publishing: 72] [Article Influence: 16.6] [Reference Citation Analysis]
189 Volkova S, Matos MRA, Mattanovich M, Marín de Mas I. Metabolic Modelling as a Framework for Metabolomics Data Integration and Analysis. Metabolites 2020;10:E303. [PMID: 32722118 DOI: 10.3390/metabo10080303] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 7.5] [Reference Citation Analysis]
190 Dix A, Vlaic S, Guthke R, Linde J. Use of systems biology to decipher host-pathogen interaction networks and predict biomarkers. Clin Microbiol Infect 2016;22:600-6. [PMID: 27113568 DOI: 10.1016/j.cmi.2016.04.014] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
191 Liu D, Wen B, Zhu K, Luo Y, Li J, Li Y, Lin H, Huang J, Liu Z. Antibiotics-induced perturbations in gut microbial diversity influence metabolic phenotypes in a murine model of high-fat diet-induced obesity. Appl Microbiol Biotechnol 2019;103:5269-83. [PMID: 31020379 DOI: 10.1007/s00253-019-09764-5] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 6.7] [Reference Citation Analysis]
192 Antoniewicz MR. A guide to deciphering microbial interactions and metabolic fluxes in microbiome communities. Curr Opin Biotechnol 2020;64:230-7. [PMID: 32711357 DOI: 10.1016/j.copbio.2020.07.001] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 7.5] [Reference Citation Analysis]
193 Good BH, Hallatschek O. Effective models and the search for quantitative principles in microbial evolution. Curr Opin Microbiol 2018;45:203-12. [PMID: 30530175 DOI: 10.1016/j.mib.2018.11.005] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
194 Hoek MJAV, Merks RMH. Emergence of microbial diversity due to cross-feeding interactions in a spatial model of gut microbial metabolism. BMC Syst Biol 2017;11:56. [PMID: 28511646 DOI: 10.1186/s12918-017-0430-4] [Cited by in Crossref: 46] [Cited by in F6Publishing: 39] [Article Influence: 9.2] [Reference Citation Analysis]
195 Yue S, Zhao D, Peng C, Tan C, Wang Q, Gong J. Effects of theabrownin on serum metabolites and gut microbiome in rats with a high-sugar diet. Food Funct 2019;10:7063-80. [PMID: 31621728 DOI: 10.1039/c9fo01334b] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 5.3] [Reference Citation Analysis]
196 Greathouse KL, Faucher MA, Hastings-Tolsma M. The Gut Microbiome, Obesity, and Weight Control in Women's Reproductive Health. West J Nurs Res 2017;39:1094-119. [PMID: 28303750 DOI: 10.1177/0193945917697223] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
197 Thiele I, Clancy CM, Heinken A, Fleming RMT. Quantitative systems pharmacology and the personalized drug-microbiota-diet axis. Curr Opin Syst Biol 2017;4:43-52. [PMID: 32984662 DOI: 10.1016/j.coisb.2017.06.001] [Cited by in Crossref: 29] [Cited by in F6Publishing: 14] [Article Influence: 5.8] [Reference Citation Analysis]
198 Li J, Guasch-Ferré M, Chung W, Ruiz-Canela M, Toledo E, Corella D, Bhupathiraju SN, Tobias DK, Tabung FK, Hu J, Zhao T, Turman C, Feng YA, Clish CB, Mucci L, Eliassen AH, Costenbader KH, Karlson EW, Wolpin BM, Ascherio A, Rimm EB, Manson JE, Qi L, Martínez-González MÁ, Salas-Salvadó J, Hu FB, Liang L. The Mediterranean diet, plasma metabolome, and cardiovascular disease risk. Eur Heart J 2020;41:2645-56. [PMID: 32406924 DOI: 10.1093/eurheartj/ehaa209] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 27.0] [Reference Citation Analysis]
199 Bauer E, Zimmermann J, Baldini F, Thiele I, Kaleta C. BacArena: Individual-based metabolic modeling of heterogeneous microbes in complex communities. PLoS Comput Biol 2017;13:e1005544. [PMID: 28531184 DOI: 10.1371/journal.pcbi.1005544] [Cited by in Crossref: 100] [Cited by in F6Publishing: 84] [Article Influence: 20.0] [Reference Citation Analysis]
200 Hughes RL, Marco ML, Hughes JP, Keim NL, Kable ME. The Role of the Gut Microbiome in Predicting Response to Diet and the Development of Precision Nutrition Models-Part I: Overview of Current Methods. Adv Nutr 2019;10:953-78. [PMID: 31225589 DOI: 10.1093/advances/nmz022] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 15.0] [Reference Citation Analysis]
201 Jean-Pierre F, Henson MA, O'Toole GA. Metabolic Modeling to Interrogate Microbial Disease: A Tale for Experimentalists. Front Mol Biosci 2021;8:634479. [PMID: 33681294 DOI: 10.3389/fmolb.2021.634479] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
