BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Moran A, Daly ME, Yip SSF, Yamamoto T. Radiomics-based Assessment of Radiation-induced Lung Injury After Stereotactic Body Radiotherapy. Clin Lung Cancer 2017;18:e425-31. [PMID: 28623121 DOI: 10.1016/j.cllc.2017.05.014] [Cited by in Crossref: 42] [Cited by in F6Publishing: 41] [Article Influence: 8.4] [Reference Citation Analysis]
Number Citing Articles
1 Sha S, Dong J, Wang M, Chen Z, Gao P. Risk factors for radiation-induced lung injury in patients with advanced non-small cell lung cancer: implication for treatment strategies. World J Surg Oncol 2021;19:214. [PMID: 34271911 DOI: 10.1186/s12957-021-02321-3] [Reference Citation Analysis]
2 Hirose TA, Arimura H, Ninomiya K, Yoshitake T, Fukunaga JI, Shioyama Y. Radiomic prediction of radiation pneumonitis on pretreatment planning computed tomography images prior to lung cancer stereotactic body radiation therapy. Sci Rep 2020;10:20424. [PMID: 33235324 DOI: 10.1038/s41598-020-77552-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
3 Fornacon-Wood I, Faivre-Finn C, O'Connor JPB, Price GJ. Radiomics as a personalized medicine tool in lung cancer: Separating the hope from the hype. Lung Cancer 2020;146:197-208. [PMID: 32563015 DOI: 10.1016/j.lungcan.2020.05.028] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 9.0] [Reference Citation Analysis]
4 Su X, Chen N, Sun H, Liu Y, Yang X, Wang W, Zhang S, Tan Q, Su J, Gong Q, Yue Q. Automated machine learning based on radiomics features predicts H3 K27M mutation in midline gliomas of the brain. Neuro Oncol 2020;22:393-401. [PMID: 31563963 DOI: 10.1093/neuonc/noz184] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 12.0] [Reference Citation Analysis]
5 Chen X, Sheikh K, Nakajima E, Lin CT, Lee J, Hu C, Hales RK, Forde PM, Naidoo J, Voong KR. Radiation Versus Immune Checkpoint Inhibitor Associated Pneumonitis: Distinct Radiologic Morphologies. Oncologist 2021. [PMID: 34251728 DOI: 10.1002/onco.13900] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Liu S, Wen L, Hou J, Nie S, Zhou J, Cao F, Lu Q, Qin Y, Fu Y, Yu X. Predicting the pathological response to chemoradiotherapy of non-mucinous rectal cancer using pretreatment texture features based on intravoxel incoherent motion diffusion-weighted imaging. Abdom Radiol (NY) 2019;44:2689-98. [PMID: 31030244 DOI: 10.1007/s00261-019-02032-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
7 El Ayachy R, Giraud N, Giraud P, Durdux C, Giraud P, Burgun A, Bibault JE. The Role of Radiomics in Lung Cancer: From Screening to Treatment and Follow-Up. Front Oncol 2021;11:603595. [PMID: 34026602 DOI: 10.3389/fonc.2021.603595] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Lu L, Sun C, Su Q, Wang Y, Li J, Guo Z, Chen L, Zhang H. Radiation-induced lung injury: latest molecular developments, therapeutic approaches, and clinical guidance. Clin Exp Med 2019;19:417-26. [PMID: 31313081 DOI: 10.1007/s10238-019-00571-w] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
9 Wu S, Jiao Y, Zhang Y, Ren X, Li P, Yu Q, Zhang Q, Wang Q, Fu S. Imaging-Based Individualized Response Prediction Of Carbon Ion Radiotherapy For Prostate Cancer Patients. Cancer Manag Res 2019;11:9121-31. [PMID: 31695500 DOI: 10.2147/CMAR.S214020] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Yuan L, Yifan L, Yuwei Z, Jianwei Z, Meng L, Lin J, Li G. Parameter tuning in machine learning based on radiomics biomarkers of lung cancer. J Xray Sci Technol 2022. [PMID: 35342074 DOI: 10.3233/XST-211096] [Reference Citation Analysis]