202 Saa PA, Nielsen LK. Fast-SNP: a fast matrix pre-processing algorithm for efficient loopless flux optimization of metabolic models. Bioinformatics 2016;32:3807-14. [PMID: 27559155 DOI: 10.1093/bioinformatics/btw555] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
203 Aron-Wisnewsky J, Clément K. A place for vitamin supplementation and functional food in bariatric surgery? Curr Opin Clin Nutr Metab Care 2019;22:442-8. [PMID: 31589176 DOI: 10.1097/MCO.0000000000000602] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
204 Zhang X, Kuivenhoven JA, Groen AK. Forward Individualized Medicine from Personal Genomes to Interactomes. Front Physiol 2015;6:364. [PMID: 26696898 DOI: 10.3389/fphys.2015.00364] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
205 Smirnov KS, Maier TV, Walker A, Heinzmann SS, Forcisi S, Martinez I, Walter J, Schmitt-Kopplin P. Challenges of metabolomics in human gut microbiota research. Int J Med Microbiol 2016;306:266-79. [PMID: 27012595 DOI: 10.1016/j.ijmm.2016.03.006] [Cited by in Crossref: 77] [Cited by in F6Publishing: 70] [Article Influence: 12.8] [Reference Citation Analysis]
206 Ma Y, Sun Y, Sun L, Liu X, Zeng R, Lin X, Li Y. Effects of gut microbiota and fatty acid metabolism on dyslipidemia following weight-loss diets in women: Results from a randomized controlled trial. Clin Nutr 2021;40:5511-20. [PMID: 34656033 DOI: 10.1016/j.clnu.2021.09.021] [Reference Citation Analysis]
207 Kristensen NB, Bryrup T, Allin KH, Nielsen T, Hansen TH, Pedersen O. Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: a systematic review of randomized controlled trials. Genome Med. 2016;8:52. [PMID: 27159972 DOI: 10.1186/s13073-016-0300-5] [Cited by in Crossref: 249] [Cited by in F6Publishing: 225] [Article Influence: 41.5] [Reference Citation Analysis]
208 Liu R, Hong J, Xu X, Feng Q, Zhang D, Gu Y, Shi J, Zhao S, Liu W, Wang X, Xia H, Liu Z, Cui B, Liang P, Xi L, Jin J, Ying X, Zhao X, Li W, Jia H, Lan Z, Li F, Wang R, Sun Y, Yang M, Shen Y, Jie Z, Li J, Chen X, Zhong H, Xie H, Zhang Y, Gu W, Deng X, Shen B, Yang H, Xu G, Bi Y, Lai S, Wang J, Qi L, Madsen L, Ning G, Kristiansen K, Wang W. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med. 2017;23:859-868. [PMID: 28628112 DOI: 10.1038/nm.4358] [Cited by in Crossref: 485] [Cited by in F6Publishing: 452] [Article Influence: 97.0] [Reference Citation Analysis]
209 Sun M, Wang Q, Zhang M, Zhang G, Wu T, Liu R, Sui W, Zhang J, Yin J, Zhang M. Leuconostoc pseudomesenteroides improves microbiota dysbiosis and liver metabolism imbalance and ameliorates the correlation between dihydroceramide and strains of Firmicutes and Proteobacteria in high fat diet obese mice. Food Funct 2020;11:6855-65. [PMID: 32666978 DOI: 10.1039/d0fo01009j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
210 Hoyles L, Snelling T, Umlai UK, Nicholson JK, Carding SR, Glen RC, McArthur S. Microbiome-host systems interactions: protective effects of propionate upon the blood-brain barrier. Microbiome 2018;6:55. [PMID: 29562936 DOI: 10.1186/s40168-018-0439-y] [Cited by in Crossref: 112] [Cited by in F6Publishing: 112] [Article Influence: 28.0] [Reference Citation Analysis]
211 Wang J, Jia H. Metagenome-wide association studies: fine-mining the microbiome. Nat Rev Microbiol 2016;14:508-22. [PMID: 27396567 DOI: 10.1038/nrmicro.2016.83] [Cited by in Crossref: 215] [Cited by in F6Publishing: 172] [Article Influence: 35.8] [Reference Citation Analysis]
212 Nilsson A, Mardinoglu A, Nielsen J. Predicting growth of the healthy infant using a genome scale metabolic model. NPJ Syst Biol Appl 2017;3:3. [PMID: 28649430 DOI: 10.1038/s41540-017-0004-5] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 3.4] [Reference Citation Analysis]
213 Elhaik E, Ahsanuddin S, Robinson JM, Foster EM, Mason CE. The impact of cross-kingdom molecular forensics on genetic privacy. Microbiome 2021;9:114. [PMID: 34016161 DOI: 10.1186/s40168-021-01076-z] [Reference Citation Analysis]
214 Jansma J, El Aidy S. Understanding the host-microbe interactions using metabolic modeling. Microbiome 2021;9:16. [PMID: 33472685 DOI: 10.1186/s40168-020-00955-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
215 Aron-Wisnewsky J, Clément K. The gut microbiome, diet, and links to cardiometabolic and chronic disorders. Nat Rev Nephrol 2016;12:169-81. [PMID: 26616538 DOI: 10.1038/nrneph.2015.191] [Cited by in Crossref: 160] [Cited by in F6Publishing: 144] [Article Influence: 22.9] [Reference Citation Analysis]
216 Suthers PF, Foster CJ, Sarkar D, Wang L, Maranas CD. Recent advances in constraint and machine learning-based metabolic modeling by leveraging stoichiometric balances, thermodynamic feasibility and kinetic law formalisms. Metab Eng 2021;63:13-33. [PMID: 33310118 DOI: 10.1016/j.ymben.2020.11.013] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
217 Dai H, Han J, Lichtfouse E. Smarter cures to combat COVID-19 and future pathogens: a review. Environ Chem Lett 2021;:1-13. [PMID: 33824633 DOI: 10.1007/s10311-021-01224-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
218 Shapiro H, Suez J, Elinav E. Personalized microbiome-based approaches to metabolic syndrome management and prevention. J Diabetes 2017;9:226-36. [PMID: 27787945 DOI: 10.1111/1753-0407.12501] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
219 Kumar M, Ji B, Babaei P, Das P, Lappa D, Ramakrishnan G, Fox TE, Haque R, Petri WA, Bäckhed F, Nielsen J. Gut microbiota dysbiosis is associated with malnutrition and reduced plasma amino acid levels: Lessons from genome-scale metabolic modeling. Metab Eng 2018;49:128-42. [PMID: 30075203 DOI: 10.1016/j.ymben.2018.07.018] [Cited by in Crossref: 34] [Cited by in F6Publishing: 25] [Article Influence: 8.5] [Reference Citation Analysis]
220 Noecker C, Eng A, Srinivasan S, Theriot CM, Young VB, Jansson JK, Fredricks DN, Borenstein E. Metabolic Model-Based Integration of Microbiome Taxonomic and Metabolomic Profiles Elucidates Mechanistic Links between Ecological and Metabolic Variation. mSystems 2016;1:e00013-15. [PMID: 27239563 DOI: 10.1128/mSystems.00013-15] [Cited by in Crossref: 90] [Cited by in F6Publishing: 66] [Article Influence: 15.0] [Reference Citation Analysis]
221 Delzenne NM, Rodriguez J, Olivares M, Neyrinck AM. Microbiome response to diet: focus on obesity and related diseases. Rev Endocr Metab Disord 2020;21:369-80. [DOI: 10.1007/s11154-020-09572-7] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
222 Zhang L, Zhou W, Zhan L, Hou S, Zhao C, Bi T, Lu X. Fecal microbiota transplantation alters the susceptibility of obese rats to type 2 diabetes mellitus. Aging (Albany NY) 2020;12:17480-502. [PMID: 32920548 DOI: 10.18632/aging.103756] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
223 Tebani A, Bekri S. Paving the Way to Precision Nutrition Through Metabolomics. Front Nutr 2019;6:41. [PMID: 31024923 DOI: 10.3389/fnut.2019.00041] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 10.7] [Reference Citation Analysis]
224 Øyås O, Stelling J. Genome-scale metabolic networks in time and space. Current Opinion in Systems Biology 2018;8:51-8. [DOI: 10.1016/j.coisb.2017.12.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 3] [Article Influence: 3.8] [Reference Citation Analysis]
225 van der Lelie D, Taghavi S, Henry C, Gilbert JA. The microbiome as a source of new enterprises and job creation: Considering clinical faecal and synthetic microbiome transplants and therapeutic regulation. Microb Biotechnol 2017;10:4-5. [PMID: 28052560 DOI: 10.1111/1751-7915.12597] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
226 Björnson E, Borén J, Mardinoglu A. Personalized Cardiovascular Disease Prediction and Treatment-A Review of Existing Strategies and Novel Systems Medicine Tools. Front Physiol 2016;7:2. [PMID: 26858650 DOI: 10.3389/fphys.2016.00002] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
227 Manickam R, Oh HYP, Tan CK, Paramalingam E, Wahli W. Metronidazole Causes Skeletal Muscle Atrophy and Modulates Muscle Chronometabolism. Int J Mol Sci 2018;19:E2418. [PMID: 30115857 DOI: 10.3390/ijms19082418] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
228 Contreras AV, Cocom-Chan B, Hernandez-Montes G, Portillo-Bobadilla T, Resendis-Antonio O. Host-Microbiome Interaction and Cancer: Potential Application in Precision Medicine. Front Physiol 2016;7:606. [PMID: 28018236 DOI: 10.3389/fphys.2016.00606] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]