11 Yang WC, Hsu FM, Yang PC. Precision radiotherapy for non-small cell lung cancer. J Biomed Sci 2020;27:82. [PMID: 32693792 DOI: 10.1186/s12929-020-00676-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
12 Desideri I, Loi M, Francolini G, Becherini C, Livi L, Bonomo P. Application of Radiomics for the Prediction of Radiation-Induced Toxicity in the IMRT Era: Current State-of-the-Art. Front Oncol 2020;10:1708. [PMID: 33117669 DOI: 10.3389/fonc.2020.01708] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
13 Chen B, Zhang R, Gan Y, Yang L, Li W. Development and clinical application of radiomics in lung cancer. Radiat Oncol 2017;12:154. [PMID: 28915902 DOI: 10.1186/s13014-017-0885-x] [Cited by in Crossref: 48] [Cited by in F6Publishing: 42] [Article Influence: 9.6] [Reference Citation Analysis]
14 Bousabarah K, Temming S, Hoevels M, Borggrefe J, Baus WW, Ruess D, Visser-Vandewalle V, Ruge M, Kocher M, Treuer H. Radiomic analysis of planning computed tomograms for predicting radiation-induced lung injury and outcome in lung cancer patients treated with robotic stereotactic body radiation therapy. Strahlenther Onkol 2019;195:830-42. [PMID: 30874846 DOI: 10.1007/s00066-019-01452-7] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
15 Huynh E, Hosny A, Guthier C, Bitterman DS, Petit SF, Haas-Kogan DA, Kann B, Aerts HJWL, Mak RH. Artificial intelligence in radiation oncology. Nat Rev Clin Oncol. 2020;17:771-781. [PMID: 32843739 DOI: 10.1038/s41571-020-0417-8] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 11.0] [Reference Citation Analysis]
16 Christie JR, Lang P, Zelko LM, Palma DA, Abdelrazek M, Mattonen SA. Artificial Intelligence in Lung Cancer: Bridging the Gap Between Computational Power and Clinical Decision-Making. Can Assoc Radiol J. 2021;72:86-97. [PMID: 32735493 DOI: 10.1177/0846537120941434] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Underwood TS, McMahon SJ. Proton relative biological effectiveness (RBE): a multiscale problem. Br J Radiol 2019;92:20180004. [PMID: 29975153 DOI: 10.1259/bjr.20180004] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
18 Kalman NS, Hugo GD, Mahon RN, Deng X, Mukhopadhyay ND, Weiss E. Diabetes mellitus and radiation induced lung injury after thoracic stereotactic body radiotherapy. Radiother Oncol 2018;129:270-6. [PMID: 30253874 DOI: 10.1016/j.radonc.2018.08.024] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
19 Jiang W, Song Y, Sun Z, Qiu J, Shi L. Dosimetric Factors and Radiomics Features Within Different Regions of Interest in Planning CT Images for Improving the Prediction of Radiation Pneumonitis. Int J Radiat Oncol Biol Phys 2021;110:1161-70. [PMID: 33548340 DOI: 10.1016/j.ijrobp.2021.01.049] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Li Q, Liu Y, Su B, Zhao H, Lin Q, Zhu Y, Zhang L, Weng D, Gong X, Sun X, Xu Y. The CT appearance pattern of radiation-induced lung injury and tumor recurrence after stereotactic body radiation therapy in early stage non-small cell lung cancer. Transl Lung Cancer Res 2020;9:713-21. [PMID: 32676333 DOI: 10.21037/tlcr-20-609] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
21 Shi L, He Y, Yuan Z, Benedict S, Valicenti R, Qiu J, Rong Y. Radiomics for Response and Outcome Assessment for Non-Small Cell Lung Cancer. Technol Cancer Res Treat 2018;17:1533033818782788. [PMID: 29940810 DOI: 10.1177/1533033818782788] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 7.5] [Reference Citation Analysis]
22 Michalet M, Azria D, Tardieu M, Tibermacine H, Nougaret S. Radiomics in radiation oncology for gynecological malignancies: a review of literature. Br J Radiol 2021;94:20210032. [PMID: 33882246 DOI: 10.1259/bjr.20210032] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Avanzo M, Gagliardi V, Stancanello J, Blanck O, Pirrone G, El Naqa I, Revelant A, Sartor G. Combining computed tomography and biologically effective dose in radiomics and deep learning improves prediction of tumor response to robotic lung stereotactic body radiation therapy. Med Phys 2021;48:6257-69. [PMID: 34415574 DOI: 10.1002/mp.15178] [Reference Citation Analysis]
24 Röhrich S, Hofmanninger J, Prayer F, Müller H, Prosch H, Langs G. Prospects and Challenges of Radiomics by Using Nononcologic Routine Chest CT. Radiol Cardiothorac Imaging 2020;2:e190190. [PMID: 33778599 DOI: 10.1148/ryct.2020190190] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
25 Yossi S, Nguyen D, Krhili S, Lizée T, Khodri M. [Prognosis factors after lung stereotactic body radiotherapy for non-small cell lung carcinoma]. Cancer Radiother 2020;24:267-74. [PMID: 32192839 DOI: 10.1016/j.canrad.2019.11.002] [Reference Citation Analysis]
26 Avanzo M, Wei L, Stancanello J, Vallières M, Rao A, Morin O, Mattonen SA, El Naqa I. Machine and deep learning methods for radiomics. Med Phys 2020;47:e185-202. [PMID: 32418336 DOI: 10.1002/mp.13678] [Cited by in Crossref: 36] [Cited by in F6Publishing: 34] [Article Influence: 36.0] [Reference Citation Analysis]
27 Mostafaei S, Abdollahi H, Kazempour Dehkordi S, Shiri I, Razzaghdoust A, Zoljalali Moghaddam SH, Saadipoor A, Koosha F, Cheraghi S, Mahdavi SR. CT imaging markers to improve radiation toxicity prediction in prostate cancer radiotherapy by stacking regression algorithm. Radiol Med 2020;125:87-97. [PMID: 31552555 DOI: 10.1007/s11547-019-01082-0] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 5.7] [Reference Citation Analysis]
28 Qiu Q, Duan J, Yin Y. Radiomics in radiotherapy: Applications and future challenges. Prec Radiat Oncol 2020;4:29-33. [DOI: 10.1002/pro6.1087] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
29 Frerker B, Hildebrandt G. Distinguishing Radiation Pneumonitis from Local Tumour Recurrence Following SBRT for Lung Cancer

]]>. RMI 2020;Volume 13:1-23. [DOI: 10.2147/rmi.s176901] [Reference Citation Analysis]
30 Schick U, Lucia F, Bourbonne V, Dissaux G, Pradier O, Jaouen V, Tixier F, Visvikis D, Hatt M. Use of radiomics in the radiation oncology setting: Where do we stand and what do we need? Cancer/Radiothérapie 2020;24:755-61. [DOI: 10.1016/j.canrad.2020.07.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Wang L, Gao Z, Li C, Sun L, Li J, Yu J, Meng X. Computed Tomography-Based Delta-Radiomics Analysis for Discriminating Radiation Pneumonitis in Patients With Esophageal Cancer After Radiation Therapy. Int J Radiat Oncol Biol Phys 2021;111:443-55. [PMID: 33974887 DOI: 10.1016/j.ijrobp.2021.04.047] [Reference Citation Analysis]
32 Tomasik B, Chałubińska-Fendler J, Chowdhury D, Fendler W. Potential of serum microRNAs as biomarkers of radiation injury and tools for individualization of radiotherapy. Transl Res 2018;201:71-83. [PMID: 30021695 DOI: 10.1016/j.trsl.2018.06.001] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
33 Baumann R, Chan MKH, Pyschny F, Stera S, Malzkuhn B, Wurster S, Huttenlocher S, Szücs M, Imhoff D, Keller C, Balermpas P, Rades D, Rödel C, Dunst J, Hildebrandt G, Blanck O. Clinical Results of Mean GTV Dose Optimized Robotic-Guided Stereotactic Body Radiation Therapy for Lung Tumors. Front Oncol 2018;8:171. [PMID: 29868486 DOI: 10.3389/fonc.2018.00171] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
34 Avanzo M, Pirrone G, Vinante L, Caroli A, Stancanello J, Drigo A, Massarut S, Mileto M, Urbani M, Trovo M, El Naqa I, De Paoli A, Sartor G. Electron Density and Biologically Effective Dose (BED) Radiomics-Based Machine Learning Models to Predict Late Radiation-Induced Subcutaneous Fibrosis. Front Oncol 2020;10:490. [PMID: 32373520 DOI: 10.3389/fonc.2020.00490] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
35 Gardin I, Grégoire V, Gibon D, Kirisli H, Pasquier D, Thariat J, Vera P. Radiomics: Principles and radiotherapy applications. Crit Rev Oncol Hematol 2019;138:44-50. [PMID: 31092384 DOI: 10.1016/j.critrevonc.2019.03.015] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
36 Avanzo M, Stancanello J, Pirrone G, Sartor G. Radiomics and deep learning in lung cancer. Strahlenther Onkol 2020;196:879-87. [PMID: 32367456 DOI: 10.1007/s00066-020-01625-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
37 Oriuchi N, Sugawara S, Shiga T. Positron Emission Tomography for Response Evaluation in Microenvironment-Targeted Anti-Cancer Therapy. Biomedicines 2020;8:E371. [PMID: 32972006 DOI: 10.3390/biomedicines8090371] [Reference Citation Analysis]
38 Isaksson LJ, Pepa M, Zaffaroni M, Marvaso G, Alterio D, Volpe S, Corrao G, Augugliaro M, Starzyńska A, Leonardi MC, Orecchia R, Jereczek-Fossa BA. Machine Learning-Based Models for Prediction of Toxicity Outcomes in Radiotherapy. Front Oncol 2020;10:790. [PMID: 32582539 DOI: 10.3389/fonc.2020.00790] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
39 Vaugier L, Ferrer L, Mengue L, Jouglar E. Radiomics for radiation oncologists: are we ready to go? BJR|Open 2020;2:20190046. [DOI: 10.1259/bjro.20190046] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Febbo JA, Gaddikeri RS, Shah PN. Stereotactic Body Radiation Therapy for Early-Stage Non–Small Cell Lung Cancer: A Primer for Radiologists. RadioGraphics 2018;38:1312-36. [DOI: 10.1148/rg.2018170155] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
41 [DOI: 10.1101/2020.09.07.20189977] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
42 Puttanawarut C, Sirirutbunkajorn N, Tawong N, Jiarpinitnun C, Khachonkham S, Pattaranutaporn P, Wongsawat Y. Radiomic and Dosiomic Features for the Prediction of Radiation Pneumonitis Across Esophageal Cancer and Lung Cancer. Front Oncol 2022;12:768152. [DOI: 10.3389/fonc.2022.768152] [Reference Citation Analysis]
43 Cook GJR, Azad G, Owczarczyk K, Siddique M, Goh V. Challenges and Promises of PET Radiomics. Int J Radiat Oncol Biol Phys 2018;102:1083-9. [PMID: 29395627 DOI: 10.1016/j.ijrobp.2017.12.268] [Cited by in Crossref: 55] [Cited by in F6Publishing: 50] [Article Influence: 13.8] [Reference Citation Analysis]
44 Astaraki M, Wang C, Buizza G, Toma-dasu I, Lazzeroni M, Smedby Ö. Early survival prediction in non-small cell lung cancer from PET/CT images using an intra-tumor partitioning method. Physica Medica 2019;60:58-65. [DOI: 10.1016/j.ejmp.2019.03.024] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
45 Lucia F, Bourbonne V, Visvikis D, Miranda O, Gujral DM, Gouders D, Dissaux G, Pradier O, Tixier F, Jaouen V, Bert J, Hatt M, Schick U. Radiomics Analysis of 3D Dose Distributions to Predict Toxicity of Radiotherapy for Cervical Cancer. J Pers Med 2021;11:398. [PMID: 34064918 DOI: 10.3390/jpm11050398] [Reference Citation Analysis]